Xinjiang Agricultural Sciences ›› 2024, Vol. 61 ›› Issue (7): 1631-1639.DOI: 10.6048/j.issn.1001-4330.2024.07.009
• Crop Genetics and Breeding·Germplasm Resources·Molecular Genetics·Cultivation Physiology·Physiology and Biochemistry • Previous Articles Next Articles
LU Weidan1(), ZHOU Yuanhang1, MA Xiaolong1, GAO Jianglong1, FAN Xiaoqin1, GUO Jianfu1, LI Jianqiang2, LIN Ming1(
)
Received:
2023-11-21
Online:
2024-07-20
Published:
2024-09-04
Correspondence author:
LIN Ming
Supported by:
鲁伟丹1(), 周远航1, 马小龙1, 高江龙1, 樊晓琴1, 郭建富1, 李健强2, 林明1(
)
通讯作者:
林明
作者简介:
鲁伟丹(1995-),女,新疆哈密人,研究实习员,研究方向为甜菜栽培育种,(E-mail)1466911066@qq.com
基金资助:
CLC Number:
LU Weidan, ZHOU Yuanhang, MA Xiaolong, GAO Jianglong, FAN Xiaoqin, GUO Jianfu, LI Jianqiang, LIN Ming. Effects of replacing chemical fertilizer with organic fertilizer in different proportions and plant nutrients and sugar beet yield[J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1631-1639.
鲁伟丹, 周远航, 马小龙, 高江龙, 樊晓琴, 郭建富, 李健强, 林明. 不同比例有机肥替代化肥对甜菜植株养分及产量的影响[J]. 新疆农业科学, 2024, 61(7): 1631-1639.
处理 Treat- ments | 化肥 Chemical fertilizer (kg/hm2) | 有机肥 Organic fertilizer (kg/hm2) | ||||
---|---|---|---|---|---|---|
K2O | N | P2O5 | K2O | N | P2O5 | |
CK | 0 | 0 | 0 | 0 | 0 | 0 |
CF | 180 | 225 | 150 | 0 | 0 | 0 |
10%HF | 162 | 207 | 132 | 18 | 18 | 18 |
20%HF | 144 | 189 | 114 | 36 | 36 | 36 |
30%HF | 126 | 171 | 96 | 54 | 54 | 54 |
40%HF | 108 | 153 | 78 | 72 | 72 | 72 |
50%HF | 90 | 135 | 60 | 90 | 90 | 90 |
Tab.1 Fertilizer dosage and code of each treatment
处理 Treat- ments | 化肥 Chemical fertilizer (kg/hm2) | 有机肥 Organic fertilizer (kg/hm2) | ||||
---|---|---|---|---|---|---|
K2O | N | P2O5 | K2O | N | P2O5 | |
CK | 0 | 0 | 0 | 0 | 0 | 0 |
CF | 180 | 225 | 150 | 0 | 0 | 0 |
10%HF | 162 | 207 | 132 | 18 | 18 | 18 |
20%HF | 144 | 189 | 114 | 36 | 36 | 36 |
30%HF | 126 | 171 | 96 | 54 | 54 | 54 |
40%HF | 108 | 153 | 78 | 72 | 72 | 72 |
50%HF | 90 | 135 | 60 | 90 | 90 | 90 |
处理 Treatments | 丛高 Plant height (cm) | 叶片数 Number of blades | 叶面积 Leaf area (cm2) | 根长 Root length (cm) | 根围 Rhizosphere (cm) | 单根重 Single heavy (kg) |
---|---|---|---|---|---|---|
CK | 71.29±1.04e | 20.86±1.78d | 189.64±21.16b | 33.00±4.06a | 41.70±4.12b | 1.03±0.03b |
CF | 77.96±1.64d | 20.67±1.03d | 199.52±13.68b | 34.60±3.51a | 42.60±4.62b | 1.10±0.04b |
10%HF | 79.43±0.91c | 23.26±1.22c | 208.00±15.55ab | 34.70±1.72a | 46.20±3.82ab | 1.13±0.02b |
20%HF | 82.71±1.87a | 24.46±1.35abc | 210.18±6.51ab | 38.40±4.51a | 48.30±5.65a | 1.25±0.09a |
30%HF | 83.62±1.74a | 26.00±1.96a | 226.26±11.02a | 37.60±5.64a | 48.80±3.49a | 1.29±0.08a |
40%HF | 83.46±1.95a | 25.10±1.72ab | 229.52±19.54a | 35.80±4.02a | 46.80±3.35ab | 1.30±0.03a |
50%HF | 81.00±2.11b | 23.92±1.65bc | 213.8±11.92ab | 34.40±2.70a | 45.00±0.94ab | 1.23±0.03a |
Tab.2 Changes of humic acid organic fertilizer replacing part of chemical fertilizer on the growth of sugar beet
处理 Treatments | 丛高 Plant height (cm) | 叶片数 Number of blades | 叶面积 Leaf area (cm2) | 根长 Root length (cm) | 根围 Rhizosphere (cm) | 单根重 Single heavy (kg) |
---|---|---|---|---|---|---|
CK | 71.29±1.04e | 20.86±1.78d | 189.64±21.16b | 33.00±4.06a | 41.70±4.12b | 1.03±0.03b |
CF | 77.96±1.64d | 20.67±1.03d | 199.52±13.68b | 34.60±3.51a | 42.60±4.62b | 1.10±0.04b |
10%HF | 79.43±0.91c | 23.26±1.22c | 208.00±15.55ab | 34.70±1.72a | 46.20±3.82ab | 1.13±0.02b |
20%HF | 82.71±1.87a | 24.46±1.35abc | 210.18±6.51ab | 38.40±4.51a | 48.30±5.65a | 1.25±0.09a |
30%HF | 83.62±1.74a | 26.00±1.96a | 226.26±11.02a | 37.60±5.64a | 48.80±3.49a | 1.29±0.08a |
40%HF | 83.46±1.95a | 25.10±1.72ab | 229.52±19.54a | 35.80±4.02a | 46.80±3.35ab | 1.30±0.03a |
50%HF | 81.00±2.11b | 23.92±1.65bc | 213.8±11.92ab | 34.40±2.70a | 45.00±0.94ab | 1.23±0.03a |
处理 Treatments | 方程 Equation | t0 | t1 | t2 | △t | Vm | R2 |
---|---|---|---|---|---|---|---|
CK | y=45.400 0/(1+e(4.900 6-0.051 659 x)) | 95 | 69 | 120 | 51 | 0.59 | 0.998 6 |
CF | y=53.230 0/(1+e(4.882 8-0.049 181 x)) | 99 | 73 | 126 | 54 | 0.65 | 0.9979 |
10%HF | y=54.595 4/(1+e(4.694 0-0.047 222 x)) | 99 | 72 | 127 | 56 | 0.64 | 0.998 9 |
20%HF | y=61.333 2/(1+e(4.600 8-0.044 477 x)) | 103 | 74 | 133 | 59 | 0.68 | 0.999 4 |
30%HF | y=69.268 5/(1+e(4.559 6-0.041 995 x)) | 109 | 77 | 140 | 63 | 0.73 | 0.999 4 |
40%HF | y=67.081 4/(1+e(4.577 0-0.042 664 x)) | 107 | 76 | 138 | 62 | 0.72 | 0.999 6 |
50%HF | y=57.703 1/(1+e(4.956 7-0.050 796 x)) | 98 | 72 | 124 | 52 | 0.73 | 0.998 7 |
Tab.3 Changes of humic acid organic fertilizer on dry matter accumulation characteristics of sugar beet
处理 Treatments | 方程 Equation | t0 | t1 | t2 | △t | Vm | R2 |
---|---|---|---|---|---|---|---|
CK | y=45.400 0/(1+e(4.900 6-0.051 659 x)) | 95 | 69 | 120 | 51 | 0.59 | 0.998 6 |
CF | y=53.230 0/(1+e(4.882 8-0.049 181 x)) | 99 | 73 | 126 | 54 | 0.65 | 0.9979 |
10%HF | y=54.595 4/(1+e(4.694 0-0.047 222 x)) | 99 | 72 | 127 | 56 | 0.64 | 0.998 9 |
20%HF | y=61.333 2/(1+e(4.600 8-0.044 477 x)) | 103 | 74 | 133 | 59 | 0.68 | 0.999 4 |
30%HF | y=69.268 5/(1+e(4.559 6-0.041 995 x)) | 109 | 77 | 140 | 63 | 0.73 | 0.999 4 |
40%HF | y=67.081 4/(1+e(4.577 0-0.042 664 x)) | 107 | 76 | 138 | 62 | 0.72 | 0.999 6 |
50%HF | y=57.703 1/(1+e(4.956 7-0.050 796 x)) | 98 | 72 | 124 | 52 | 0.73 | 0.998 7 |
Fig.1 Changes of humic acid organic fertilizer replacing part of chemical fertilizer on sugar beet yield and quality Note:Different small letters Indicates significant at the 0.05 level
Fig.2 Changes of humic acid organic fertilizer replacing part of chemical fertilizer on soil nutrients Note:Different small letters indicates significant at the 0.05 level
Fig.3 Changes of partial replacement of chemical fertilizer with humic acid organic fertilizer on plant nutrient uptake Note:Different small letters indicates significant at the 0.05 level
Fig.4 Correlation analysis of soil and plant nutrients with growth, yield and quality of sugar beet Note:SOM organic matter; SAD alkali nitrogen; SAP available phosphorus; SAK available potassium; Yiled production; SCO sugar content; SUY sugar production; PLH plexus high; NOB Number of leaves; LEA leaf area; ROL root length; RHI rhizosphere; SIH single root weight;LNC Nitrogen content in stem and leaf ; RNC Nitrogen content in root tuber;LPC Stem and leaf phosphorus content ;RPC Phosphorus content in tuber roots; LKC Potassium content in stem and leaf ;RKC Potassium content of root tubers.* P<0.05,** P<0.01,***P<0.001
[1] | 王荣华, 李守明, 艾依肯, 等. 新疆甜菜产业发展现状与展望[J]. 中国糖料, 2022, 44(1): 81-86. |
WANG Ronghua, LI Shouming, Aiyiken, et al. Production status and prospects of sugar beet in Xinjiang[J]. Sugar Crops of China, 2022, 44(1): 81-86. | |
[2] | 林明, 阿不都卡地尔·库尔班, 陈友强, 等. 滴灌带型配置与覆膜方式对新疆甜菜产量形成特性的影响[J]. 中国农业大学学报, 2021, 26(7): 36-44. |
LIN Ming, Abudukadier Kaerban, CHEN Youqiang, et al. Effects of different drip irrigation belt configurations and film mulching methods on yield formation characteristics of sugar-beet in Xinjiang[J]. Journal of China Agricultural University, 2021, 26(7): 36-44. | |
[3] | 张强, 郭晓霞, 田露, 等. 化肥减施下生物有机肥对甜菜生长发育及产质量的影响[J]. 中国糖料, 2021, 43(2): 55-60. |
ZHANG Qiang, GUO Xiaoxia, TIAN Lu, et al. Effects of bio-organic fertilizer on growth, yield and quality of sugar beet under reduced chemical fertilizer application[J]. Sugar Crops of China, 2021, 43(2): 55-60. | |
[4] | 黄春燕, 苏文斌, 樊福义, 等. 施用有机肥对甜菜产质量影响初探[J]. 中国糖料, 2012, 34(4): 35-36. |
HUANG Chunyan, SU Wenbin, FAN Fuyi, et al. Effects of organic manure application on yield and quality in sugarbeet[J]. Sugar Crops of China, 2012, 34(4): 35-36. | |
[5] | Gu L M, Liu T N, Zhao J, et al. Nitrate leaching of winter wheat grown in lysimeters as affected by fertilizers and irrigation on the North China Plain[J]. Journal of Integrative Agriculture, 2015, 14(2): 374-388. |
[6] | 韩秉进, 陈渊, 乔云发, 等. 连年施用有机肥对土壤理化性状的影响[J]. 农业系统科学与综合研究, 2004, 20(4): 294-296. |
HAN Bingjin, CHEN Yuan, QIAO Yunfa, et al. Effect of long-term application organic fertilizer on soil physiochemical properties[J]. System Sciences and Comprehensive Studies in Agriculture, 2004, 20(4): 294-296. | |
[7] | Hou X Q, Wang X J, Li R, et al. Effects of different manure application rates on soil properties, nutrient use, and crop yield during dryland maize farming[J]. Soil Research, 2012, 50(6): 507. |
[8] | Böhme L, Böhme F. Soil microbiological and biochemical properties affected by plant growth and different long-term fertilisation[J]. European Journal of Soil Biology, 2006, 42(1): 1-12. |
[9] | 李占, 丁娜, 郭立月, 等. 有机肥和化肥不同比例配施对冬小麦—夏玉米生长、产量和品质的影响[J]. 山东农业科学, 2013, 45(7):71-77,82. |
LI Zhan, DING Na, GUO Liyue, et al. Effects of different proportions of organic fertilizer and chemical fertilizer on growth, yield and quality of winter wheat and summer maize[J]. Shandong Agricultural Sciences, 2013, 45(7):71-77,82. | |
[10] | Brestic M, Zivcak M, Kalaji H M, et al. Photosystem II thermostability in situ: environmentally induced acclimation and genotype-specific reactions in Triticum aestivum L[J]. Plant Physiology and Biochemistry: PPB, 2012, 57: 93-105. |
[11] | Gautam A, Agrawal D, SaiPrasad S V, et al. A quick method to screen high and low yielding wheat cultivars exposed to high temperature[J]. Physiology and Molecular Biology of Plants: an International Journal of Functional Plant Biology, 2014, 20(4): 533-537. |
[12] | 吴建繁, 王运华, 贺建德. 京郊保护地番茄氮磷钾肥料效应及其吸收分配规律研究[J]. 植物营养与肥料学报, 2000, 6(4): 409. |
WU Jianfan, WANG Yunhua, HE Jiande. Effect of nitrogen, phosphorus and potassium fertilizer on tomato and its absorption and distribution in protected area of Beijing[J]. Journal of Plant Nutrition and Fertilizers, 2000, 6(4): 409. | |
[13] | 温延臣, 张曰东, 袁亮, 等. 商品有机肥替代化肥对作物产量和土壤肥力的影响[J]. 中国农业科学, 2018, 51(11): 2136-2142. |
WEN Yanchen, ZHANG Yuedong, YUAN Liang, et al. Crop yield and soil fertility response to commercial organic fertilizer substituting chemical fertilizer[J]. Scientia Agricultura Sinica, 2018, 51(11): 2136-2142. | |
[14] | Yan K, Chen P, Shao H B, et al. Dissection of photosynthetic electron transport process in sweet sorghum under heat stress[J]. PLoS One, 2013, 8(5): e62100. |
[15] | Bohme L, Bohme F. Soil microbiological and biochemical properties affected by plant growth and different long-term fertilisation[J]. European Journal of Soil Biology, 2006, 42(1): 1-12. |
[16] | 郭乾坤. 红壤性水稻土有机培肥效应及其微生物学机制[D]. 北京: 中国农业科学院, 2020. |
GUO Qiankun. Effect of organic fertilization on paddy soil in red soil and its microbial mechanism[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. | |
[17] | 王立刚, 李维炯, 邱建军, 等. 生物有机肥对作物生长、土壤肥力及产量的效应研究[J]. 土壤肥料, 2004, (5): 12-16. |
WANG Ligang, LI Weijiong, QIU Jianjun, et al. Effect of biological organic fertilizer on crops growth, soil fertility and yield[J]. Soils and Fertilizers, 2004, (5): 12-16. | |
[18] | 张奇茹, 谢英荷, 李廷亮, 等. 有机肥替代化肥对旱地小麦产量和养分利用效率的影响及其经济环境效应[J]. 中国农业科学, 2020, 53(23): 4866-4878. |
ZHANG Qiru, XIE Yinghe, LI Tingliang, et al. Effects of organic fertilizers replacing chemical fertilizers on yield, nutrient use efficiency, economic and environmental benefits of dryland wheat[J]. Scientia Agricultura Sinica, 2020, 53(23): 4866-4878. | |
[19] | 唐继伟, 徐久凯, 温延臣, 等. 长期单施有机肥和化肥对土壤养分和小麦产量的影响[J]. 植物营养与肥料学报, 2019, 25(11): 1827-1834. |
TANG Jiwei, XU Jiukai, WEN Yanchen, et al. Effects of organic fertilizer and inorganic fertilizer on the wheat yields and soil nutrients under long-term fertilization[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(11): 1827-1834. | |
[20] | Liu L Y, Li H Y, Zhu S H, et al. The response of agronomic characters and rice yield to organic fertilization in subtropical China: a three-level meta-analysis[J]. Field Crops Research, 2021, 263: 108049. |
[21] | Streb P, Aubert S, Gout E, et al. Cross tolerance to heavy-metal and cold-induced photoinhibiton in leaves of Pisum sativum acclimated to low temperature[J]. Physiology and Molecular Biology of Plants: an International Journal of Functional Plant Biology, 2008, 14(3): 185-193. |
[22] | Tsimilli-Michael M. Special issue in honour of Prof. Reto J. Strasser-Revisiting JIP-test: an educative review on concepts, assumptions, approximations, definitions and terminology[J]. Photosynthetica, 2020, 58: 275-292. |
[23] | 申长卫, 袁敬平, 李新华, 等. 有机肥氮替代20%化肥氮提高豫北冬小麦氮肥利用率和土壤肥力[J]. 植物营养与肥料学报, 2020, 26(8): 1395-1406. |
SHEN Changwei, YUAN Jingping, LI Xinhua, et al. Improving winter wheat N utilization efficiency and soil fertility through replacement of chemical N by 20% organic manure[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(8): 1395-1406. | |
[24] | 吴成龙. 稻—麦轮作系统有机无机肥配施协同土壤氮素转化的机制研究[D]. 南京: 南京农业大学, 2010. |
WU Chenglong. Mechanisms on Soil Nitrogen Transformations as Affected by Integrated Use of Inorganic and Organic Fertilizers in a Rice-Wheat Cropping System[D]. Nanjing: Nanjing Agricultural University, 2010. | |
[25] | 任科宇, 陆东明, 邹洪琴, 等. 有机替代对长江流域水稻产量和籽粒含氮量的影响[J]. 农业资源与环境学报, 2022, 39(4): 716-725. |
REN Keyu, LU Dongming, ZOU Hongqin, et al. Effects of substituting manure for fertilizer on yield and nitrogen content of rice grain in the Yangtze River Basin[J]. Journal of Agricultural Resources and Environment, 2022, 39(4): 716-725. | |
[26] | 孟超然, 白如霄, 候建伟, 等. 有机肥替代部分化肥对干旱区滴灌玉米养分吸收及产量影响[J]. 土壤, 2020, 52(4):750-757 |
MENG Chaoran, BAI Ruxiao, HOU Jianwei, et al. Effects of organic fertilizer replacement on nutrient uptake and yield of maize under drip irrigation in arid region[J]. Soils, 2018, 52(4):750-757. | |
[27] | 吴迪, 黄绍文, 金继运. 氮肥运筹、配施有机肥和坐水种对春玉米产量与养分吸收转运的影响[J]. 植物营养与肥料学报, 2009, 15(2): 317-326. |
WU Di, HUANG Shaowen, JIN Jiyun. Effects of nitrogen fertilizer management, organic manure application and bed-irrigation sowing on maize yield, and nutrient uptake and translocation[J]. Plant Nutrition and Fertilizer Science, 2009, 15(2): 317-326. | |
[28] | 姜佰文, 贾文凯, 王春宏, 等. 氮素调控对寒地玉米氮素积累及产量的影响[J]. 东北农业大学学报, 2010, 41(8): 33-37. |
JIANG Baiwen, JIA Wenkai, WANG Chunhong, et al. Effect of nitrogen managing on nitrogen accumulation and yield of corn in cold area[J]. Journal of Northeast Agricultural University, 2010, 41(8): 33-37. | |
[29] | Sajjad K, Shad K K, Abdur R. Integrated use of organic and inorganic fertilizers in oat for improving its productivity[J]. European Academic Research, 2014, 2(5): 6559-6567. |
[30] | 徐明岗, 李冬初, 李菊梅, 等. 化肥有机肥配施对水稻养分吸收和产量的影响[J]. 中国农业科学, 2008, 41(10): 3133-3139. |
XU Minggang, LI Dongchu, LI Jumei, et al. Effects of organic manure application combined with chemical fertilizers on nutrients absorption and yield of rice in Hunan of China[J]. Scientia Agricultura Sinica, 2008, 41(10): 3133-3139. | |
[31] | 张强, 郭晓霞, 田露, 等. 化肥减施下生物有机肥对甜菜生长发育及产质量的影响[J]. 中国糖料, 2021, 43(2): 55-60. |
ZHANG Qiang, GUO Xiaoxia, TIAN Lu, et al. Effects of bio-organic fertilizer on growth, yield and quality of sugar beet under reduced chemical fertilizer application[J]. Sugar Crops of China, 2021, 43(2): 55-60. |
[1] | FANG Hui, DING Yindeng, FAN Guiqiang, GAO Yonghong, HUANG Tianrong. Research report on the development status of wheat industry in southern Xinjiang [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 75-80. |
[2] | ZHANG Zehua, YE Hanchun, WANG Zhenhua, LI Wenhao, LI Haiqiang, LIU Jian. Effects of equal nitrogen applied with urease inhibitor on cotton growth, yield, and quality under mulched drip irrigation [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2103-2111. |
[3] | CHEN Ruijie, LUO Linyi, RUAN Xiangyang, YE Jun. Effects of humic acid on soil nutrients, cotton yield and quality in cotton fields under drip irrigation [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2112-2121. |
[4] | HUANG Boxuan, LI Pengcheng, ZHENG Cangsong, SUN Miao, SHAO Jingjing, FENG Weina, PANG Chaoyou, XU Wenxiu, DONG Helin. Effects of different nitrogen inhibitors on growth, nitrogen utilization and yield of cotton [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2122-2131. |
[5] | ZENG Wanying, GENG Hongwei, CHENG Yukun, LI Sizhong, QIAN Songting, GAO Weishi, ZHANG Liming. Comprehensive evaluation of drought resistance during the rapid growth stage of sugar beet cultivars [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2140-2151. |
[6] | ZHANG Niao, WANG Hui, FENG Guojun, Zaituniguli Kuerban. Study on the agronomic traits and quality differences of grain sorghum in Xinjiang [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2160-2167. |
[7] | CHEN Fang, LI Zihui, SUNXiaogui , ZHANG Tingjun. Different dosage of microbial agents on the yield and quality of processed tomatoes [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2285-2289. |
[8] | ZHANG Chengjie, HU Haoran, DUAN Songjiang, WU Yifan, ZHANG Jusong. Effects of nitrogen-dense interaction on growth, development, yield and quality of Gossypium barbadense L. [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1821-1830. |
[9] | HOU Lili, WANG Wei, CUI Xinju, ZHOU Dawei. Effects of organic and inorganic combined application on yield, soil nutrients and enzyme activities of winter wheat [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1845-1852. |
[10] | CHEN Fang, LI Zihui, WANG Bingyue, SUN Xiaogui, ZHANG Tingjun. Effects of microbial inoculants on growth and yield of winter wheat [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1853-1860. |
[11] | YUAN Yingying, ZHAO Jinghua, Dilimulati Simayi, YANG Tingrui. Study on physiological indexes and yield analysis of spring wheat in pots based on apriori algorithm [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1861-1871. |
[12] | NIU Tingting, MA Mingsheng, ZHANG Jungao. Effects of straw returning and plastic film mulching on soil physical and chemical properties and spring maize yield in rain-fed upland farmland [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1896-1906. |
[13] | ZHAO Minhua, SONG Bingxi, ZHANG Yupeng, GAO Zhihong, ZHU Yongyong, CHEN Xiaoyuan. Effects of nitrogen fertilizer reduction on rice yield and nitrogen partial factor productivity under dry farming conditions [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1907-1915. |
[14] | HU Huabing, SUN Linlin, LIU Jianxiong, HE Biwei, LIU Xun, HUAN Tin, LI Youfang. Correlation analysis of sugar accumulation and temperature in sugar beet under drip irrigation [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1916-1925. |
[15] | ZHANG Caihong, WANG Guoqiang, JIANG Luyan, LIU Tao, DE Xianming. Variation of environmental factors and analysis of tomato traits in low-energy assembly-type deep-winter production solar greenhouse [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 2043-2053. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||