Xinjiang Agricultural Sciences ›› 2025, Vol. 62 ›› Issue (1): 182-192.DOI: 10.6048/j.issn.1001-4330.2025.01.021
• Plant Protection·Horticultural Special Local Products • Previous Articles Next Articles
FAN Rong1(), ZHANG Yongbing1, LI Meihua1, ZHANG Xuejun1, YI Hongping1, LIU Zhao2, YANG Yong1(
)
Received:
2024-07-17
Online:
2025-01-20
Published:
2025-03-11
Correspondence author:
YANG Yong
Supported by:
范蓉1(), 张永兵1, 李寐华1, 张学军1, 伊鸿平1, 刘钊2, 杨永1(
)
通讯作者:
杨永
作者简介:
范蓉(1995-),女,新疆塔城人,助理研究员,硕士,研究方向为甜瓜遗传分子改良,(E-mail)1029681312@qq.com
基金资助:
CLC Number:
FAN Rong, ZHANG Yongbing, LI Meihua, ZHANG Xuejun, YI Hongping, LIU Zhao, YANG Yong. QTL mapping and genetic analysis of soluble solids content in the center flesh of muskmelon[J]. Xinjiang Agricultural Sciences, 2025, 62(1): 182-192.
范蓉, 张永兵, 李寐华, 张学军, 伊鸿平, 刘钊, 杨永. 厚皮甜瓜心部果肉可溶性固形物含量遗传规律分析及QTL定位[J]. 新疆农业科学, 2025, 62(1): 182-192.
世代 Generations | 次数分布Frequency distribution | 平均值 Average(°Brix) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | ||
P1 | 2 | 6 | 11 | 8 | 14.49±0.89aA | ||||||||
P2 | 3 | 7 | 5 | 2 | 3 | 7.34±1.23dD | |||||||
F1 | 1 | 2 | 1 | 2 | 10 | 17 | 4 | 2 | 11.93±1.46aA | ||||
B1 | 2 | 1 | 1 | 7 | 13 | 24 | 9 | 13.68±1.54bB | |||||
B2 | 1 | 3 | 4 | 5 | 5 | 11 | 14 | 11 | 4 | 9.48±2.02cC | |||
F2 | 4 | 7 | 21 | 21 | 30 | 35 | 60 | 101 | 79 | 36 | 4 | 11.69±2.10bB |
Tab.1 Frequency distribution and average of non-segregating generations of muskmelon heart suger content traits
世代 Generations | 次数分布Frequency distribution | 平均值 Average(°Brix) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | ||
P1 | 2 | 6 | 11 | 8 | 14.49±0.89aA | ||||||||
P2 | 3 | 7 | 5 | 2 | 3 | 7.34±1.23dD | |||||||
F1 | 1 | 2 | 1 | 2 | 10 | 17 | 4 | 2 | 11.93±1.46aA | ||||
B1 | 2 | 1 | 1 | 7 | 13 | 24 | 9 | 13.68±1.54bB | |||||
B2 | 1 | 3 | 4 | 5 | 5 | 11 | 14 | 11 | 4 | 9.48±2.02cC | |||
F2 | 4 | 7 | 21 | 21 | 30 | 35 | 60 | 101 | 79 | 36 | 4 | 11.69±2.10bB |
模型代号 Model code | 模型 Model | 极大似然函数值 Max-likelihood value | AIC值 AIC value |
---|---|---|---|
A-1 | 1MG-AD | -1 215.89 | 2 439.77 |
A-2 | 1MG-A | -1 251.65 | 2 509.29 |
A-3 | 1MG-EAD | -1 250.56 | 2 507.13 |
A-4 | 1MG-NCD | -1 341.19 | 2 688.38 |
B-1 | 2MG-ADI | -1 188.81 | 2 397.62 |
B-2 | 2MG-AD | -1 206.98 | 2 425.95 |
B-3 | 2MG-A | -1 277.68 | 2 563.36 |
B-4 | 2MG-EA | -1 225.30 | 2 456.59 |
B-5 | 2MG-CD | -1 232.31 | 2 472.61 |
B-6 | 2MG-EAD | -1 233.54 | 2 473.07 |
C-0 | PG-ADI | -1 226.94 | 2 473.89 |
C-1 | PG-AD | -1 229.72 | 2 473.43 |
D-0 | MX1-AD-ADI | -1 173.92 | 2 371.84 |
D-1 | MX1-AD-AD | -1 229.08 | 2 476.15 |
D-2 | MX1-A-AD | -1 229.68 | 2 475.35 |
D-3 | MX1-EAD-AD | -1 187.83 | 2 391.66 |
D-4 | MX1-NCD-AD | -1 229.70 | 2 475.41 |
E-0 | MX2-ADI-ADI | -1 172.85 | 2 381.69 |
E-1 | MX2-ADI-AD | -1 169.32 | 2 368.64 |
E-2 | MX2-AD-AD | -1 229.70 | 2 481.40 |
E-3 | MX2-A-AD | -1 194.86 | 2 407.71 |
E-4 | MX2-EA-AD | -1 229.66 | 2 475.33 |
E-5 | MX2-CD-AD | -1 187.59 | 2 393.17 |
E-6 | MX2-EAD-AD | -1 229.69 | 2 475.38 |
Tab.2 Max-likelihood-value and AIC value of the different genetic models
模型代号 Model code | 模型 Model | 极大似然函数值 Max-likelihood value | AIC值 AIC value |
---|---|---|---|
A-1 | 1MG-AD | -1 215.89 | 2 439.77 |
A-2 | 1MG-A | -1 251.65 | 2 509.29 |
A-3 | 1MG-EAD | -1 250.56 | 2 507.13 |
A-4 | 1MG-NCD | -1 341.19 | 2 688.38 |
B-1 | 2MG-ADI | -1 188.81 | 2 397.62 |
B-2 | 2MG-AD | -1 206.98 | 2 425.95 |
B-3 | 2MG-A | -1 277.68 | 2 563.36 |
B-4 | 2MG-EA | -1 225.30 | 2 456.59 |
B-5 | 2MG-CD | -1 232.31 | 2 472.61 |
B-6 | 2MG-EAD | -1 233.54 | 2 473.07 |
C-0 | PG-ADI | -1 226.94 | 2 473.89 |
C-1 | PG-AD | -1 229.72 | 2 473.43 |
D-0 | MX1-AD-ADI | -1 173.92 | 2 371.84 |
D-1 | MX1-AD-AD | -1 229.08 | 2 476.15 |
D-2 | MX1-A-AD | -1 229.68 | 2 475.35 |
D-3 | MX1-EAD-AD | -1 187.83 | 2 391.66 |
D-4 | MX1-NCD-AD | -1 229.70 | 2 475.41 |
E-0 | MX2-ADI-ADI | -1 172.85 | 2 381.69 |
E-1 | MX2-ADI-AD | -1 169.32 | 2 368.64 |
E-2 | MX2-AD-AD | -1 229.70 | 2 481.40 |
E-3 | MX2-A-AD | -1 194.86 | 2 407.71 |
E-4 | MX2-EA-AD | -1 229.66 | 2 475.33 |
E-5 | MX2-CD-AD | -1 187.59 | 2 393.17 |
E-6 | MX2-EAD-AD | -1 229.69 | 2 475.38 |
模型 Model | 世代 Generation | 拟合模型的统计参数Statistic parameter of fifit model | ||||
---|---|---|---|---|---|---|
nW2 | Dn | |||||
D-0 MX1-AD-ADI | P1 | 0.015 6(0.900 6) | 0.032 6(0.856 7) | 0.056 7(0.811 7) | 0.042 2(0.921 4) | 0.104 4(0.900 8) |
F1 | 0.300 5(0.583 6) | 0.017 5(0.894 7) | 2.539 3(0.111 0) | 0.243 8(0.201 6) | 0.193 4(0.094 3) | |
P2 | 0.073 8(0.785 8) | 0.044 5(0.833 0) | 0.043 6(0.834 6) | 0.070 9(0.753 4) | 0.123 1(0.886 8) | |
B1 | 1.028 6(0.310 5) | 0.114 9(0.734 7) | 6.616 5(0.010 1)* | 0.481 1(0.045 5)* | 0.162(0.089 5) | |
B2 | 0.022 5(0.880 8) | 0.147 3(0.701 1) | 0.911 3(0.339 8) | 0.044 3(0.909 7) | 0.068 1(0.933 9) | |
F2 | 0.155 3(0.693 5) | 0.108 0(0.742 4) | 0.044 8(0.832 3) | 0.097 8(0.607 2) | 0.045 9(0.372 5) | |
E-0 MX2-ADI-ADI | P1 | 0.015 6(0.900 5) | 0.032 6(0.856 7) | 0.056 6(0.812 0) | 0.042 2(0.921 3) | 0.104 3(0.901 1) |
F1 | 0.300 2(0.583 8) | 0.017 5(0.894 9) | 2.539 4(0.111 0) | 0.243 8(0.201 7) | 0.193 3(0.094 4) | |
P2 | 0.073 8(0.785 9) | 0.044 4(0.833 1) | 0.043 7(0.834 4) | 0.070 9(0.753 5) | 0.123 0(0.887 0) | |
B1 | 1.030 0(0.310 2) | 0.126 8(0.721 8) | 6.282 1(0.012 2)* | 0.469 5(0.048 8)* | 0.161 4(0.091 7) | |
B2 | 0.003 2(0.954 7) | 0.032 2(0.857 6) | 0.879 2(0.348 4) | 0.069 6(0.760 5) | 0.097 2(0.609 1) | |
F2 | 0.058 9(0.808 2) | 0.047 5(0.827 5) | 0.004 7(0.945 4) | 0.075 8(0.725 7) | 0.040 9(0.519 9) | |
E-1 MX2-ADI-AD | P1 | 0.844 6(0.358 1) | 1.001 4(0.317 0) | 0.196 7(0.657 4) | 0.135 4(0.440 5) | 0.167 7(0.390 1) |
F1 | 0.685 0(0.407 9) | 0.185 5(0.666 7) | 2.198 9(0.138 1) | 0.290 4(0.150 7) | 0.209 7(0.055 5) | |
P2 | 0.275 9(0.599 4) | 0.183 2(0.668 6) | 0.103 8(0.747 3) | 0.099 6(0.597 6) | 0.145 3(0.739 3) | |
B1 | 0.373 7(0.541 0) | 1.802 1(0.179 5) | 9.012(0.002 7)* | 0.329 5(0.117 7) | 0.155 8(0.112 6) | |
B2 | 0.003 6(0.951 8) | 0.100 6(0.751 1) | 1.070 3(0.300 9) | 0.051 8(0.866 1) | 0.079 8(0.825 6) | |
F2 | 0.213 2(0.644 3) | 0.284 9(0.593 5) | 0.120 3(0.728 7) | 0.095 1(0.621 0) | 0.048 8(0.299 0) |
Tab.3 Tests for goodness of fifit model of heart suger traits in different generations
模型 Model | 世代 Generation | 拟合模型的统计参数Statistic parameter of fifit model | ||||
---|---|---|---|---|---|---|
nW2 | Dn | |||||
D-0 MX1-AD-ADI | P1 | 0.015 6(0.900 6) | 0.032 6(0.856 7) | 0.056 7(0.811 7) | 0.042 2(0.921 4) | 0.104 4(0.900 8) |
F1 | 0.300 5(0.583 6) | 0.017 5(0.894 7) | 2.539 3(0.111 0) | 0.243 8(0.201 6) | 0.193 4(0.094 3) | |
P2 | 0.073 8(0.785 8) | 0.044 5(0.833 0) | 0.043 6(0.834 6) | 0.070 9(0.753 4) | 0.123 1(0.886 8) | |
B1 | 1.028 6(0.310 5) | 0.114 9(0.734 7) | 6.616 5(0.010 1)* | 0.481 1(0.045 5)* | 0.162(0.089 5) | |
B2 | 0.022 5(0.880 8) | 0.147 3(0.701 1) | 0.911 3(0.339 8) | 0.044 3(0.909 7) | 0.068 1(0.933 9) | |
F2 | 0.155 3(0.693 5) | 0.108 0(0.742 4) | 0.044 8(0.832 3) | 0.097 8(0.607 2) | 0.045 9(0.372 5) | |
E-0 MX2-ADI-ADI | P1 | 0.015 6(0.900 5) | 0.032 6(0.856 7) | 0.056 6(0.812 0) | 0.042 2(0.921 3) | 0.104 3(0.901 1) |
F1 | 0.300 2(0.583 8) | 0.017 5(0.894 9) | 2.539 4(0.111 0) | 0.243 8(0.201 7) | 0.193 3(0.094 4) | |
P2 | 0.073 8(0.785 9) | 0.044 4(0.833 1) | 0.043 7(0.834 4) | 0.070 9(0.753 5) | 0.123 0(0.887 0) | |
B1 | 1.030 0(0.310 2) | 0.126 8(0.721 8) | 6.282 1(0.012 2)* | 0.469 5(0.048 8)* | 0.161 4(0.091 7) | |
B2 | 0.003 2(0.954 7) | 0.032 2(0.857 6) | 0.879 2(0.348 4) | 0.069 6(0.760 5) | 0.097 2(0.609 1) | |
F2 | 0.058 9(0.808 2) | 0.047 5(0.827 5) | 0.004 7(0.945 4) | 0.075 8(0.725 7) | 0.040 9(0.519 9) | |
E-1 MX2-ADI-AD | P1 | 0.844 6(0.358 1) | 1.001 4(0.317 0) | 0.196 7(0.657 4) | 0.135 4(0.440 5) | 0.167 7(0.390 1) |
F1 | 0.685 0(0.407 9) | 0.185 5(0.666 7) | 2.198 9(0.138 1) | 0.290 4(0.150 7) | 0.209 7(0.055 5) | |
P2 | 0.275 9(0.599 4) | 0.183 2(0.668 6) | 0.103 8(0.747 3) | 0.099 6(0.597 6) | 0.145 3(0.739 3) | |
B1 | 0.373 7(0.541 0) | 1.802 1(0.179 5) | 9.012(0.002 7)* | 0.329 5(0.117 7) | 0.155 8(0.112 6) | |
B2 | 0.003 6(0.951 8) | 0.100 6(0.751 1) | 1.070 3(0.300 9) | 0.051 8(0.866 1) | 0.079 8(0.825 6) | |
F2 | 0.213 2(0.644 3) | 0.284 9(0.593 5) | 0.120 3(0.728 7) | 0.095 1(0.621 0) | 0.048 8(0.299 0) |
一阶遗传参数 1st order parameter | 估值Estimate | 二阶遗传参数 2nd order parameter | 估值Estimate | ||
---|---|---|---|---|---|
E-1 | B1 | B2 | F2 | ||
m | 12.4107 | 0.952 1 | 2.827 5 | 3.167 7 | |
da | -0.050 7 | 0.19 | 0 | 0 | |
db | -0.050 7 | 39.956 9 | 69.502 1 | 71.855 4 | |
ha | 0.953 2 | 7.974 8 | 0.000 2 | 0.000 2 | |
hb | -1.419 | ||||
i | -1.532 9 | ||||
jab | 2.358 4 | ||||
jba | -0.013 8 | ||||
l | 1.571 | ||||
[d] | 3.571 5 | ||||
[h] | -1.651 8 |
Tab.4 The estimation of genetic parameters of fifit model of melon heart suger resistance traits
一阶遗传参数 1st order parameter | 估值Estimate | 二阶遗传参数 2nd order parameter | 估值Estimate | ||
---|---|---|---|---|---|
E-1 | B1 | B2 | F2 | ||
m | 12.4107 | 0.952 1 | 2.827 5 | 3.167 7 | |
da | -0.050 7 | 0.19 | 0 | 0 | |
db | -0.050 7 | 39.956 9 | 69.502 1 | 71.855 4 | |
ha | 0.953 2 | 7.974 8 | 0.000 2 | 0.000 2 | |
hb | -1.419 | ||||
i | -1.532 9 | ||||
jab | 2.358 4 | ||||
jba | -0.013 8 | ||||
l | 1.571 | ||||
[d] | 3.571 5 | ||||
[h] | -1.651 8 |
样本 Sample | 原始Reads Raw reads | 原始数据量 Raw bases | 过滤后Reads Clean reads | 过滤后 碱基数 Clean bases | 有效Reads比 Valid reads (%) | 有效数 据量比 Valid bases (%) | GC (%) | Q20 (%) | Q30 (%) |
---|---|---|---|---|---|---|---|---|---|
HS | 38 148 520 | 11 145 445 500 | 75 572 218 | 11 045 883 000 | 99.05 | 99.11 | 36.72 | 95.56 | 89.04 |
LS | 37 150 247 | 11 444 585 400 | 73 639 220 | 11 335 832 700 | 99.11 | 99.05 | 37.86 | 95.56 | 89.1 |
P1 | 27 381 098 | 8 214 073 200 | 54 493 862 | 8 174 079 300 | 99.51 | 99.51 | 36.39 | 95.68 | 89.12 |
P2 | 27 496 523 | 8 248 618 800 | 54 723 580 | 8 208 537 000 | 99.51 | 99.51 | 37.23 | 95.64 | 89.13 |
Tab.5 Quality statistics of raw data
样本 Sample | 原始Reads Raw reads | 原始数据量 Raw bases | 过滤后Reads Clean reads | 过滤后 碱基数 Clean bases | 有效Reads比 Valid reads (%) | 有效数 据量比 Valid bases (%) | GC (%) | Q20 (%) | Q30 (%) |
---|---|---|---|---|---|---|---|---|---|
HS | 38 148 520 | 11 145 445 500 | 75 572 218 | 11 045 883 000 | 99.05 | 99.11 | 36.72 | 95.56 | 89.04 |
LS | 37 150 247 | 11 444 585 400 | 73 639 220 | 11 335 832 700 | 99.11 | 99.05 | 37.86 | 95.56 | 89.1 |
P1 | 27 381 098 | 8 214 073 200 | 54 493 862 | 8 174 079 300 | 99.51 | 99.51 | 36.39 | 95.68 | 89.12 |
P2 | 27 496 523 | 8 248 618 800 | 54 723 580 | 8 208 537 000 | 99.51 | 99.51 | 37.23 | 95.64 | 89.13 |
样本 Sample | 过滤后Reads Clean reads | 比对上数据 Mapping reads | 比对率 Mapped (%) | 平均测序深度 Mean coverage | 1×覆盖度 Coverage≥ 1× (%) | 4×覆盖度 Coverage≥ 4× (%) |
---|---|---|---|---|---|---|
HS | 75 572 218 | 70 862 228 | 93.77 | 24.55 | 97.8 | 96.74 |
LS | 73 639 220 | 69 954 351 | 95 | 25.36 | 97.77 | 96.67 |
P1 | 54 493 862 | 52 222 873 | 95.83 | 19.52 | 96.71 | 95.27 |
P2 | 54 723 580 | 52 620 862 | 96.16 | 19.2 | 96.86 | 95.42 |
Tab.6 Matching of quality control data with reference genome
样本 Sample | 过滤后Reads Clean reads | 比对上数据 Mapping reads | 比对率 Mapped (%) | 平均测序深度 Mean coverage | 1×覆盖度 Coverage≥ 1× (%) | 4×覆盖度 Coverage≥ 4× (%) |
---|---|---|---|---|---|---|
HS | 75 572 218 | 70 862 228 | 93.77 | 24.55 | 97.8 | 96.74 |
LS | 73 639 220 | 69 954 351 | 95 | 25.36 | 97.77 | 96.67 |
P1 | 54 493 862 | 52 222 873 | 95.83 | 19.52 | 96.71 | 95.27 |
P2 | 54 723 580 | 52 620 862 | 96.16 | 19.2 | 96.86 | 95.42 |
染色体编号 Chromosome ID | 方法 Methods | 关联区间起始位置 Start position of the correlation interval(bp) | 关联区间终止位置 End position of the correlation interval(bp) | 关联区间大小 Correlation interval size (Mb) |
---|---|---|---|---|
Chr5 | Deep Learning | 805192 | 1196476 | 0.391284 |
K value | 660399 | 1099530 | 0.439131 | |
ED4 | 684566 | 1099550 | 0.414984 | |
△SNP index | 740823 | 1187084 | 0.446261 | |
SmoothG | 738888 | 1185404 | 0.446516 | |
SmoothLOD | 827066 | 1196504 | 0.369438 | |
Ridit | 735951 | 1108157 | 0.372206 | |
Chr8 | Deep Learning | 11093331 | 11729324 | 0.635993 |
K value | 11115505 | 11773204 | 0.657699 | |
ED4 | 11316600 | 14061373 | 2.744773 | |
△SNP index | 11115505 | 11773204 | 0.657699 | |
SmoothG | 11115620 | 11779123 | 0.663503 | |
SmoothLOD | 11316350 | 14061163 | 2.744813 | |
Ridit | 11164863 | 11808230 | 0.643367 |
Tab.7 Statistics of candidate intervals for 7 different algorithms
染色体编号 Chromosome ID | 方法 Methods | 关联区间起始位置 Start position of the correlation interval(bp) | 关联区间终止位置 End position of the correlation interval(bp) | 关联区间大小 Correlation interval size (Mb) |
---|---|---|---|---|
Chr5 | Deep Learning | 805192 | 1196476 | 0.391284 |
K value | 660399 | 1099530 | 0.439131 | |
ED4 | 684566 | 1099550 | 0.414984 | |
△SNP index | 740823 | 1187084 | 0.446261 | |
SmoothG | 738888 | 1185404 | 0.446516 | |
SmoothLOD | 827066 | 1196504 | 0.369438 | |
Ridit | 735951 | 1108157 | 0.372206 | |
Chr8 | Deep Learning | 11093331 | 11729324 | 0.635993 |
K value | 11115505 | 11773204 | 0.657699 | |
ED4 | 11316600 | 14061373 | 2.744773 | |
△SNP index | 11115505 | 11773204 | 0.657699 | |
SmoothG | 11115620 | 11779123 | 0.663503 | |
SmoothLOD | 11316350 | 14061163 | 2.744813 | |
Ridit | 11164863 | 11808230 | 0.643367 |
基因号 Gene ID | 位置 Position | 基因 方向 Gene orientation | 大小 Size (bp) | 注释 Annotation | 编码区非同义突变 Non synonymous mutation sites in coding regions | 启动子区 Promotor Region |
---|---|---|---|---|---|---|
MELO3C014622 | Chr5:882794-885290 | - | 2496 | 丝氨酸/苏氨酸蛋白激酶 | 2个SNP | |
MELO3C014621 | Chr5:889359-892049 | - | 2690 | 含溴结构域的蛋白质 | 1个Indel | |
MELO3C014619 | Chr5:896637-899328 | - | 2691 | 未知 | 4个SNP | 14个SNP,11个Indel |
MELO3C014617 | Chr5:905878-908840 | - | 2962 | 未知 | 5个SNP | 29个SNP,7个Indel |
MELO3C014613 | Chr5:924958-933054 | - | 8096 | DUF1680结构域蛋白 | 6个SNP,6个Indel | |
MELO3C014610 | Chr5:953260-954563 | - | 1303 | 激酶家族蛋白 | 6个SNP,6个Indel | |
MELO3C014596 | Chr5:1075795-1079969 | + | 4174 | 苹果酸/酮戊二酸转运蛋白 | 3个SNP | 8个SNP,1个Indel |
MELO3C014595 | Chr5:1085108-1089566 | + | 4458 | MATE外排家族蛋白 | 10个SNP,1个Indel | |
MELO3C014594 | Chr5:1091412-1093292 | + | 1880 | 含五肽重复序列的蛋白质 | 4个SNP | 1个Indel |
MELO3C019077 | Chr8:11363674-11364042 | + | 368 | 液泡融合蛋白CCZ1 | 2个SNP | 22个SNP,5个Indel |
MELO3C019082 | Chr8:11459977-11463627 | + | 3650 | 血清反应因子结合蛋白1 | 9个SNP,1个Indel | |
MELO3C019083 | Chr8:11498986-11521642 | + | 22656 | 微管相关蛋白70-2 | 21个SNP,4个Indel | |
MELO3C019087 | Chr8:11600872-11603741 | + | 2869 | UDP糖基转移酶超家族蛋白 | 18个SNP,7个Indel | |
MELO3C019089 | Chr8:11687078-11690459 | + | 3381 | DNA促旋酶亚基B | 1个SNP | 21个SNP,2个Indel |
Tab.8 Functional annotation of 3 candidate genes
基因号 Gene ID | 位置 Position | 基因 方向 Gene orientation | 大小 Size (bp) | 注释 Annotation | 编码区非同义突变 Non synonymous mutation sites in coding regions | 启动子区 Promotor Region |
---|---|---|---|---|---|---|
MELO3C014622 | Chr5:882794-885290 | - | 2496 | 丝氨酸/苏氨酸蛋白激酶 | 2个SNP | |
MELO3C014621 | Chr5:889359-892049 | - | 2690 | 含溴结构域的蛋白质 | 1个Indel | |
MELO3C014619 | Chr5:896637-899328 | - | 2691 | 未知 | 4个SNP | 14个SNP,11个Indel |
MELO3C014617 | Chr5:905878-908840 | - | 2962 | 未知 | 5个SNP | 29个SNP,7个Indel |
MELO3C014613 | Chr5:924958-933054 | - | 8096 | DUF1680结构域蛋白 | 6个SNP,6个Indel | |
MELO3C014610 | Chr5:953260-954563 | - | 1303 | 激酶家族蛋白 | 6个SNP,6个Indel | |
MELO3C014596 | Chr5:1075795-1079969 | + | 4174 | 苹果酸/酮戊二酸转运蛋白 | 3个SNP | 8个SNP,1个Indel |
MELO3C014595 | Chr5:1085108-1089566 | + | 4458 | MATE外排家族蛋白 | 10个SNP,1个Indel | |
MELO3C014594 | Chr5:1091412-1093292 | + | 1880 | 含五肽重复序列的蛋白质 | 4个SNP | 1个Indel |
MELO3C019077 | Chr8:11363674-11364042 | + | 368 | 液泡融合蛋白CCZ1 | 2个SNP | 22个SNP,5个Indel |
MELO3C019082 | Chr8:11459977-11463627 | + | 3650 | 血清反应因子结合蛋白1 | 9个SNP,1个Indel | |
MELO3C019083 | Chr8:11498986-11521642 | + | 22656 | 微管相关蛋白70-2 | 21个SNP,4个Indel | |
MELO3C019087 | Chr8:11600872-11603741 | + | 2869 | UDP糖基转移酶超家族蛋白 | 18个SNP,7个Indel | |
MELO3C019089 | Chr8:11687078-11690459 | + | 3381 | DNA促旋酶亚基B | 1个SNP | 21个SNP,2个Indel |
[1] | Eduardo I, Arus P, Monforte A J, et al. Estimating the genetic architecture of fruit quality traits in melon using a genomic library of near isogenic lines[J]. Journal of the American Society for Horticultural Science, 2007, 132(1): 80-89. |
[2] | Senesi E, Scalzo R L, Prinzivalli C, et al. Relationships between volatile composition and sensory evaluation in eight varieties of netted muskmelon (Cucumis melo L var Reticulatus Naud)[J]. Journal of the Science of Food and Agriculture, 2002, 82(6): 655-662. |
[3] | Zhang J Z, Li B S, Zhang J L, et al. Organic fertilizer application and Mg fertilizer promote banana yield and quality in an Udic Ferralsol[J]. PLoS One, 2020, 15(3): e0230593. |
[4] |
Dia M, Wehner T C, Perkins-Veazie P, et al. Stability of fruit quality traits in diverse watermelon cultivars tested in multiple environments[J]. Horticulture Research, 2016, 3: 16066.
DOI PMID |
[5] | 盖钧镒. 植物数量性状遗传体系[M]. 北京: 科学出版社, 2003. |
GAI Junyi. Genetic system of quantitative traits in plants[M]. Beijing: Science Press, 2003. | |
[6] | Qi Z Y, Li J X, Raza M A, et al. Inheritance of fruit cracking resistance of melon (Cucumis melo L.) fitting E-0 genetic model using major gene plus polygene inheritance analysis[J]. Scientia Horticulturae, 2015, 189: 168-174. |
[7] | Dong J P, Xu J, Xu X W, et al. Inheritance and quantitative trait locus mapping of Fusarium wilt resistance in cucumber[J]. Frontiers in Plant Science, 2019, 10: 1425. |
[8] | 蒋锋, 闫艳, 黄正刚, 等. 糯玉米种子活力性状的主基因+多基因混合遗传分析[J]. 西北农林科技大学学报(自然科学版), 2023, 51(2): 22-29, 42. |
JIANG Feng, YAN Yan, HUANG Zhenggang, et al. Mixed major genes and polygenes inheritance analyses for seed vigor traits in waxy corn[J]. Journal of Northwest A & F University (Natural Science Edition), 2023, 51(2): 22-29, 42. | |
[9] |
解松峰, 吉万全, 张耀元, 等. 小麦重要产量性状的主基因+多基因混合遗传分析[J]. 作物学报, 2020, 46(3): 365-384.
DOI |
XIE Songfeng, JI Wanquan, ZHANG Yaoyuan, et al. Genetic effects of important yield traits analysed by mixture model of major gene plus polygene in wheat[J]. Acta Agronomica Sinica, 2020, 46(3): 365-384.
DOI |
|
[10] | Ren X Y, Li H X, Yin Y, et al. Genetic analysis of fruit traits in wolfberry (Lycium L.) by the major gene plus polygene model[J]. Agronomy, 2022, 12(6): 1403. |
[11] |
王利民, 党照, 赵玮, 等. 基于分离世代和RIL群体的亚麻株高遗传定位[J]. 植物遗传资源学报, 2022, 23(5): 1446-1457.
DOI |
WANG Limin, DANG Zhao, ZHAO Wei, et al. Genetic analysis of plant height in flax using segregating generations and recombination inbred line populations[J]. Journal of Plant Genetic Resources, 2022, 23(5): 1446-1457.
DOI |
|
[12] | 吕律. 甜瓜果实含糖量遗传分析及糖分积累与蔗糖代谢酶关系的研究[D]. 杭州: 浙江大学, 2018. |
LYU Lyu. Genetic Analysis of Sugar Content and the Relationship between Sugar Accumulation and Its Metabolism-related Enzymes in Melon(Cucumis melo L.). Hangzhou: Zhejiang University, 2018. | |
[13] |
许彦宾, 王艳玲, 胡建斌, 等. 甜瓜果实可溶性固形物含量的关联作图及优异等位变异发掘[J]. 园艺学报, 2017, 44(5): 902-910.
DOI |
XU Yanbin, WANG Yanling, HU Jianbin, et al. Association mapping of soluble solid content in melon fruits and exploration of the elite alleles[J]. Acta Horticulturae Sinica, 2017, 44(5): 902-910.
DOI |
|
[14] | Diaz A, Fergany M, Formisano G, et al. A consensus linkage map for molecular markers and quantitative trait loci associated with economically important traits in melon (Cucumis melo L.)[J]. BMC Plant Biology, 2011, 11: 111. |
[15] | Monforte A J, Oliver M, Gonzalo M J, et al. Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.)[J]. TAG Theoretical and Applied Genetics Theoretische und Angewandte Genetik, 2004, 108(4): 750-758. |
[16] | Paris M K, Zalapa J E, McCreight J D, et al. Genetic dissection of fruit quality components in melon (Cucumis melo L.) using a RIL population derived from exotic × elite US Western Shipping germplasm[J]. Molecular Breeding, 2008, 22(3): 405-419. |
[17] | Obando J, Fernández-Trujillo J P, Martínez J A, et al. Identification of melon fruit quality quantitative trait loci using near-isogenic lines[J]. Journal of the American Society for Horticultural Science, 2008, 133(1): 139-151. |
[18] |
王靖天, 张亚雯, 杜应雯, 等. 数量性状主基因+多基因混合遗传分析R软件包SEA v2.0[J]. 作物学报, 2022, 48(6): 1416-1424.
DOI |
WANG Jingtian, ZHANG Yawen, DU Yingwen, et al. SEA v2.0: an R software package for mixed major genes plus polygenes inheritance analysis of quantitative traits[J]. Acta Agronomica Sinica, 2022, 48(6): 1416-1424.
DOI |
|
[19] | Li Z, Chen X X, Shi S Q, et al. DeepBSA: a deep-learning algorithm improves bulked segregant analysis for dissecting complex traits[J]. Molecular Plant, 2022, 15(9): 1418-1427. |
[20] |
Lingle S E, Dunlap J R. Sucrose metabolism in netted muskmelon fruit during development[J]. Plant Physiology, 1987, 84(2): 386-389.
DOI PMID |
[21] | 张勇, 马建祥, 李好, 等. 厚皮甜瓜新品种‘农大甜9号’[J]. 园艺学报, 2021, 48(S2):2869-2870. |
ZHANG Yong, MA Jianxiang, LI Hao, et al. A new muskmelon cultivar‘nongdatian 9’[J]. Acta Horticulturae Sinica, 2021, 48(S2):2869-2870.
DOI |
|
[22] | 张若纬, 李肯, 武云鹏, 等. 薄皮甜瓜新品种‘花田1号’[J]. 园艺学报, 2021, 48(S2): 2871-2872. |
ZHANG Ruowei, LI Ken, WU Yunpeng, et al. A new oriental melon cultivar‘Huatian 1’[J]. Acta Horticulturae Sinica, 2021, 48(S2): 2871-2872.
DOI |
|
[23] | Lu J, Qi S Y, Liu R, et al. Nondestructive determination of soluble solids and firmness in mix-cultivar melon using near-infrared CCD spectroscopy[J]. Journal of Innovative Optical Health Sciences, 2015, 8(6): 1550032. |
[24] | Hu R, Zhang L X, Yu Z Y, et al. Optimization of soluble solids content prediction models in ‘Hami’ melons by means of Vis-NIR spectroscopy and chemometric tools[J]. Infrared Physics & Technology, 2019, 102: 102999. |
[25] |
郭阳, 史勇, 郭俊先, 等. 近红外光谱技术结合反向区间偏最小二乘算法-连续投影算法预测哈密瓜可溶性固形物含量[J]. 食品与发酵工业, 2022, 48(2): 248-253.
DOI |
GUO Yang, SHI Yong, GUO Junxian, et al. Prediction of soluble solids content in Hami melon by combining near-infrared spectroscopy and BiPLS-SPA technology[J]. Food and Fermentation Industries, 2022, 48(2): 248-253.
DOI |
|
[26] | 叶红霞, 吕律, 海睿, 等. 甜瓜果实糖含量的主基因+多基因遗传分析[J]. 浙江大学学报(农业与生命科学版), 2019, 45(4): 391-400. |
YE Hongxia, LYU Lyu, HAI Rui, et al. Genetic analysis of fruit sugar content in melon(Cucumis melo L.) based on a mixed model of major genes and polygenes[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(4): 391-400. | |
[27] | 张宁, 张显, 张勇, 等. 甜瓜远缘群体果实糖含量相关性状遗传分析[J]. 植物遗传资源学报, 2014, 15(5): 932-939. |
ZHANG Ning, ZHANG Xian, ZHANG Yong, et al. Genetic analysis of fruit sugar content correlated traits in interspecific population of melon[J]. Journal of Plant Genetic Resources, 2014, 15(5): 932-939.
DOI |
|
[28] | Pereira L, Ruggieri V, Pérez S, et al. QTL mapping of melon fruit quality traits using a high-density GBS-based genetic map[J]. BMC Plant Biology, 2018, 18(1): 324. |
[29] |
Argyris J M, Díaz A, Ruggieri V, et al. QTL analyses in multiple populations employed for the fine mapping and identification of candidate genes at a locus affecting sugar accumulation in melon (Cucumis melo L.)[J]. Frontiers in Plant Science, 2017, 8: 1679.
DOI PMID |
[30] |
Kinoshita H, Nagasaki J, Yoshikawa N, et al. The chloroplastic 2-oxoglutarate/malate transporter has dual function as the malate valve and in carbon/nitrogen metabolism[J]. The Plant Journal, 2011, 65(1): 15-26.
DOI PMID |
[31] | Schneidereit J, Häusler R E, Fiene G, et al. Antisense repression reveals a crucial role of the plastidic 2-oxoglutarate/malate translocator DiT1 at the interface between carbon and nitrogen metabolism[J]. The Plant Journal, 2006, 45(2): 206-224. |
[32] |
Zamani-Nour S, Lin H C, Walker B J, et al. Overexpression of the chloroplastic 2-oxoglutarate/malate transporter disturbs carbon and nitrogen homeostasis in rice[J]. Journal of Experimental Botany, 2021, 72(1): 137-152.
DOI PMID |
[33] |
Li W J, Yang B, Xu J Y, et al. A genome-wide association study reveals that the 2-oxoglutarate/malate translocator mediates seed vigor in rice[J]. The Plant Journal, 2021, 108(2): 478-491.
DOI PMID |
[34] | Andrade-Marcial M, Pacheco-Arjona R, Góngora-Castillo E, et al. Chloroplastic pentatricopeptide repeat proteins (PPR) in albino plantlets of Agave angustifolia Haw. reveal unexpected behavior[J]. BMC Plant Biology, 2022, 22(1): 352. |
[35] | Lee K, Park S J, Han J H, et al. A chloroplast-targeted pentatricopeptide repeat protein PPR287 is crucial for chloroplast function and Arabidopsis development[J]. BMC Plant Biology, 2019, 19(1): 244. |
[36] | Salman M, Sharma P, Kumar M, et al. Targeting novel sites in DNA gyrase for development of anti-microbials[J]. Briefings in Functional Genomics, 2023, 22(2): 180-194. |
[37] |
Delmas J, Breysse F, Devulder G, et al. Rapid identification of Enterobacteriaceae by sequencing DNA gyrase subunit B encoding gene[J]. Diagnostic Microbiology and Infectious Disease, 2006, 55(4): 263-268.
PMID |
[38] | Fois B, Skok Ž, TomašiĉT, et al. Dual Escherichia coli DNA gyrase A and B inhibitors with antibacterial activity[J]. ChemMedChem, 2020, 15(3): 265-269. |
[39] |
Vogt T, Jones P. Glycosyltransferases in plant natural product synthesis: characterization of a supergene family[J]. Trends in Plant Science, 2000, 5(9): 380-386.
DOI PMID |
[40] | Wei Y Z, Mu H Y, Xu G Z, et al. Genome-wide analysis and functional characterization of the UDP-glycosyltransferase family in grapes[J]. Horticulturae, 2021, 7(8): 204. |
[41] | Wu B P, Liu X H, Xu K, et al. Genome-wide characterization, evolution and expression profiling of UDP-glycosyltransferase family in pomelo (Citrus grandis) fruit[J]. BMC Plant Biology, 2020, 20(1): 459. |
[42] |
Wu B P, Cao X M, Liu H R, et al. UDP-glucosyltransferase PpUGT85A2 controls volatile glycosylation in peach[J]. Journal of Experimental Botany, 2019, 70(3): 925-936.
DOI PMID |
[43] | Liu X G, Lin C L, Ma X D, et al. Functional characterization of a flavonoid glycosyltransferase in sweet orange (Citrus sinensis)[J]. Frontiers in Plant Science, 2018, 9: 166. |
[1] | Kadierayi Maimaiti, ZHOU Tingting, HAN Sheng, Meilikehan Rexiti, Yushanjiang Maimaiti. Establishment of genetic transformation and regeneration systems for different melon varieties and rapid acquisition of gene edited plants [J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1666-1672. |
[2] | LIU Yang, ZHANG Zhengxiao, BAI Yujia, FENG Zuoshan. Effects of Alternaria alternata infection on active oxygen metabolism in different tissues of melon [J]. Xinjiang Agricultural Sciences, 2024, 61(6): 1397-1406. |
[3] | SHEN Yue, LING Yueming, DUAN Xiaoyu, YANG Wenli, LI Meihua, WANG Yirou, WANG Huilin, ZHANG Xuejun. Development and verification of KASP marker for resistance to downy mildew in muskmelon [J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2626-2634. |
[4] | YAO Jun, QIN Yong, ZHENG Heyun, ZHANG Cuihuan, Zaituna Maimaiti, WANG Zhiwei, GEN Xinli. Development of composite plastic film of extract from Ficus carica leaves and the cling film application in keeping melon fresh [J]. Xinjiang Agricultural Sciences, 2024, 61(1): 118-126. |
[5] | YAO Jun, ZHENG Heyun, ZHANG Cuihuan, Zaituna Maimaiti, GENG Xinli. Effects of continuous illumination with LED on storage characteristics and sugar metabolism of muskmelon [J]. Xinjiang Agricultural Sciences, 2023, 60(7): 1689-1697. |
[6] | LIU Yang, BAI Yujia, ZHANG Zhengxiao, CHU Chenli, WANG Tiantian, FENG Zuoshan. Changes of related proteins and phenylpropane metabolic enzymes in melon infected by Alternaria alternata [J]. Xinjiang Agricultural Sciences, 2023, 60(7): 1780-1789. |
[7] | TIAN Jingyu, GAO Yan, GAO Xingwang, ZENG Jun, ZHAO Pengan, Subinuer Julaiti. Analysis of rhizospheric bacterial community structure and diversity of Hami melon under field cultivation [J]. Xinjiang Agricultural Sciences, 2023, 60(5): 1253-1262. |
[8] | ZHANG Hao, LIU Yi, ZHOU Bo, HUANG Yuan, FU Xiaofa, MA Yue, WU Haibo, HU Guozhi, MAO Jiancai, CHEN Jihao, LIANG Qigan, WANG Min. Effects of nitrogen fertilization on aromatic compounds of muskmelon [J]. Xinjiang Agricultural Sciences, 2023, 60(12): 2993-3007. |
[9] | YANG Zhiyi, WANG Huilin, WANG Rui, WANG Chaonan, XU Baolin, QIU Huojian. Effects of six copper preparations on growth index, yield and quality of major melons [J]. Xinjiang Agricultural Sciences, 2023, 60(12): 3008-3017. |
[10] | SUN Fenglei, REN Jiaojiao, LEI Bin, GAO Wenwei, QU Yanying. QTL mapping and genomic selection of maize leaf width [J]. Xinjiang Agricultural Sciences, 2023, 60(10): 2341-2351. |
[11] | YANG Shiying, MA Yue, JIA Binxin, HUA Zhenyu, SHEN Qi, LIU Fengjuan, WANG Cheng. Study on degradation of pesticide residues in muskmelon by brassinolide [J]. Xinjiang Agricultural Sciences, 2023, 60(10): 2541-2550. |
[12] | LIU Zhigang, REN Hongsong, Huxidan Maimaiti, Amuti Kuerban, GUO Hongmei, WANG Ruihua, LI Haifeng, HU Guozhi. Effects of Amino Acid Selenium Foliar Fertilizer on Growth and Development and Photosynthetic Characteristics of Muskmelon [J]. Xinjiang Agricultural Sciences, 2022, 59(4): 874-883. |
[13] | YANG Yong, FAN Rong, ZHANG Xuejun, LI Meihua, LING Yueming, ZHANG Hong, YANG Wenli, JIANG Xue, ZHANG Yongbing, YI Hongping. QTL Mapping and Candidate Gene Analysis of Sucrose Content in the Center Flesh of Muskmelon [J]. Xinjiang Agricultural Sciences, 2022, 59(10): 2446-2455. |
[14] | WANG Haojie, MAO Jiancai, LI Junhua, ZHAI Wenqiang. Effects of Different Rootstock Grafting on the Growth, Yield and Fruit Quality of Muskmelon [J]. Xinjiang Agricultural Sciences, 2021, 58(6): 1048-1054. |
[15] | Abudoukeyoumu Abudourezike, ZHANG Yan, WANG Wei, YAN Guorong, ZHAO Lianjia, Gulimila Aikebaier. Effect of Shading on Yield and Photosynthetic Characteristics of Muskmelon [J]. Xinjiang Agricultural Sciences, 2021, 58(6): 1064-1070. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||