Xinjiang Agricultural Sciences ›› 2023, Vol. 60 ›› Issue (8): 2038-2045.DOI: 10.6048/j.issn.1001-4330.2023.08.026
• Plant Protection · Microbes • Previous Articles Next Articles
LI Zhiqiang(), CHEN Yudong, LYU Guanghui(
), WANG Jinlong, JIANG Lamei, WANG Hengfang, LI Hanpeng, ZHANG Lei
Received:
2022-11-07
Online:
2023-08-20
Published:
2023-08-14
Correspondence author:
LYU Guanghui(1963-), Male,doctor, professor, the research direction is global change and biodiversity, (E-mail)ler@xju.edu.cnSupported by:
李志强(), 陈昱东, 吕光辉(
), 王金龙, 蒋腊梅, 王恒方, 李韩鹏, 张磊
通讯作者:
吕光辉(1963-),男,教授,博士,硕士生/博士生导师,研究方向为生物多样性,(E-mail)ler@xju.edu.cn作者简介:
李志强(1996-),男,新疆巴州人,硕士研究生,研究方向为生物多样性与生物保护,(E-mail)1458219167@qq.com
基金资助:
CLC Number:
LI Zhiqiang, CHEN Yudong, LYU Guanghui, WANG Jinlong, JIANG Lamei, WANG Hengfang, LI Hanpeng, ZHANG Lei. Soil water-salt response characteristics and ecological strategies for functional traits of desert herbaceous plants[J]. Xinjiang Agricultural Sciences, 2023, 60(8): 2038-2045.
李志强, 陈昱东, 吕光辉, 王金龙, 蒋腊梅, 王恒方, 李韩鹏, 张磊. 荒漠草本植物功能性状的土壤水盐响应特征及生态策略[J]. 新疆农业科学, 2023, 60(8): 2038-2045.
水盐梯度 Water and salt gradient | 样方数 Plots | 土壤含水量 Soil moisture content (%) | 土壤含盐量 Soil salt content (g/kg) | 优势种 Dominant species |
---|---|---|---|---|
高High | 26 | 4.325±1.645a | 3.585±0.941a | 碱蓬、猪毛菜、小獐毛 |
中Middle | 58 | 1.719±0.421b | 2.538±0.529b | 碱蓬、沙漠绢蒿、小獐毛、对节刺 |
低Low | 36 | 0.843±0.202c | 1.584±0.448c | 碱蓬、沙漠绢蒿,对节刺、刺沙蓬 |
Tab.1 Sample soil water and salt clustering and statistical parameters
水盐梯度 Water and salt gradient | 样方数 Plots | 土壤含水量 Soil moisture content (%) | 土壤含盐量 Soil salt content (g/kg) | 优势种 Dominant species |
---|---|---|---|---|
高High | 26 | 4.325±1.645a | 3.585±0.941a | 碱蓬、猪毛菜、小獐毛 |
中Middle | 58 | 1.719±0.421b | 2.538±0.529b | 碱蓬、沙漠绢蒿、小獐毛、对节刺 |
低Low | 36 | 0.843±0.202c | 1.584±0.448c | 碱蓬、沙漠绢蒿,对节刺、刺沙蓬 |
Fig.1 Multiple factor analysis of functional traits and soil water & salt Note: Lowercase letters a, b and c represent high, medium and low water salt gradients, respectively
性状 Trait | 土壤水分Soil water | 土壤盐分Soil salt | ||||
---|---|---|---|---|---|---|
High | Middle | Low | High | Middle | Low | |
比叶面积SLA Specific leaf area | 0.598 | 0.622 | 0.716 | 0.681 | 0.543 | 0.483 |
叶片干物质含量LDMC Leaf dry matter content | 0.583 | 0.482 | 0.699 | 0.647 | 0.553 | 0.437 |
冠幅面积S Grown area | 0.396 | 0.435 | 0.453 | 0.447 | 0.335 | 0.358 |
叶片碳含量LCC Leaf carbon content | 0.620 | 0.535 | 0.689 | 0.666 | 0.530 | 0.340 |
叶片氮含量LNC Leaf nitrogen content | 0.568 | 0.523 | 0.639 | 0.627 | 0.477 | 0.409 |
叶片磷含量LPC Leaf phosphorus content | 0.627 | 0.546 | 0.703 | 0.685 | 0.508 | 0.449 |
株高H Height | 0.554 | 0.533 | 0.648 | 0.653 | 0.556 | 0.498 |
叶面积LA Leaf area | 0.500 | 0.459 | 0.715 | 0.976 | 0.499 | 0.953 |
Tab.2 Grey relational grade analysis between functional traits and soil water and salt
性状 Trait | 土壤水分Soil water | 土壤盐分Soil salt | ||||
---|---|---|---|---|---|---|
High | Middle | Low | High | Middle | Low | |
比叶面积SLA Specific leaf area | 0.598 | 0.622 | 0.716 | 0.681 | 0.543 | 0.483 |
叶片干物质含量LDMC Leaf dry matter content | 0.583 | 0.482 | 0.699 | 0.647 | 0.553 | 0.437 |
冠幅面积S Grown area | 0.396 | 0.435 | 0.453 | 0.447 | 0.335 | 0.358 |
叶片碳含量LCC Leaf carbon content | 0.620 | 0.535 | 0.689 | 0.666 | 0.530 | 0.340 |
叶片氮含量LNC Leaf nitrogen content | 0.568 | 0.523 | 0.639 | 0.627 | 0.477 | 0.409 |
叶片磷含量LPC Leaf phosphorus content | 0.627 | 0.546 | 0.703 | 0.685 | 0.508 | 0.449 |
株高H Height | 0.554 | 0.533 | 0.648 | 0.653 | 0.556 | 0.498 |
叶面积LA Leaf area | 0.500 | 0.459 | 0.715 | 0.976 | 0.499 | 0.953 |
Fig.3 Analysis of variance of ecological strategies of three plants with water and salt gradient functional traits Note: (P<0.05).A, B, C, a, b and c represent significant difference.Uppercase letters represent the difference of functional traits among different ecological strategies in the same water-salt gradient community, and lowercase letters represent the difference between communities with different water-salt gradient in the same ecological strategy
[1] |
何芸雨, 郭水良, 王喆. 植物功能性状权衡关系的研究进展[J]. 植物生态学报, 2019, 43(12): 1021-1035.
DOI |
HE Yunyu, GUO Shuiliang, WANG Zhe. Advances in research on functional trait trade-off relationships in plants[J]. Chinese Journal of Plant Ecology, 2019, 43(12): 1021-1035.
DOI |
|
[2] |
DÌaz S, Kattge J, Cornelissen J, et al. The global spectrum of plant form and function[J]. Nature, 2016, 529(7585): 167-171.
DOI |
[3] |
Blonder B, Kapas R E, Dalton R M, et al. Microenvironment and functional-trait context dependence predict alpine plant community dynamics[J]. Journal of Ecology, 2018, 106(4): 1323-1337.
DOI URL |
[4] | 张国庆, 杨雨玲, 唐爱国, 等. 新安江流域(屯溪段)浮游植物群落结构及其与环境因子的关系[J]. 生态学杂志, 2020, 39(2): 527-540. |
ZHANG Guoqinng, YANG Yuling, TANG Aiguo, et al. Phytoplankton community structure and its relationship with environmental factors in the Xin’an River Basin (Tunxi Section)[J]. Chinese Journal of Ecology, 2020, 39(2): 527-540. | |
[5] | 栾志慧. 植物子叶生长及其功能性状研究[D]. 长春: 东北师范大学, 2015. |
LUAN Zhihui. Research on plant cotyledon growth and its functional traits[D]. Changchun: Northeast Normal University, 2015. | |
[6] |
杨锐, 张博睿, 王玲玲, 等. 元谋干热河谷植物功能性状组合的海拔梯度响应[J]. 生态环境学报, 2015, 24(1): 49-56.
DOI |
YANG Rui, ZHANG Borui, WANG Lingling, et al. Altitudinal gradient response of plant functional trait assemblages in the Yuanmou Dry Heat Valley[J]. Ecology and Environmental Sciences, 2015, 24(1): 49-56. | |
[7] | 刘晓娟, 马克平. 植物功能性状研究进展[J]. 中国科学:生命科学, 2015, 45(4): 325-339. |
LIU Xiaojuan, MA Keping. Advances in the study of functional traits in plants[J]. China Science: Life Sciences, 2015, 45(4): 325-339. | |
[8] | 孙雪娇, 常顺利, 张毓涛, 等. 天山森林植物功能性状与碳库沿海拔梯度的变化[J] .生态学报, 2018, 38(14): 4994-5005. |
SUN Xuejiao, CHANG Shunli, ZHANG Yutao, et al. Changes in plant functional traits and carbon pools along an altitudinal gradient in Tianshan forests[J]. Acta Ecologica Sinica, 2018, 38(14): 4994-5005. | |
[9] |
Palma E, Catford J A, Corlett R T, et al. Functional trait changes in the floras of 11 cities across the globe in response to urbanization[J]. Ecography, 2016, 40(7): 875-886.
DOI URL |
[10] |
Blonder B, Salinas N, Bentley L P, et al. Predicting trait-environment relationships for venation networks along an Andes-Amazon elevation gradient[J]. Ecology, 2017, 98(5): 1239-1255.
DOI PMID |
[11] |
Grime J P. Vegetation classification by reference to strategies[J]. Nature, 1974, 250(5461): 26-31.
DOI |
[12] |
Burton J I, Perakis S S, Mckenzie S C, et al. Intraspecific variability and reaction norms of forest understory plant species traits[J]. Functional Ecology, 2017, 31: 1881-1893.
DOI URL |
[13] |
Kattenborn T, Fassnacht F E, Pierce S, et al. Linking plant strategies and plant traits derived by radiative transfer modeling[J]. Journal of Vegetation Science, 2017, 28: 717-727.
DOI URL |
[14] |
Hodgson J G, Santini B A, Montserrat M G, et al. Trade-offs between seed and leaf size (seed-phytomer-leaf theory): Functional glue linking regenerative with life history strategies and taxonomy with ecology[J]. Annals of Botany, 2017, 120 (5): 633-652.
DOI PMID |
[15] |
Guo W, Kleunen M V, Winter M, et al. The role of adaptive strategies in plant naturalization[J]. Ecology Letters, 2018, 21 (9): 1380-1389.
DOI URL |
[16] |
Pierce S, Negreiros D, Cerabolini B E L, et al. A global method for calculating plant CSR ecological strategies applied across biomes world-wide[J]. Functional Ecology, 2017, 31: 444-457.
DOI URL |
[17] |
Grime J P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory[J]. The American Naturalist, 1977, 111(982): 1169-1194.
DOI URL |
[18] |
Pierce S, Brusa G, Sartori M, et al. Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies[J]. Annals of Botany, 2012, 109(5): 1047-1053.
DOI PMID |
[19] |
Pierce S, Brusa G, Vagge I, et al. Allocating CSR plant functional types: The use of leaf economics and size traits to classify woody and herbaceous vascular plants[J]. Functional Ecology, 2013, 27 (4): 1002-1010.
DOI URL |
[20] |
龚雪伟, 吕光辉. 艾比湖流域杜加依林荒漠植物群落多样性及优势种生态位[J]. 生物多样性, 2017, 25(1): 34-45.
DOI |
GONG Xuewei, LYU Guanghui. Diversity of desert plant communities and ecological niches of dominant species in the Dugai Forest of the Lake Ebeye Basin[J]. Biodiversity Science, 2017, 25(1): 34-45.
DOI |
|
[21] | 鲍士旦. 土壤农化分析(第三版)[M]. 北京: 中国农业出版社, 2000. |
BAO Shidan. Soil Agrochemical Analysis (3rd ed.)[M]. Beijing: China Agricultural Press, 2000. | |
[22] |
戚德辉, 温仲明, 杨士梭, 等. 基于功能性状的铁杆蒿对环境变化的响应与适应[J]. 应用生态学报, 2015, 26(7): 1921-1927.
PMID |
QI Dehui, WEN Zhongming, YANG Shisuo, et al. Trait-based responses and adaptation of Artemisia sacrorum to environmental changes[J]. Chinese Journal of Applied Ecology, 2015, 26(7): 1921-1927.
PMID |
|
[23] |
韩玲, 赵成章, 冯威, 等. 张掖湿地芨芨草叶脉密度和叶脉直径的权衡关系对3种生境的响应[J]. 植物生态学报, 2017, 41(8): 872-881.
DOI |
HAN Ling, ZHAO Chengzhang, FENG Wei, et al. Trade-offs between leaf vein density and leaf vein diameter inAchnathernmsplendens in Zhangye wetland in response to three habitats[J]. Chinese Journal of Plant Ecology, 2017, 41(8): 872-881.
DOI |
|
[24] |
Wang R, Huang W, Chen L, et al. Anatomical and physiological plasticity in Leymuschinensis (Poaceae) along large-scale longitudinal gradient in northeast China[J]. Plos One, 2011, 6(11): e26209.
DOI URL |
[25] | 王羽梅, 任安祥, 潘春香, 等. 长时间盐胁迫对苋菜叶片细胞结构的影响[J]. 植物生理学通讯, 2004, 40(3): 27-30. |
WANG Yumei, REN Anxiang, PAN Chunxiang, et al. Effects of prolonged salt stress on the cell structure of Amaranthus leaves[J]. Plant Physiology Communications, 2004, 40(3): 27-30. | |
[26] | 李琪, 於虹, 王支虎, 等. 醋糟对土壤改良及兔眼蓝浆果幼苗生长的影响[J]. 植物资源与环境学报, 2017, 26(4): 25-31. |
LI Qi, YU Hong, WANG Zhihu, et al. Effect of vinegar residue on soil amelioration and seedling growth of Vacciniumashei[J]. Journal of Plant Resources and Environment, 2017, 26(4): 25-31. | |
[27] | 魏瑞锋. 土壤水分含量对梨枣树光合特性以及果实品质的影响[D]. 杨凌: 西北农林科技大学, 2012. |
WEI Ruifeng. Effect of soil moisture content on photosynthetic characteristics and fruit quality of pear and date palm[D]. Yangling: Northwest Agriculture and Forestry University of Science and Technology, 2012. | |
[28] | 王擎运, 何咏霞, 陈景, 等. 秸秆或粉煤灰添加对砂姜黑土持水性及小麦抗干旱胁迫的影响[J]. 农业工程学报, 2020, 36(2): 95-102. |
WANG Qingyun, HE Yongxia, CHEN Jing, et al. Effect of straw or fly ash addition on water retention and drought stress resistance of wheat in sand ginger black soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(2): 95-102. | |
[29] | Grime J P, Pierce S. The Evolutionary Strategies That Shape Ecosystems[M].Wiley-Blackwell, 2012. |
[30] |
Osnas J L D, Lichstein I W, Reich P B. et al. Global leaf trait relationships mass, area and the leaf economics spectrum[J]. Science, 2013, 340(6133): 741-744.
DOI URL |
[31] |
Szmeja J, Galka A. Phenotypic responses to water flow and wave exposure in aquatic plants[J]. Acta Societatis Botanicorum Poloniae, 2008, 77(1): 59-65.
DOI URL |
[32] | Robionek A, Banas K, Chmara R, et al. The avoidance strategy of environmental constraints by an aquatic plant Potamogetonalpinus in running waters[J]. Ecology & Evolution, 2015, 5(16): 3327-3337. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 48
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 200
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||