Xinjiang Agricultural Sciences ›› 2023, Vol. 60 ›› Issue (2): 454-463.DOI: 10.6048/j.issn.1001-4330.2023.02.024
• Forestry·Prataculture·Animal Husbandry Veterinarian • Previous Articles Next Articles
HU Wencong1(), PAN Cunde1(
), ZHAO Shanchao2, SONG Mengzhen1, TONG Haimai1, TIAN Chenyang1
Received:
2022-08-02
Online:
2023-02-20
Published:
2023-03-31
Correspondence author:
PAN Cunde (1964-), male, native place: Qitai, Xinjiang. Professor, research field: Forest ecology and management,(E-mail) pancunde@163.com
Supported by:
胡文聪1(), 潘存德1(
), 赵善超2, 宋梦真1, 童海麦1, 田晨阳1
通讯作者:
潘存德(1964―),男,新疆奇台人,教授,博士,博士生导师,研究方向为森林生态与经营,(E-mail)pancunde@163.com
作者简介:
胡文聪(1997―),男,新疆昌吉人,硕士研究生,研究方向为天然林保护修复,(E-mail)718491308@qq.com
基金资助:
CLC Number:
HU Wencong, PAN Cunde, ZHAO Shanchao, SONG Mengzhen, TONG Haimai, TIAN Chenyang. Microhabitat Interpretation of Survival Quantity and Functional Traits of One-year-old Natural Regeneration Seedlings of Picea schrenkiana var. tianschanica in the Central Part of the Northern Slope of Tianshan Mountains, Xinjiang[J]. Xinjiang Agricultural Sciences, 2023, 60(2): 454-463.
胡文聪, 潘存德, 赵善超, 宋梦真, 童海麦, 田晨阳. 天山北坡中部天山云杉1 a生天然更新幼苗存活数量与功能性状的微生境分析[J]. 新疆农业科学, 2023, 60(2): 454-463.
变量Variable | 最小值Min | 最大值Max | 平均值Mean | 标准差SD | 变异系数CV(%) |
---|---|---|---|---|---|
草本盖度 Herbaceous coverage,Hc(%) | 8.0 | 98.0 | 38.2 | 21.0 | 54.91 |
草本高度 Herbaceous height,Hh(cm) | 0.1 | 17.5 | 6.5 | 2.5 | 39.01 |
苔藓盖度 Moss coverage,Mc(%) | 0 | 100 | 48.0 | 37.3 | 77.57 |
苔藓厚度 Moss thickness,Mt(cm) | 0 | 6.7 | 2.8 | 1.9 | 67.29 |
枯落物盖度 Litter coverage,Lc(%) | 0 | 99.0 | 22.0 | 26.9 | 122.58 |
枯落物厚度 Litter thickness,Lt(cm) | 0 | 4.3 | 1.1 | 1.0 | 97.43 |
根系盘结层厚度 Root system twine layer thickness,Rt(cm) | 0 | 7.7 | 2.6 | 2.0 | 77.62 |
腐殖质厚度 Humus thickness,Ht(cm) | 6.6 | 28.9 | 15.6 | 5.1 | 32.53 |
大树邻体 Adult neighbor effect,Ane(m2) | 0 | 0.6 | 0.2 | 0.1 | 81.92 |
坡度Slope,Slo(°) | 7.5 | 44.9 | 23.5 | 8.0 | 34.11 |
海拔Elevation,Ele(m) | 1 859 | 2 365 | 2 128 | 121.1 | 5.70 |
根平均长度 Average length of root(cm) | 3.49 | 11.21 | 6.70 | 15.54 | 23.23 |
根平均直径 Average root dianefer(cm) | 0.20 | 0.30 | 0.30 | 0.02 | 8.30 |
根平均体积 Average root volume(cm3) | 0.02 | 0.10 | 0.04 | 0.01 | 35.80 |
根平均干重 Average dry weight of root(g) | 0.04 | 0.12 | 0.07 | 0.01 | 18.58 |
叶平均面积 Average leaf area(cm2) | 1.00 | 1.50 | 1.20 | 0.10 | 12.50 |
茎平均体积 Average stem volume(cm3) | 0.03 | 0.07 | 0.05 | 0.01 | 15.21 |
茎平均干重 Average dry weight of stem(g) | 0.02 | 0.08 | 0.03 | 0.01 | 36.18 |
Table 1 Basic situation of sample data
变量Variable | 最小值Min | 最大值Max | 平均值Mean | 标准差SD | 变异系数CV(%) |
---|---|---|---|---|---|
草本盖度 Herbaceous coverage,Hc(%) | 8.0 | 98.0 | 38.2 | 21.0 | 54.91 |
草本高度 Herbaceous height,Hh(cm) | 0.1 | 17.5 | 6.5 | 2.5 | 39.01 |
苔藓盖度 Moss coverage,Mc(%) | 0 | 100 | 48.0 | 37.3 | 77.57 |
苔藓厚度 Moss thickness,Mt(cm) | 0 | 6.7 | 2.8 | 1.9 | 67.29 |
枯落物盖度 Litter coverage,Lc(%) | 0 | 99.0 | 22.0 | 26.9 | 122.58 |
枯落物厚度 Litter thickness,Lt(cm) | 0 | 4.3 | 1.1 | 1.0 | 97.43 |
根系盘结层厚度 Root system twine layer thickness,Rt(cm) | 0 | 7.7 | 2.6 | 2.0 | 77.62 |
腐殖质厚度 Humus thickness,Ht(cm) | 6.6 | 28.9 | 15.6 | 5.1 | 32.53 |
大树邻体 Adult neighbor effect,Ane(m2) | 0 | 0.6 | 0.2 | 0.1 | 81.92 |
坡度Slope,Slo(°) | 7.5 | 44.9 | 23.5 | 8.0 | 34.11 |
海拔Elevation,Ele(m) | 1 859 | 2 365 | 2 128 | 121.1 | 5.70 |
根平均长度 Average length of root(cm) | 3.49 | 11.21 | 6.70 | 15.54 | 23.23 |
根平均直径 Average root dianefer(cm) | 0.20 | 0.30 | 0.30 | 0.02 | 8.30 |
根平均体积 Average root volume(cm3) | 0.02 | 0.10 | 0.04 | 0.01 | 35.80 |
根平均干重 Average dry weight of root(g) | 0.04 | 0.12 | 0.07 | 0.01 | 18.58 |
叶平均面积 Average leaf area(cm2) | 1.00 | 1.50 | 1.20 | 0.10 | 12.50 |
茎平均体积 Average stem volume(cm3) | 0.03 | 0.07 | 0.05 | 0.01 | 15.21 |
茎平均干重 Average dry weight of stem(g) | 0.02 | 0.08 | 0.03 | 0.01 | 36.18 |
排序轴 Sort axis | 第一轴RDA1 Drimary shaft RDA1 | 第二轴RDA2 Second asis RDA2 | 第三轴RDA3 Third axis RDA3 | 第四轴RDA4 Fourth axis RDA4 |
---|---|---|---|---|
特征根 Eigenvalues | 0.083 7 | 0.044 2 | 0.022 6 | 0.020 6 |
方差解释率 Variance explained | 0.240 9 | 0.122 8 | 0.083 4 | 0.075 3 |
累计方差解释率(R2) Cumulative variance explained | 0.240 9 | 0.363 7 | 0.447 1 | 0.522 4 |
Table 2 The characteristic roots of the RDA ordination axis and their variance explanation rates for the survival number and functional traits of 1 year old natural regeneration seedlings
排序轴 Sort axis | 第一轴RDA1 Drimary shaft RDA1 | 第二轴RDA2 Second asis RDA2 | 第三轴RDA3 Third axis RDA3 | 第四轴RDA4 Fourth axis RDA4 |
---|---|---|---|---|
特征根 Eigenvalues | 0.083 7 | 0.044 2 | 0.022 6 | 0.020 6 |
方差解释率 Variance explained | 0.240 9 | 0.122 8 | 0.083 4 | 0.075 3 |
累计方差解释率(R2) Cumulative variance explained | 0.240 9 | 0.363 7 | 0.447 1 | 0.522 4 |
微生境因子 Microhabitat factor | 与RDA排序轴的相关系数(r) Correlation coefficient with RDA sort axis (r) | 置换检验结果 Permutation test results | ||||
---|---|---|---|---|---|---|
RDA1 | RDA2 | F value | P value | |||
Ane | -0.957 6 | 0.288 1 | 6.62 | 0.001** | ||
Hc | -0.311 0 | -0.950 4 | 5.93 | 0.001** | ||
Ele | -0.554 6 | -0.832 2 | 12.65 | 0.001** | ||
Rt | 0.637 2 | -0.770 7 | 22.10 | 0.001** | ||
Mt | 0.923 0 | 0.384 7 | 20.26 | 0.001** | ||
Lt | -0.987 4 | -0.003 7 | 24.42 | 0.001** | ||
Sp | Sp Bottom | 0.135 9 | -0.136 4 | 2.67 | 0.004** | |
Sp Middle | 0.015 4 | 0.084 6 | ||||
Sp Upper | -0.108 8 | -0.139 0 |
Table 3 Correlation between microenvironment factors and RDA micro-environment ordination axis and permutation test results of 1 a natural regeneration seedlings
微生境因子 Microhabitat factor | 与RDA排序轴的相关系数(r) Correlation coefficient with RDA sort axis (r) | 置换检验结果 Permutation test results | ||||
---|---|---|---|---|---|---|
RDA1 | RDA2 | F value | P value | |||
Ane | -0.957 6 | 0.288 1 | 6.62 | 0.001** | ||
Hc | -0.311 0 | -0.950 4 | 5.93 | 0.001** | ||
Ele | -0.554 6 | -0.832 2 | 12.65 | 0.001** | ||
Rt | 0.637 2 | -0.770 7 | 22.10 | 0.001** | ||
Mt | 0.923 0 | 0.384 7 | 20.26 | 0.001** | ||
Lt | -0.987 4 | -0.003 7 | 24.42 | 0.001** | ||
Sp | Sp Bottom | 0.135 9 | -0.136 4 | 2.67 | 0.004** | |
Sp Middle | 0.015 4 | 0.084 6 | ||||
Sp Upper | -0.108 8 | -0.139 0 |
微生境因子 Microhabitat factor | Ane | Hc | Ele | Rt | Mt | Lt | Sp |
---|---|---|---|---|---|---|---|
解释率(R2adj) Independent | 0.013 3 | 0.015 5 | 0.059 5 | 0.097 9 | 0.108 5 | 0.151 5 | 0.028 1 |
解释比率 Interpretation perc | 2.8 | 3.27 | 12.54 | 20.64 | 22.88 | 31.94 | 5.92 |
Table 4 Variability decomposition RDA of redundant analysis habitat factors
微生境因子 Microhabitat factor | Ane | Hc | Ele | Rt | Mt | Lt | Sp |
---|---|---|---|---|---|---|---|
解释率(R2adj) Independent | 0.013 3 | 0.015 5 | 0.059 5 | 0.097 9 | 0.108 5 | 0.151 5 | 0.028 1 |
解释比率 Interpretation perc | 2.8 | 3.27 | 12.54 | 20.64 | 22.88 | 31.94 | 5.92 |
[1] |
Houle G. Environmental filters and seedling recruitment on a coastal dune in subartic Quebec (Canada)[J]. Canadian Journal of Botany, 1996, 74(9): 1507-1513.
DOI URL |
[2] |
Wang Q T, Zhao C Y, Gao C C, et al. Effects of environmental variables on seedling-sapling distribution of Qinghai spruce (Picea crassifolia) along altitudinal gradients[J]. Forest Ecology and Management, 2017, 384(2): 54-64.
DOI URL |
[3] | 胡蓉, 林波, 刘庆. 林窗与凋落物对人工云杉林早期更新的影响[J]. 林业科学, 2011, 47(6): 23-29. |
HU Rong, LIN Bo, LIU Qing. Effects of forest gaps and litter on the early regeneration of Picea asperata plantations[J]. Scientia Silvae Sinicae, 2011, 47(6): 23-29. | |
[4] |
Asplund J, Hustoft E, Nybakken L, et al. Litter impair spruce seedling emergence in beech forests: a litter manipulation experiment[J]. Scandinavian Journal of Forest Research, 2017, 33(4):1-47.
DOI URL |
[5] |
Ando Y, Fukasawa Y, Oishi Y. Interactive effects of wood decomposer fungal activities and bryophytes on spruce seedling regeneration on coarse woody debris[J]. Ecological Research, 2017, 32(2):1-10.
DOI URL |
[6] | 邱华, 舒皓, 吴兆飞, 等. 长白山阔叶红松林乔木幼苗组成及多度格局的影响因素[J]. 生态学报, 2020, 40(6): 2049-2056. |
QIU Hua, SHU Hao, WU Zhaofei, et al. Influencing factors of composition and abundance pattern of tree seedlings in broad-leaved Korean pine (Pinus koraiensis) mixed forest, Changbai Mountain, China[J]. Acta Ecologica Sinica, 2020, 40(6): 2049-2056. | |
[7] |
Fowler N. What is a safe site Neighbor litter germination date and patch effects[J]. Ecology, 1988, 69(4):947-961.
DOI URL |
[8] |
Guo Y X, Zhao P, Zhou Z, et al. Coexistence of three common species in a temperate mixed forest: linking seedling microhabitats and functional traits[J]. Forest Ecology and Management, 2020, 465(11): 118057.
DOI URL |
[9] | Uma a M N, Arellano G, Swenson N G, et al. Tree seedling trait optimization and growth in response to local-scale soil and light variability[J]. Ecology, 2020, 102(4):e03252. |
[10] | Zirbel C R, Brudvig L A. Trait-environment interactions affect plant establishment success during restoration[J]. Ecology, 2020, 101(3):e02971. |
[11] |
潘存德, 王强, 阮晓, 等. 天山云杉针叶水提取物自毒效应及自毒物质的分离鉴定[J]. 植物生态学报, 2009, 33(1):186-196.
DOI |
PAN Cunde, WANG Qiang, RUAN Xiao, et al. Biolocial activity and quantification of potential autotoxins from the leaves of Picea schrenkiana[J]. Chinese Journal of Plant Ecology, 2009, 33(1):186-196. | |
[12] |
Xiao R, Li Z H, Wang Q, et al. Autotoxicity and allelopathy of 3,4-dihydroxyacetophenone isolated from Picea schrenkiana needles[J]. Molecules, 2011, 16(10):8874-8893.
DOI PMID |
[13] |
Wang T, Yu L, Ren H B, et al. Age structure of Picea schrenkiana forest along an altitudinal gradient in the central Tianshan Mountains,northwestern China[J]. Forest Ecology and Management, 2004, 196(2-3): 267-274.
DOI URL |
[14] |
Comita L S, Hubbell S P. Local neighborhood andspecies' shade tolerance influence survival in a diverse seedling bank[J]. Ecology, 2009, 90(2): 328-334.
PMID |
[15] | 张金屯. 数量生态学(第三版)[M]. 北京: 科学出版社, 2018. |
ZHANG Jintun. Quantitative Ecology (3rd Ed.)[M]. Beijing: Science Press, 2018. | |
[16] | Chevan A, Sutherland M. Hierarchical partitioning[J]. American Statistician, 1991, 45(2):90-96. |
[17] |
Parker W C, Watson S R, Cairns D W. The role of hair-cap mosses (Polytrichum spp.) in natural regeneration of white Spruce (Picea glauca (Moench) Voss)[J]. Forest Ecology and Management, 1997, 92(1-3):19-28.
DOI URL |
[18] |
Paz H. Root/shoot allocation and root architecture in seedlings: variation among forest sites,microhabitats,and ecological groups1[J]. Biotropica, 2003, 35(3):318-332.
DOI URL |
[19] |
Ostonen I, Püttsepp, Biel C, et al. Specific root length as an indicator of environmental change[J]. Plant Biosystems, 2007, 141(3): 426-42.
DOI URL |
[20] |
Balachowski J A, Volaire F A. Implications of plant functional traits and drought survival strategies for ecological restoration[J]. Journal of Applied Ecology, 2018, 55(2):631-640.
DOI URL |
[21] |
路兴慧, 丁易, 臧润国, 等. 海南岛热带低地雨林老龄林木本植物幼苗的功能性状分析[J]. 植物生态学报, 2011, 35(12): 1300-1309.
DOI |
LU Xinhui, DING Yi, ZANG Rouguo, et al. Analysis of functional traits of woody plant seedlings in an old-growth tropical lowland rain forest on Hainan Island, China[J]. Chinese Journal of Plant Ecology, 2011, 35(12): 1300-1309.
DOI URL |
|
[22] | 马晓瑜, 孟晖, 潘存德, 等. 天山中部不同年龄和海拔高度天山云杉天然更新幼苗茎干功能性状[J]. 新疆农业科学, 2014, 51(7): 1238-1245. |
MA Xiaoyu, MENG Hui, PAN Cunde, et al. Age and altitudinal variation in stem functional traits of natural regeneration seedling of Picea schrenkiana in the centralpart of the Tianshan Mountains,Xinjiang[J]. Xinjiang Agricultural Sciences, 2014, 51(7):1238-1245. | |
[23] |
StuiverB M, Wradle D A, Gundale M J, et al. The impact of moss species and biomass on the growth of Pinus sylvestristree seedlings at different precipitation frequencies[J]. Forests, 2014, 5(8):1931-1951.
DOI URL |
[24] | 蔺菲, 郝占庆, 叶吉. 苔藓植物对植物天然更新的影响[J]. 生态学杂志, 2006, 25(4):456-460. |
LIN Fei, HAO Zhanqin, YE Ji. Effects of bryophytes on plant natural regeneration[J]. Chinese Journal of Ecology, 2006, 25(4):456-460. | |
[25] |
Azim M, Imrul K. Lichen mated seedbeds inhibit while moss dominated seedbeds facilitate black spruce (Picea mariana) seedling regeneration in post-fire boreal forest[J]. Forest Ecology and Management, 2018, 427(20):260-274.
DOI URL |
[26] | 尹锴, 潘存德, 刘翠玲 等. 天山云杉林土壤种子库物种组成及其垂直空间分布[J]. 新疆农业大学学报, 2005, 28(4):1-4. |
YIN Kai, PAN Cunde, LIU Cuiling, et al. Species composition and vertical distribution of soil seed bank in Picea schrenkiana forest[J]. Journal of Xinjiang Agricultural University, 2005, 28(4): 1-4. | |
[27] | 汪莉, 潘存德, 刘翠玲. 种子年后天山云杉林土壤种子库储量及其垂直空间分布[J]. 新疆农业科学, 2007, 44(2):111-114. |
WANG Li, PAN Cunde, LIU Cuiling. Storage and vertical distribution of soil seed ank in Picea schrenkiana forest after the seed age[J]. Xinjiang Agricultural Sciences, 2007, 44(2): 111-114. | |
[28] |
Molofsky J, AugSpurger C K. The effect of leaf litter on early seedling establishment in a tropical forest[J]. Ecology, 1992, 73(1):68-77.
DOI URL |
[29] |
Li Z H, Wang Q, Ruan X, et al. Phenolics and plant allelopathy[J]. Molecules, 2010, 15(12): 8933-8952.
DOI URL |
[30] | Li Z H, Wang Q, Ruan X, et al. Biological activity and quantification of potential autotoxins from Picea schrenkiana leaves[J]. Allelopathy Journal, 2011, 27(2):245-262. |
[31] |
Balachowski J A, Volaire F A. Implications of plant functional traits and drought survival strategies for ecological restoration[J]. Journal of Applied Ecology, 2018, 55(2): 631-640.
DOI URL |
[32] | 陈迪马. 天山云杉天然更新微生境及其幼苗格局与动态分析[D]. 乌鲁木齐: 新疆农业大学, 2006. |
CHEN Dima. Analysis on microsite of Picea schrenkiana natural regeneration and seedling spatial pattern and dynamic[D]. Urumqi: Xinjiang Agricultural University, 2006. |
[1] | BIAN Qingyong, FU Yanbo, QI Tong, HUANG Jian, PU Shenghai, MENG Ajing, Halihashi Yibati. Study on influencing factors of cotton emergence and protection measures in saline-alkali land in southern Xinjiang [J]. Xinjiang Agricultural Sciences, 2024, 61(S1): 95-100. |
[2] | WANG Chao, XU Wenxiu, LI Pengcheng, ZHENG Cangsong, SUN Miao, FENG Weina, SHAO Jingjing, DONG Helin. Response of cotton seedling growth and development to soil available potassium levels [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2132-2139. |
[3] | ZHANG Fan, CHEN Xiaolu, WANG Jie, HOU Xianfei, JIA Donghai, GU Yuanguo, MIAO Haocui, LI Qiang. Effects of mixed salt stress on seed germination and seedling growth of peanut seed [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2168-2182. |
[4] | YAO Qing, WANG Jiehua, Xiernayi Abudula, Dilimulati Tulahong, CUI Hongliang. Physiological responses of different quinoa varieties during seedling stage under low temperature stress [J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1597-1604. |
[5] | LIU Yi, LI Jiangtao, JIANG Yinghong, YANG Ruwei, SUN Hui, WU Yan. Effect of exogenous spermidine on physiological characteristics of potato seedlings under NaCl stress [J]. Xinjiang Agricultural Sciences, 2024, 61(2): 336-344. |
[6] | YAN Wenjing, QIN Lihuan, Aliya Alimu, ZHANG Dahai, LI Jiale, LI Huan, XIE Hui. Study on germination and seedling growth characteristics of Dried Apricot seeds with different treatments [J]. Xinjiang Agricultural Sciences, 2024, 61(12): 2976-2986. |
[7] | WEI Lizhi, Yeerjiang Baiketuerhan, Tangnuer Yeerken, WANG Qiang, XU Dong. Characteristics of Picea schrenkiana var. tianschanica cones and needles traits in response to altitudinal gradients [J]. Xinjiang Agricultural Sciences, 2024, 61(10): 2465-2474. |
[8] | MA Qiyao, HAO Kangdi, HU Tianqi, CHEN Zhe, WANG Zhenxi. Study on fractal characteristics of Picea schrenkiana var. tianschanica forest under different resolution remote sensing images [J]. Xinjiang Agricultural Sciences, 2024, 61(1): 209-216. |
[9] | SONG Bingmei, JIANG Yan, CHEN Xin, ZHANG Yu, CHENG Wannan, PAN Hongsheng. Evaluation of saline/alkali tolerance of new transgenic High-Yield cotton at germination and seedling stages [J]. Xinjiang Agricultural Sciences, 2023, 60(9): 2239-2247. |
[10] | LI Zhiqiang, CHEN Yudong, LYU Guanghui, WANG Jinlong, JIANG Lamei, WANG Hengfang, LI Hanpeng, ZHANG Lei. Soil water-salt response characteristics and ecological strategies for functional traits of desert herbaceous plants [J]. Xinjiang Agricultural Sciences, 2023, 60(8): 2038-2045. |
[11] | QU Kejia, SHI Xiaolei, ZHANG Heng, WANG Xingzhou, GENG Hongwei, DING Sunlei, ZHANG Jinbo, YAN Yongliang. Evaluation of drought resistance of introduced spring wheat under PEG treatment [J]. Xinjiang Agricultural Sciences, 2023, 60(6): 1363-1371. |
[12] | WANG Wentao, WU Bo, TAI Hongzhong, LIAN Wenming, DAI Cuirong, LI Shuangjiang, PU Yanmei. Effects of different sowing dates on cotton growth in aral reclamation area, Xinjiang [J]. Xinjiang Agricultural Sciences, 2023, 60(6): 1413-1422. |
[13] | CHEN Yan, HUANG Luyao, DENG Changrong, ZHANG Yanjun, HOU Quangang, SHAO Dengkui. Analysis on related physiological indexes of pepper with hair characteristic under chilling stress [J]. Xinjiang Agricultural Sciences, 2023, 60(6): 1492-1498. |
[14] | ZHANG Yanhong, HOU Tianyu, BA Yinhua, ZHAO Caiyue, LYU Yuping, Buhalikeimu Abunzi, ZHAO Zhiqiang, LI Dong, DU Xiaojing, YUAN Jie, WANG Fengbin. Identification and evaluation of salt tolerance of rice recombinant inbred lines at bud and seedling stages [J]. Xinjiang Agricultural Sciences, 2023, 60(5): 1041-1049. |
[15] | Halidan Yikeremu, LIU Na, LIU Lianzheng, ZHOU Anding, JIANG Qiyan, Damailijiang Hezier, CAO Junmei, ZHANG Xinzhong. Identification and evaluation of salt tolerance in wheat relatives at germination and seedling stages [J]. Xinjiang Agricultural Sciences, 2023, 60(5): 1118-1126. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 43
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1477
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||