[1]葛素囡, 陈玉娜, 徐宏亚, 等. 新疆巴州优质棉花品种筛选及推广应用研究初报 [J]. 农业工程技术, 2019, 39(17): 93. GE Sunan, CHEN Yuna, XU Hongya, et al. Preliminary Report on Screening, Popularization and Application of Quality Cotton Varieties in Bazhou, Xinjiang [J]. Agricultural Engineering Technology, 2019, 39 (17): 93. [2]Rao N R, Gapg P K, Ghosh S K. Development of an agricultural crops spectral library and classification of crops at cultivar level using hyperspectral data [J]. Precis Agric, 2007, 8(4-5): 173-85. [3]田文忠, 赵庆展, 胡浩伟,等. 无人机高光谱载荷性能交叉验证 [J]. 中国测试, 2019, 45(11): 131-137. TIAN Wenzhong, ZHAO Qingzhan, HU Haowei, et al. Cross-validation of performance about UAV Hyperspectral Load [J]. China Measurement & Test, 2019, 45 (11): 131-137. [4]王毓乾, 何海清, 谭永滨,等. 结合地物光谱库的高光谱端元识别及解混 [J]. 遥感信息, 2018, 33(2): 33-39. WANG Yuqian, HE Haiqing, TAN Yongbin, et al. Endmember distinguishing and unmixing for hyperspectral image interated by spectral library [J]. Remote Sensing Information, 2018, 33 (2): 33-39. [5]蓝金辉, 邹金霖, 郝彦爽, 等. 高光谱遥感影像混合像元分解研究进展 [J]. 遥感学报, 2018, 22(1): 13-27. LAN Jinhui, ZOU Jinlin, HAO Yanshuang, et al. Research progress on unmixing of hyperspectral remote sensing imagery [J]. Journal of Remote Sensing, 2018, 22 (1): 13-27. [6]孙莉, 陈曦, 包安明, 等. 棉花各生育期高光谱数据与叶片生物物理生物化学量的相关分析 [J]. 干旱区地理, 2004, (1): 124-129. SUN Li, CHEN Xi, BAO Anming, et al. Analysis of correlation for cotton leaf hyperspectral data and Physiology Parameters in Different Growing Stage [J]. Arid Land Geography, 2004, (1): 124-129. [7]王克如, 潘文超, 李少昆, 等. 不同施氮量棉花冠层高光谱特征研究 [J]. 光谱学与光谱分析, 2011, 31(7): 1868-1872. WANG Keru, PAN Wenchao, LI Shaokun, et al. Monitoring models of the plant nitrogen content based on cotton canopy hyperspectral reflectance [J]. Spectroscopy and Spectral Analysis, 2011, 31 (7): 1868-1872. [8]陈兵, 王琼, 肖春华, 等. 9种胁迫条件下棉花叶片光谱特征及其识别研究 [J]. 西北农业学报, 2015, 24(10): 64-73. CHEN Bing, WANG Qiong, XIAO Chunhua, et al. Exploration and recognition of spectral characteristics ofcotton leaf suffered nine stresses [J]. Acta Agriculturae Boreali-occidentalis Sinica, 2015, 24 (10): 64-73. [9]孙中宇, 黄钰辉, 杨龙,等. 基于无人机遥感的古银叶树群落健康快速诊断 [J]. 热带地理, 2019, 39(4): 538-545. SUN Zhongyu, HUANG Yuhui, YANG Long, et al. Rapid diagnosis of ancient heritiera littoralis community health using UAV remote sensing [J]. Tropical Geography, 2019, 39 (4): 538-545. [10]田明璐, 班松涛, 常庆瑞,等. 基于无人机成像光谱仪数据的棉花叶绿素含量反演 [J]. 农业机械学报, 2016, 47(11): 285-293. TIAN Minglu, BAN Songtao, CHANG Qingrui, et al. Estimation of SPAD value of cotton leaf using hyperspectral images from UAV-based imaging spectroradiometer [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47 (11): 285-293. [11]赵春晖, 郭蕴霆. 一种改进的快速N-FINDR端元提取算法 [J]. 光子学报, 2015, 44(10): 42-50. ZHAO Chunhui, GUO Yunting. An improved fast N-FINDR endmember extraction algorithm [J]. Acta Photonica Sinica, 2015, 44 (10): 42-50. [12]NASCIMENTO J M P, DIAS J M B. Vertex component analysis: A fast algorithm to unmix hyperspectral data [J]. Ieee Transactions on Geoscience and Remote Sensing, 2005, 43(4): 898-910. [13]杨可明, 魏华锋, 刘飞,等. 以光谱信息熵改进的N-FINDR高光谱端元提取算法 [J]. 地球信息科学学报, 2015, 17(8): 979-985. YANG Keming, WEI Huafeng, LIU Fei, et al. Improved N-FINDR algorithm on hyperspectral endmember extraction based on spectral shannon entropy [J]. Journal of Geo-Information Science, 2015, 17 (8): 979-985. [14]吴波, 张良培, 李平湘. 非监督正交子空间投影的高光谱混合像元自动分解 [J]. 中国图象图形学报, 2004, (11): 122-126,30. WU Bo, ZHANG Liangpei, LI Pingxiang. Unsupervised orthogonal subspace projection approach to unmix hyperspectral imagery automatically [J]. Journal of Image and Graphics, 2004, (11): 122-126 , 30. [15]刘蓉. 基于粒子群优化理论的高光谱遥感影像端元提取算法研究 [D].武汉:武汉大学, 2018. LIU Rong. Particle swarm optimization based hyperspectral image endmember extraction [D]. Wuhan:Wuhan University, 2018. [16]韩仲志, 王轩慧, 时鸿涛,等. 高光谱遥感分区混合端元提取计算海洋溢油覆盖度 [J]. 光谱学与光谱分析, 2019, 39(5): 1563-1570. HAN Zhongzhi, WANG Xuanhui, SHI Hongtao, et al.Mixture End-Member extraction method for covergae calculation of sea oil spills based on hyper-spectral remote sensing images [J]. Spectroscopy and Spectral Analysis, 2019, 39 (5): 1563-1570. [17]唐晓燕, 高昆, 倪国强,等. 基于流形学习和空间信息的改进N-FINDR端元提取算法 [J]. 光谱学与光谱分析, 2013, 33(9): 2519-2524. TANG Xiaoyan, GAO Kun, NI Guoqiang, et al. An improved N-FINDR endmember extraction algorithm based on manifold learning and spatial information [J]. Spectroscopy and Spectral Analysis, 2013, 33 (9): 2519-2524. [18]徐君, 王彩玲, 王丽. 采用PPI算法改进的一种数学形态学端元提取方法 [J]. 测绘学报, 2019, 48(8): 996-1003. XU Jun, WANG Cailing, WANG Li. An improved endmember extraction method of mathematical morphology based on PPI algorithm [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48 (8): 996-1003. [19]杨鹏飞, 廖秀英, 徐启恒,等. 纯净像元指数改进的N-FINDR高光谱端元提取算法 [J]. 测绘通报, 2018, (2): 89-93. YANG Pengfei, LIAO Xiuying, XU Qiheng, et al. Improved N-FINDR hyper-spectral member extraction algorithm by Pure Pixel Index [J]. Bulletin of Surveying and Mapping, 2018, (2): 89-93. [20]孟禹弛, 侯学会, 王猛. 不同生育期冬小麦叶面积指数高光谱遥感估算模型 [J]. 江苏农业科学, 2017, 45(5): 211-215. MENG Yuchi, HOU Xuehui, WANG Meng. Hyperspectral remote sensing estimation model of winter wheat leaf area index at different growth stages [J]. Jiangsu Agricultural Sciences, 2017, 45 (5): 211-215. [21]孙红, 刘宁, 邢子正,等. 马铃薯冠层光谱响应特征参数优化与生长期判别 [J]. 光谱学与光谱分析, 2019, 39(6): 1870-1877. SUN Hong, LIU Ning, XING Zizheng, et al. Parameter optimization of potato spectral response characteristics and growth stage identification [J]. Spectroscopy and Spectral Analysis, 2019, 39 (6): 1870-1877. [22]周扬帆, 陈佑启, 何英彬. 基于高光谱曲线的马铃薯与其他主要作物光谱差异性分析 [J]. 中国农业资源与区划, 2017, 38(11): 10-16,129. ZHOU Yangfan, CHEN Youqi, HE Yingbin. Analysis of difference between potato and other staple crops based on hyperspectral curve [J]. Chinese Journal of Agricultural Resources and Regional Planning, 2017, 38 (11): 10-16 ,129. [23]刘天乐, 高伟, 陈启浩. 基于高光谱的遥感图像的光谱角度分类方法的研究[C]//.中国测绘学会2006年学术年会, 中国广东深圳, 2006. [24]唐延林, 王秀珍, 黄敬峰,等. 棉花高光谱及其红边特征 [J]. 棉花学报, 2003, 15(3): 146-150. TANG Yanlin, WANG Xiuzhen, HUANG Jingfeng, et al. The hyperspectra and their red edge characteristics of cotton [J]. Cotton Science, 2003, 15(3): 146-150. |