Xinjiang Agricultural Sciences ›› 2019, Vol. 56 ›› Issue (2): 197-206.DOI: 10.6048/j.issn.1001-4330.2019.02.001
TANG Ya-ping1, LI Ning1, WANG Juan1, WANG Bai-ke1, YANG Sheng-bao1, GUO Bin2, YANG Tao1, GUO Chun-miao1, MA Kai1, LIU Jun3, WANG Huan4, YU Qing-hui1
Received:
2018-12-06
Online:
2019-02-20
Published:
2019-05-22
Correspondence author:
WANG Huan (1983-), female, native place: Beijing, Researcher, Ph. D., research field: Bioinformatics, (E-mail) wanghuan@caas.cnSupported by:
唐亚萍1, 李宁1, 王娟1, 王柏柯1, 杨生保1, 郭斌2, 杨涛1, 郭春苗1, 马凯1, 刘君3, 王欢4, 余庆辉1
通讯作者:
王欢(1983-),女,北京人,研究员,博士,研究方向为生物信息学,(E-mail)wanghuan@caas.cn作者简介:
唐亚萍(1986-),女,助理研究员,硕士,研究方向为蔬菜遗传育种,(E-mail) tangyaping624@sina.com
基金资助:
CLC Number:
TANG Ya-ping, LI Ning, WANG Juan, WANG Bai-ke, YANG Sheng-bao, GUO Bin, YANG Tao, GUO Chun-miao, MA Kai, LIU Jun, WANG Huan, YU Qing-hui. Advances in Tomato Genome Research[J]. Xinjiang Agricultural Sciences, 2019, 56(2): 197-206.
唐亚萍, 李宁, 王娟, 王柏柯, 杨生保, 郭斌, 杨涛, 郭春苗, 马凯, 刘君, 王欢, 余庆辉. 番茄基因组研究进展[J]. 新疆农业科学, 2019, 56(2): 197-206.
[1] | Gebhardt, & Christiane. (2016). The historical role of species from the solanaceae plant family in genetic research. Theoretical and Applied Genetics,129(12):2281-2294. |
[2] | Martin, G. , Brommonschenkel, S. , Chunwongse, J. , Frary, A. , Ganal, M. , & Spivey, R. , et al. (1993). Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science, 262(5138):1,432-1,436. |
[3] | Frary, A., Nesbitt, T.C., Grandillo, S., et al. (2000). Fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science, 289(5476):85-88. . |
[4] | Fridman, E. , Pleban, T. , & Zamir, D. . (2000). A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proceedings of the National Academy of Sciences, 97(9):4,718-4,723. |
[5] | Maxam, A. M. , & Gilbert, W. . (1977). A new method for sequencing dna. Proceedings of the National Academy of Sciences, 74(2):560-564. |
[6] | Sanger, F. , Nicklen, S. , & Coulson, A. R. . (1977). Dna sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences,74(12):5,463-5,467. |
[7] | Melamede, R.J. Automatable process for sequencing nucleotide[J]. 1985, US patent. |
[8] | Margulies, M.,Egholm, M., Altman, W.E., et al. Genome sequencing in microfabricated high-density picolitre reactors[J]. Nature, 2005, 437(7057): 376-380. |
[9] | Fedurco, & M. (2006). BTA, a novel reagent for dna attachment on glass and efficient generation of solid-phase amplified dna colonies. Nucleic Acids Research, 34(3):e22-e22. |
[10] | Turcatti, G. , Romieu, A. , Fedurco, M. , & Tairi, A. P. . (2008). A new class of cleavable fluorescent nucleotides: synthesis and optimization as reversible terminators for dna sequencing by synthesis. Nucleic Acids Research, 36(4):e25. |
[11] | Shendure, J., Porreca, G.J., Reppas, N.B., et al. (2005). Accurate multiplex polony sequencing of an evolved bacterial genome. Science,309(5741), 1,728-1,732. |
[12] | Koren, S. , Harhay, G. P. , Smith, T. P. , Bono, J. L. , Harhay, D. M. , & Mcvey, S. D. , et al. (2013). Reducing assembly complexity of microbial genomes with single-molecule sequencing. Genome Biology,14(9):R101. |
[13] | Koren, S. , & Phillippy, A. M. . (2015). One chromosome, one contig: complete microbial genomes from long-read sequencing and assembly. Current Opinion in Microbiology,23:110-120. |
[14] | Levene, M.J., Kodach, J., Turner, S.W., et a1. (2003). Zero mode wave guides for single-molecule analysis at high concentrations. Science, 299(5607): 682-686. |
[15] | Eid, J., Fehr, A., Gray, J., et a1. (2009). Real-time DNA sequencing from single polymerase molecules. Science,323(5910): 133-138. |
[16] | Stoddart, D., Heron, A.J., Mikhailova, E., et a1. (2009). Single nucleotide discrimination in immobilized DNA oligo nucleotides with a biological nanopore. Proceeding of the National Academy Sciences of the United States of America,106(19): 7,702-7,707. |
[17] | Korlach, J., Turner, S.W. (2012). Going beyond five bases in DNA sequencing. Current Opinion in Structural Biology,22(3): 251-261. |
[18] | Phillippy A.M. (2017). New advances in sequence assembly. Genome Research, 27(25): xi-xiii. |
[19] | Huddleston, J., Chaisson, M.J.P., Steingerg, K.M., et al. (2017). Discovery and genotyping of structural variation from long-read haploid genome sequence data. Genome Research, 27(5):677-685. |
[20] | Merker, J.D., WengerA.M., Sneddon, T., et al. (2018). Long-read genome sequencing identifies causal structural variation in a Mendelian disease running title: long-read WGS identifies causal SV in mendelian disease. Genet Med,20(1):159-163. |
[21] | Sedlazeck, F.J., Rescheneder, P., Smolka, M., et al. (2018).Accurate detection of complex structural variations using single-molecule sequencing. Nature Methods,15: 461-468. |
[22] | Pennisi, E. (2017). New technologies boost genome quality. Science,357(6346):10-11. |
[23] | Jiao, W.B., Schneeberger, K. (2017). The impact of third generation genomic technologies on plant genome assembly. Current Opinion in Plant Biololgy,36:64-70. |
[24] | Jarvis, D.E., Ho, Y.S., Lightfoot, D.J., et al. (2017). The genome of Chenopodium quinoa . Nature,542(7641):307-312. |
[25] | Jiao, Y., Peluso, P., Shi, J., et al. (2017). The complex sequence landscape of maize revealed by single molecule technologies. Nature, 546: 524-527. |
[26] | Schnable, P.S., Ware, D., Fulton, R.S., et al. (2009). The B73 maize genome: complexity, diversity, and dynamics. Science,326(5956): 1,112-1,115. |
[27] | Hirsch, C.N., Hirsch, C.D., Brohammer, A.B., et al. (2016).Draft Assembly of Elite Inbred Line PH207 Provides Insights into Genomic and Transcriptome Diversity in Maize. Plant Cell,28(11): 2,700-2,714. |
[28] | Tomato Genome Consortium. The tomato genome sequence provides insights into fleshy fruit evolution [J]. Nature, 2012,485:635-641. |
[29] | Aflitos, S., Schijlen, E., De, J. H., De, R. D., Smit, S., & Finkers, R., et al. (2015). Exploring genetic variation in the tomato (solanum section lycopersicon) clade by whole-genome sequencing. Plant Journal for Cell & Molecular Biology,80(1):136-148. |
[30] | Bolger, A., Scossa, F., Bolger, M.E., et al. (2014). The genome of the stress-tolerant wild tomato species Solanum pennellii . Nature Genetics, 46(9):1,034-1,038. |
[31] | Strickler, S. R. , Bombarely, A. , Munkvold, J. D. , York, T. , & Mueller, L. A. . (2015). Comparative genomics and phylogenetic discordance of cultivated tomato and close wild relatives. PeerJ, 3(2):e793. |
[32] | Schmidt, M.H., Vogel, A., Denton, A.K., et al. (2017). De Novo Assembly of a New Solanum pennellii Accession UsingNanopore Sequencing. Plant Cell,29(10): 2,336-2,348. |
[33] | Rothan, C., Diouf, I., Causse, M. (2019). Trait discovery and editing in tomato [J]. The Plant Journal., doi: 10.1111/tpj.14152. |
[34] | Sauvage, C., Segura, V., Bauchet, G., et al. (2014). Genome-Wide Association in Tomato Reveals 44 Candidate Loci for Fruit Metabolic Traits. Plant Physiology,165: 1,120-1,132. |
[35] | Causse, M., Desplat, N., Pascual, L., et al. (2013). Whole genome resequencing in tomato reveals variation associated with introgression and breeding events. BMC Genomics,14:719. |
[36] | Lin, T., Zhu, G., Zhang, J., et al. (2014). Genomic analyses provide insights into the history of tomato breeding. Nature Genetics,46:1,220-1,226. |
[37] | Tieman, D., Zhu, G., Resende, M.F.J., et al. (2017). A chemical genetic roadmap to improved tomato flavor. Science,355(6323):391-394 |
[38] | Bauchet, G., Grenier, S., Samson, N., et al. (2017). Identification of major loci and genomic regions controlling acid and volatile content in tomato fruit: implications for flavor improvement. New Phytologist,215: 624-641. |
[39] | Zhu, G. Wang, S., Huang, Z., et al. (2018). Rewiring of the fruit metabolome in tomato breeding. Cell, 172(1-2):249-261. |
[40] | Blanca, J., Montero-Pau, J., Sauvage, C., at al. (2015). Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics, 16: 257. |
[41] | Sahu, K.K., Chattopadhyay, D. (2017). Genome-wide sequence variations between wild and cultivated tomato species revisited by whole genome sequence mapping. BMC Genomics,18: 430. |
[42] | Alseekh, S., Tong, H., Scossa, F., et al. (2017). Canalization of Tomato Fruit Metabolism. The Plant Cell, 29: 2753-2765. |
[43] | Bauchet, G., Grenier, S., Samson, N., et al. (2017). Identification of major loci and genomic regions controlling acid and volatile content in tomato fruit: implications for flavor improvement. New Phytologist,215: 624-641. |
[44] | Gaiero, P., Vaio, M., Peters, S.A., et al. (2018). Comparative analysis of repetitive sequences among species from the potato and the tomato clades. Annals of Botany, doi: 10.1093/aob/ mcy186. |
[45] | Li, R. , Li, Y. , Zheng, H. , Luo, R. , Zhu, H. , & Li, Q. , et al. (2009). Building the sequence map of the human pan-genome. NATURE BIOTECHNOLOGY, 28(1):57-63. |
[46] | Sherman, R.M., Forman, J., Antonescu, V., et al. (2019). Author correction: assembly of a pan-genome from deep sequencing of 910 humans of african descent. Nature genetics, 51(2), 364. doi.org/10.1038/s41588-018-0273-y. |
[47] | Li, Y.H., Zhou, G., Ma, J., et al. (2014). De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nature Biotechnology, 32(10):1,045-1,052. |
[48] | Golicz, A. A. , Bayer, P. E. , Barker, G. C. , Edger, P. P. , Kim, H. R. , & Martinez, P. A. , et al. (2016). The pangenome of an agronomically important crop plant brassica oleracea. Nature Communications,7, 13390. |
[49] | Gordon, S. P. , Contreras-Moreira, B. , Woods, D. P. , Des Marais, D. L. , Burgess, D. , & Shu, S. , et al. (2017). Extensive gene content variation in the brachypodium distachyon pan-genome correlates with population structure. Nature Communications,8(1):2184. |
[50] | Zhao, Q. , Feng, Q. , Lu, H. , Li, Y. , Wang, A. , & Tian, Q. , et al. (2018). Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nature Genetics,50(2):278-284. |
[51] | Stein, J. C. , Yu, Y. , Copetti, D. , Zwickl, D. J. , & Wing, R. A. . (2018). Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus oryza. Nature Genetics, 50(W1):285-296. |
[52] | Causse, M., Giovannoni, J., Bouzayen, M., et al. The tomato genome[M]. Germany, Springer, 2016. |
[53] | Yu, Q. H. , Wang, B. , Li, N. , Tang, Y. , Yang, S. , & Yang, T. , et al. (2017). Crispr/cas9-induced targeted mutagenesis and gene replacement to generate long-shelf life tomato lines. Scientific Reports,7(1):11874. |
[54] | Dekker, J., Rippe, K., Dekker, M., & Kleckner, N. (2002). Capturing chromosome conformation. Science,295(5558):1,306-1,311. |
[55] | Simonis M., Klous P., Splinter E., et al. (2006). Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nature Genetics,38(11):1,348-1,354. |
[56] | Dostie, J., Richmond, T. A., Arnaout, R. A., Selzer, R. R., Lee, W. L., & Honan, T. A., et al. (2006). Chromosome conformation capture carbon copy (5C): A massively parallel solution for mapping interactions between genomic elements. Genome Research,16: 1,299-1,309. |
[57] | Wang, M. , Wang, P. , Lin, M. , Ye, Z. , Li, G. , & Tu, L. , et al. (2018). Evolutionary dynamics of 3d genome architecture following polyploidization in cotton. Nature Plants, 4(2):90-97 |
[58] | Dong, Q. , Li, N. , Li, X. , Yuan, Z. , Xie, D. , & Wang, X. , et al. (2018). Genome-wide hi-c analysis reveals extensive hierarchical chromatin interactions in rice. The Plant Journal. DOI:10.1111/tpj.13,925 |
[59] | Feng, S., Cokus, S. J., Schubert, V., Zhai, J., Pellegrini, M., & Jacobsen, S. E. (2014). Genome-wide hi-c analyses in wild-type and mutants reveal high-resolution chromatin interactions in arabidopsis. Molecular Cell,55(5):694-707. |
[1] | XU Maomao, GAO Jie, LI Junming, LI Xin, LIU Lei, PAN Feng. Population diversity analysis of 20 commercial tomato cultivars [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2191-2196. |
[2] | TIAN Haiyan, ZHANG Zhanqin, XIE Jianhui, WANG Jianjiang, YANG Xiangkun. Study on the relationship between Lycopene and main quality characters of processing tomato [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2197-2202. |
[3] | TIAN Chao, LI Yushan, MA Yue, SONG Yu. Effects of different concentrations of sophora alopecuroides extract on the growth and soil fertility of continuous cropping tomatoes [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2203-2210. |
[4] | CHEN Fang, LI Zihui, SUNXiaogui , ZHANG Tingjun. Different dosage of microbial agents on the yield and quality of processed tomatoes [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2285-2289. |
[5] | XI Rui, CHEN Yijia, LI Ning, YU Qinghui, WANG Qiang, QIN Yong. Effects of exogenous 2, 4-epibrassinolide on seed germination of different salt-sensitive tomatoes under salt stress [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1983-1992. |
[6] | ZHANG Caihong, WANG Guoqiang, JIANG Luyan, LIU Tao, DE Xianming. Variation of environmental factors and analysis of tomato traits in low-energy assembly-type deep-winter production solar greenhouse [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 2043-2053. |
[7] | Kadierayi Maimaiti, ZHOU Tingting, HAN Sheng, Meilikehan Rexiti, Yushanjiang Maimaiti. Establishment of genetic transformation and regeneration systems for different melon varieties and rapid acquisition of gene edited plants [J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1666-1672. |
[8] | WANG Yatong, GUO Jingjing, YANG Fenfen, NIU Yingying, ZHANG Shikui, FAN Guoquan, WANG Shangdong, GENG Wenjuan. Identification of genome size and chromosomal ploidy of three prunus species by flow cytometry [J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1673-1681. |
[9] | ZHANG Fulin, LI Ning, LIU Yuxiang, CHEN Yijia, YU Qinghui, YAN Huizhuan. Effects of exogenous 2,4-Epibrassinolide and melatonin on fruit quality and peel morphology of cherry tomato [J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1738-1747. |
[10] | RUAN Xiangyang, PU Min, XIAO Lele, LUO Linyi, CHEN Ruijie, LI Ran, CHEN Guoyong, YE Jun. Effect of magnesium sulfate fertilizer application strategy on the yield and quality of processed tomato [J]. Xinjiang Agricultural Sciences, 2024, 61(4): 916-925. |
[11] | LI Chunyu, TAN Zhanming, CHENG Yunxia, GAO Yuan, MA Quanhui, LI Zhiguo, MA Xing. Effects of water and fertilizer coupling on diurnal changes of chlorophyll content and photosynthetic characteristics of sand-cultivated tomato [J]. Xinjiang Agricultural Sciences, 2024, 61(12): 3006-3013. |
[12] | LI Yali, Halihashi , TANG Yali, DUAN jingjing, LI Qingjun. Effect of NP reduction and K synergism on yield and nutrient absorption of processing tomato [J]. Xinjiang Agricultural Sciences, 2024, 61(12): 3014-3019. |
[13] | LIU Huifang, WANG Qiang, HAN Hongwei, ZHUANG Hongmei, WANG Hao, CHANG Yanan. Effects of salt, alkali and complex salt alkali stress on the photosynthetic characteristics and antioxidant enzyme activity of tomato seedlings [J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2658-2666. |
[14] | ZHAO Wenxuan, CHENG Yunxia, TAN Zhanming, LI Chunyu, SHU Sheng, Ayimaimu Shawuti, YANG Liyu, MIAO Xianjun. Comparison of chlorophyll fluorescence and photosynthetic characteristics of different processed tomato varieties based on principal component analysis [J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2667-2675. |
[15] | LI Chunyu, TAN Zhanming, CHENG Yunxia, SHU Sheng, MA Quanhui, HE Miao, DUAN Yifan, WU Hui. Comparative analysis of agronomic traits of different processing tomato varieties [J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2676-2683. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 718
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 432
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||