Xinjiang Agricultural Sciences ›› 2022, Vol. 59 ›› Issue (6): 1418-1428.DOI: 10.6048/j.issn.1001-4330.2022.06.013
• Soil Fertilizer·Horiculural Special Local Products·Storage and Preservation Procssing·Germplasm Resources • Previous Articles Next Articles
WANG Qiang1,2(), LIU Huifang1, HAN Hongwei1, ZHUANG Hongmei1, WANG Baike1, WANG Juan1, YANG Tao1, WANG Hao1(
), QIN Yong2(
)
Received:
2021-10-01
Online:
2022-06-20
Published:
2022-07-07
Correspondence author:
WANG Hao, QIN Yong
Supported by:
王强1,2(), 刘会芳1, 韩宏伟1, 庄红梅1, 王柏柯1, 王娟1, 杨涛1, 王浩1(
), 秦勇2(
)
通讯作者:
王浩,秦勇
作者简介:
王强(1983-),男,甘肃人,副研究员,研究方向为蔬菜栽培生理与逆境胁迫,(E-mail) wangqiang201004@sina.com
基金资助:
CLC Number:
WANG Qiang, LIU Huifang, HAN Hongwei, ZHUANG Hongmei, WANG Baike, WANG Juan, YANG Tao, WANG Hao, QIN Yong. Screening Differentially Expressed Proteins in Response to Salt Stress of Tomato Leaves Based on TMT and PRM Techniques[J]. Xinjiang Agricultural Sciences, 2022, 59(6): 1418-1428.
王强, 刘会芳, 韩宏伟, 庄红梅, 王柏柯, 王娟, 杨涛, 王浩, 秦勇. 基于 TMT和PRM 技术筛选番茄响应盐胁迫差异表达蛋白[J]. 新疆农业科学, 2022, 59(6): 1418-1428.
Fig.1 Comparative analysis of differentially expressed proteins in two tomato varieties. Note: (A) Number of up-regulated and down-regulated differentially expressed proteins (DEPs). (B) Venn diagram of tomato DEPs in two maize varieties.
Fig.2 Gene ontology enrichment analysis of differentially expressed protein Note:A and D represent the biological processes of SS12 vs SS0 and ST12 vs ST0 respectively.Figure2- B and E represent SS12 vs SS0 and ST12 vs ST0 cell components respectively.Figure 2-C and F represent the molecular functions of SS12 vs SS0 and ST12 vs ST0 respectively
蛋白号 Protein Accession | 蛋白质的描述 Protein description | SS12/SS0 TMT PRM | ST12/ST0 TMT PRM | ||
---|---|---|---|---|---|
A0A3Q7E8T9 | 过氧化物酶* | / | / | 1.56 | 2.72 |
A0A3Q7EK65 | 精氨酸酶 2* | / | / | 1.97 | 3.98 |
A0A3Q7FY19 | 可能乙酰辅酶a乙酰转移酶* | / | / | 1.64 | 2.51 |
A0A3Q7G430 | 黄氧素脱氢酶 | 0.64 | 0.54 | 3.37 | 3.25 |
A0A3Q7ITH0 | 过氧化物酶 | 1.82 | 1.24 | 1.64 | 1.89 |
A0A3Q7J1Y7 | 可能多胺氧化酶 2 | 0.81 | 0.61 | 2.26 | 6.47 |
P05116 | 1-氨基环丙烷-1-羧酸氧化酶1 | 3.41 | 4.96 | 1.67 | 2.67 |
Q43779 | 超氧化物歧化酶* | 1.53 | 1.8 | / | / |
A0A3Q7F8W6 | 微管蛋白α链 | 0.6 | 0.48 | 1.57 | 1.63 |
A0A3Q7GKU3 | 40S核糖体蛋白S13样* | / | / | 1.62 | 1.44 |
A0A3Q7J0Z4 | 延长因子1α | 0.57 | 0.3 | 2.22 | 3.48 |
Table 1 Comparison of PRM and TMT quantification result
蛋白号 Protein Accession | 蛋白质的描述 Protein description | SS12/SS0 TMT PRM | ST12/ST0 TMT PRM | ||
---|---|---|---|---|---|
A0A3Q7E8T9 | 过氧化物酶* | / | / | 1.56 | 2.72 |
A0A3Q7EK65 | 精氨酸酶 2* | / | / | 1.97 | 3.98 |
A0A3Q7FY19 | 可能乙酰辅酶a乙酰转移酶* | / | / | 1.64 | 2.51 |
A0A3Q7G430 | 黄氧素脱氢酶 | 0.64 | 0.54 | 3.37 | 3.25 |
A0A3Q7ITH0 | 过氧化物酶 | 1.82 | 1.24 | 1.64 | 1.89 |
A0A3Q7J1Y7 | 可能多胺氧化酶 2 | 0.81 | 0.61 | 2.26 | 6.47 |
P05116 | 1-氨基环丙烷-1-羧酸氧化酶1 | 3.41 | 4.96 | 1.67 | 2.67 |
Q43779 | 超氧化物歧化酶* | 1.53 | 1.8 | / | / |
A0A3Q7F8W6 | 微管蛋白α链 | 0.6 | 0.48 | 1.57 | 1.63 |
A0A3Q7GKU3 | 40S核糖体蛋白S13样* | / | / | 1.62 | 1.44 |
A0A3Q7J0Z4 | 延长因子1α | 0.57 | 0.3 | 2.22 | 3.48 |
[1] |
Zhai Y, Yang Q, Hou M. The Effects of Saline Water Drip Irrigation on Tomato Yield, Quality, and Blossom-End Rot Incidence-A 3a Case Study in the South of China[J]. PLoS ONE, 2015, 10:e0142204.
DOI URL |
[2] |
Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59(0):651-681.
DOI URL |
[3] |
Pérez-Alfocea F, Balibrea M E, Cruz A.S, et al. Agronomical and physiological characterization of salinity tolerance in a commercial tomato hybrid[J]. Plant and Soil, 1996, 180(2):251-257.
DOI URL |
[4] |
Zhu J K. Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology, 2002, 53(1):247-273.
DOI URL |
[5] |
Zhu J K. Abiotic stress signaling and responses in plants[J]. Cell, 2016, 167(2):313-324.
DOI URL |
[6] |
Ishikawa T, Shabala S. Control of xylem Na(+) loading and transport to the shoot in rice and barley as a determinant of differential salinity stress tolerance[J]. Physiologia Plantarum, 2018, 165(3):619-631.
DOI URL |
[7] |
Zhang Z, Mao C Y, Shi Z, et al. The amino acid metabolic and carbohydrate metabolic pathway play important roles during salt-stress response in tomato[J]. Frontiers in Plant Science, 2017, 8:1231.
DOI PMID |
[8] |
Manaa A, Faurobert M, Valot B, et al. Effect of salinity and calcium on tomato fruit proteome[J]. Omics A Journal of Integrative Biology, 2013, 17(6):338-352.
DOI URL |
[9] |
Keutgen A J, Pawelzik E. Contribution of amino acids to strawberry fruit quality and their relevance as stress indicators under NaCl salinity[J]. Food Chemistry, 2008, 111(3):642-647.
DOI URL |
[10] |
Galli v, Messias R D S, Perin E C, et al. Mild salt stress improves strawberry fruit quality[J]. LWT-Food Science and Technology, 2016, 73:693-699.
DOI URL |
[11] | Lu S W, Li T L, Jing J. Effects of tomato fruit under Na+-salt and Cl-salt stresses on sucrose metabolism[J]. African Journal of Agricultural Research, 2010, 5(16):2227-2231. |
[12] |
Chen C, Plant A. Salt-induced protein synthesis in tomato roots: the role of ABA[J]. Journal of Experimental Botany, 1999, 50(334):677-687.
DOI URL |
[13] |
Amini F, Ehsanpour A, Hoang Q, et al. Protein pattern changes in tomato under in vitro salt stress[J]. Russian Journal of Plant Physiology, 2007, 54(4):464-471.
DOI URL |
[14] |
Chen S, Gollop N, Heuer B. Proteomic analysis of salt-stressed tomato (Solanum lycopersicum) seedlings: effect of genotype and exogenous application of glycinebetaine[J]. Journal of Experimental Botany, 2009, 60(7):2005-2019.
DOI URL |
[15] |
Ibrahimova U F, Mammadov A C, Feyziyev Y M. The effect of NaCl on some physiological and biochemical parameters in Triticum aestivum L. genotypes[J]. Plant Physiol Report, 2019, 24(3):370-375.
DOI URL |
[16] |
Pailles Y, Awlia M, Julkowska M M, et al. Diverse Traits Contribute to Salinity Tolerance of Wild Tomato Seedlings from the Galapagos Islands[J]. Plant Physiology, 2020, 182(1):534-546.
DOI URL |
[17] |
Pang Q S, Chen S, Dai Y, et al. Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila[J]. Proteome Research, 2010, 9(5):2584-2599.
DOI URL |
[18] |
Zhou J, Palmer J, Zhou S, et al. Differential root proteome expression tomato genotypes with contrasting drought tolerance exposed to dehydration[J]. Journal of the American Society for Horticultural Science, 2013, 138(2):131-141.
DOI URL |
[19] |
Peterson A C, Russell J D, Bailey D J. Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics[J]. Molecular & Cellular Proteomics: MCP, 2012, 11(11):1475-1488.
DOI URL |
[20] |
Wang Z X, Shang P, Li Q G, et al. iTRAQ-based proteomic analysis reveals key proteins affecting muscle growth and lipid deposition in pigs[J]. Scientific reports, 2017, 7(1):46717.
DOI URL |
[21] | Ira G W. The function of ribosomal protein outside the ribosome[J]. Life of Chemistry, 1997, 17(1):23-25. |
[22] |
Tadepalli A, Roney O L. Ribosomal protein S25 mRNA partners with MTF-1 and La to provide a p53-mediated mechanism for survival or death[J]. The Journal of Biological Chemistry, 2002, 277(6):4147.
DOI URL |
[23] | 孙伟, 李燕, 赵彦修, 等. 盐地碱蓬延伸因子(SsEF-1α)的克隆与表达分析[J]. 西北植物学报, 2004, 24(9):1657-1661. |
SUN Wei, LI Yan, ZHAO Yanxiu, et al. Isolation and characterizing of a cDNA clone encoding an elongation factorEF-1α from halophyte Suaeda salsa[J]. Acta Botanica Boreali-Occidentalia Sinica, 2004, 24(9):1657-1661. | |
[24] |
Padaria J C, Yadav R, Tarafdar A, et al. Molecular cloning and characterization of drought stress responsive abscisic acid-stress-ripening (Asr 1) gene from wild jujube, Ziziphus nummularia (Burm.f.) Wight & Arn[J]. Molecular biology reports, 2016, 43(8):849-859.
DOI URL |
[25] |
Feng Z J, Xu Z S, Sun J, et al. Investigation of the ASR family in foxtail millet and the role of ASR1 in drought oxidative stress tolerance[J]. Plant Cell Reports, 2016, 35(1):115-128.
DOI URL |
[26] |
Goldgur Y, Rom R, Ghirlando D, et al. Desiccation and zinc binding induce transition of tomato abscisic acid stress ripening 1, a water stress- and salt stress-regulated plant-specific protein, from unfolded to folded state[J]. Plant Physiology, 2007, 143(2):617-628.
PMID |
[27] |
Cakir B, Agasse A, Gaillard C, et al. A grape ASR protein involved in sugar and abscisic acid signaling[J]. The Plant Cell, 2003, 15(9):2165-2180.
DOI URL |
[28] |
Kalifa Y A, Gilad Z, Konrad M, et al. The water- and salt-stress-regulated Asr1(abscisic acid stress ripening) gene encodes a zinc-dependent DNA-binding protein[J]. The Biochemical journal, 2004, 381(Pt2):373-378.
DOI URL |
[29] |
Nie H S, Wang Y L, Wei C C, et al. Embryogenic Calli Induction and Salt Stress Response Revealed by RNA-Seq in Diploid Wild Species Gossypium sturtianum and Gossypium Raimondi[J]. Frontiers in Plant Science, 2021, 12 : 715041-715041.
DOI URL |
[30] | Weng Q Y, Zhao Y M, Zhao Y N, et al. Identification of Salt Stress-Responsive Proteins in Maize (Zea may) Seedlings Using iTRAQ-Based Proteomic Technique[J]. Iranian Journal of Biotechnology, 2021, 19(1) : e2512-e2512. |
[31] |
陈娜, 胡冬青, 潘丽娟, 等. 花生中胁迫相关基因AhDHNI的克隆及非生物胁迫下表达分析[J]. 核农学报, 2014, 28(12):2159-2166.
DOI |
CHEN Na, HU Dongqin, PAN Lijuan, et al. Cloning of a Dehydrin Gene AhDHN1 and Its Expression Analysis during Abiotic Stresses in Peanut[J]. Journal of Nuclear Agricultural Sciences, 2014, 28(12):2159-2166. | |
[32] |
Chourey K, Ramani S, Apte S K. Accumulation of LEA proteins in salt (NaCl) stressed young seedlings of rice (Oryza sativa L.) cultivar Bura Rata and their degradation during recovery from salinity stress[J]. Journal of Plant Physiology, 2003, 160(10):1165-1174.
PMID |
[33] |
Jia F J, Qi S D, Li H, et al. Overexpression of late embryogenesis abundant 14 enhances Arabidopsis salt stress tolerance[J]. Biochemical and Biophysical Research Communications, 2014, 454(4):505-511.
DOI URL |
[34] |
Wang M Z, Li P, Li C, et al. SiLEA14, a novel atypical LEA protein, confers abiotic stress resistance in foxtail millet[J]. BMC Plant Biology, 2014, 14(1):290.
DOI URL |
[35] |
Park S C, Kim Y H, Jeong J C, et al. Sweetpotato late embryogenesis abundant 14 (IbLEA14) gene influences lignifications and increases osmotic and salt stress-tolerance of transgenic calli[J]. Planta, 2011, 233(3):621-634.
DOI URL |
[36] | Yu H T, Wang T. Proteomic dissection of endosperm starch granule associated proteins reveals a network coordinating starch biosynthesis and amino acid metabolism and glycolysis in rice endosperms[J]. Frontiers in Plant Science, 2016, 7:707. |
[37] |
Wang N B, Zhao J, He X Y, et al. Comparative proteomic analysis of drought tolerance in the two contrasting Tibetan wild genotypes and cultivated genotype[J]. BMC Genomics, 2015, 16(1):432.
DOI URL |
[38] |
Maeda H, Dudareva N. The shikimate pathway and aromatic amino acid biosynthesis in plants[J]. Annual Review of Plant Biology, 2012, 63(1):73-105.
DOI URL |
[39] |
Jander G, Joshi V. Recent progress in deciphering the biosynthesis of aspartate derived amino acids in plants[J]. Molecular Plant, 2010, 3(1):54-65.
DOI PMID |
[40] |
Rothman S. How is the balance between protein synthesis and degradation achieved?[J]. Theoretical Biology and Medical Modelling, 2010, 7(1):25.
DOI URL |
[41] |
Christiane R, Stephen P, Steffen R. Singlet oxygen signaling links photosynthesis to translation and plant growth[J]. Trends in Plant Science, 2010, 15(9):499-506.
DOI PMID |
[42] |
Houda M-D, Houhamed D, Laure J, et al. An Arabidopsis mutant disrupted in ASN2 encoding asparagine synthetase 2 exhibits low salt stress tolerance[J]. Plant Physiology and Biochemistry, 2011, 49(6):623-628.
DOI URL |
[43] |
Wang H B, Liu D C, Sun J Z, et al. Asparagine synthetase gene TaASN1 from wheat is up-regulated by salt stress, osmotic stress and ABA[J]. Journal of Plant Physiology, 2005, 162(1):81-89.
DOI URL |
[44] | Conroy C, Ching J, Gao Y, et al. Knockout of AtMKK1 enhances salt tolerance and modifies metabolic activities in Arabidopsis[J]. Plant signaling & behavior, 2013, 8(5):e24206. |
[45] |
Bouche N, Fromm H. GABA in plants: Just a metabolite?[J]. Trends in Plant Science, 2004, 9(3):110-115.
DOI URL |
[46] |
Michaeli S, Fromm H. Closing the loop on the GABA shunt in plants: are GABA metabolism and signaling entwined?[J]. Frontiers in Plant Science, 2015, 6:419.
DOI PMID |
[47] | 周翔, 吴晓岚, 李云, 等. 盐胁迫下玉米幼苗ABA和GABA的积累及其相互关系[J]. 应用与环境生物学报, 2005, 11(4):412-415. |
ZHOU Xiang, WU Xiaolan, LI Yun, et al. Accumulations and Correlations of ABA And GABA in Maize Seedling under Salt Stress[J]. Chinese Journal of Applied & Environmental Biology, 2005, 11(4):412-415. | |
[48] |
Achard P, Cheng H, Liesbeth D G, et al. Integration of plant responses to environmentally activated phytohormonal signals[J]. Science, 2006, 311(5757):91-94.
DOI URL |
[49] |
Li C Z, Jiao J, Wang G X. The important roles of reactive oxygen species in the relationship between ethylene and polyamines in leaves of spring wheat seedlings under root osmotic stress[J]. Plant Science, 2003, 166(2):303-315.
DOI URL |
[50] |
Gil-Amado J A, Gomez-Jimenez M C. Regulation of polyamine metabolism and biosynthetic gene expression during olive mature-fruit abscission[J]. Planta, 2012, 235(6):1221-1237.
DOI PMID |
[51] |
Farooq M, Wahid A N, Kobayashi D. Plant drought stress: effects, mechanisms and management[J]. Agronomy for Sustainable Development, 2009, 29(1):185-212.
DOI URL |
[52] |
Zenda T, Liu S T, Wang X, et al. Comparative proteomic and physiological analyses of two divergent maize inbred lines provide more insights into drought-stress tolerance mechanisms[J]. International Journal of Molecular Sciences, 2018, 19(10):3225.
DOI URL |
[53] |
Rasoulnia A, Bihamta M R, Peyghambari S A, et al. Proteomic response of barley leaves to salinity[J]. Molecular Biology Reports, 2011, 38(8):5055-5063.
DOI URL |
[54] |
Klaus K, Heribert H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004, 55(1):373-399.
DOI URL |
[55] |
Westermann S, Weber K. Post-translational modifications regulate microtubule function.[J]. Nature Reviews Molecular Cell Biology, 2003, 4(12): 938.
PMID |
[56] |
Gaertig J, Verhey F. The tubulin code[J]. Cell Cycle, 2007, 6 (17):2152-2160.
DOI URL |
[1] | XU Maomao, GAO Jie, LI Junming, LI Xin, LIU Lei, PAN Feng. Population diversity analysis of 20 commercial tomato cultivars [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2191-2196. |
[2] | TIAN Haiyan, ZHANG Zhanqin, XIE Jianhui, WANG Jianjiang, YANG Xiangkun. Study on the relationship between Lycopene and main quality characters of processing tomato [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2197-2202. |
[3] | TIAN Chao, LI Yushan, MA Yue, SONG Yu. Effects of different concentrations of sophora alopecuroides extract on the growth and soil fertility of continuous cropping tomatoes [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2203-2210. |
[4] | CHEN Fang, LI Zihui, SUNXiaogui , ZHANG Tingjun. Different dosage of microbial agents on the yield and quality of processed tomatoes [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2285-2289. |
[5] | DONG Zhiduo, XU Fei, FU Qiuping, HUANG Jian, QI Tong, MENG Ajing, FU Yanbo, Kaisaier Kuerban. Effects of different types of salt and alkali stress on cotton seed germination [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1831-1844. |
[6] | XI Rui, CHEN Yijia, LI Ning, YU Qinghui, WANG Qiang, QIN Yong. Effects of exogenous 2, 4-epibrassinolide on seed germination of different salt-sensitive tomatoes under salt stress [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1983-1992. |
[7] | ZHANG Caihong, WANG Guoqiang, JIANG Luyan, LIU Tao, DE Xianming. Variation of environmental factors and analysis of tomato traits in low-energy assembly-type deep-winter production solar greenhouse [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 2043-2053. |
[8] | ZHANG Fulin, LI Ning, LIU Yuxiang, CHEN Yijia, YU Qinghui, YAN Huizhuan. Effects of exogenous 2,4-Epibrassinolide and melatonin on fruit quality and peel morphology of cherry tomato [J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1738-1747. |
[9] | RUAN Xiangyang, PU Min, XIAO Lele, LUO Linyi, CHEN Ruijie, LI Ran, CHEN Guoyong, YE Jun. Effect of magnesium sulfate fertilizer application strategy on the yield and quality of processed tomato [J]. Xinjiang Agricultural Sciences, 2024, 61(4): 916-925. |
[10] | OU Yuan, LUO Shasha, WANG Ruyue, SUN Yali, HU Haifang. Effects of salt stress on the growth and physiological characteristics of american black walnut seedlings [J]. Xinjiang Agricultural Sciences, 2024, 61(2): 393-401. |
[11] | LI Chunyu, TAN Zhanming, CHENG Yunxia, GAO Yuan, MA Quanhui, LI Zhiguo, MA Xing. Effects of water and fertilizer coupling on diurnal changes of chlorophyll content and photosynthetic characteristics of sand-cultivated tomato [J]. Xinjiang Agricultural Sciences, 2024, 61(12): 3006-3013. |
[12] | LI Yali, Halihashi , TANG Yali, DUAN jingjing, LI Qingjun. Effect of NP reduction and K synergism on yield and nutrient absorption of processing tomato [J]. Xinjiang Agricultural Sciences, 2024, 61(12): 3014-3019. |
[13] | LIU Huifang, WANG Qiang, HAN Hongwei, ZHUANG Hongmei, WANG Hao, CHANG Yanan. Effects of salt, alkali and complex salt alkali stress on the photosynthetic characteristics and antioxidant enzyme activity of tomato seedlings [J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2658-2666. |
[14] | ZHAO Wenxuan, CHENG Yunxia, TAN Zhanming, LI Chunyu, SHU Sheng, Ayimaimu Shawuti, YANG Liyu, MIAO Xianjun. Comparison of chlorophyll fluorescence and photosynthetic characteristics of different processed tomato varieties based on principal component analysis [J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2667-2675. |
[15] | LI Chunyu, TAN Zhanming, CHENG Yunxia, SHU Sheng, MA Quanhui, HE Miao, DUAN Yifan, WU Hui. Comparative analysis of agronomic traits of different processing tomato varieties [J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2676-2683. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 49
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 137
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||