Xinjiang Agricultural Sciences ›› 2021, Vol. 58 ›› Issue (12): 2256-2264.DOI: 10.6048/j.issn.1001-4330.2021.12.013
• Plant Protection· Horticultural Special Local Products· Soil Fertilizer· Water Saving Irrigation Agroecological Environment· Agricultural Equipment Engineering and Mechanization • Previous Articles Next Articles
LIU Haiyang1(), WANG Wei1, ZHANG Renfu1, LEI Bin2, YAO Ju1(
)
Received:
2020-09-24
Online:
2021-12-20
Published:
2021-12-31
Correspondence author:
YAO Ju
Supported by:
通讯作者:
姚举
作者简介:
刘海洋(1982-),男,山东人,副研究员,博士,研究方向为棉花病害综合防控与基础研究,(E-mail) liuhaiyang001@163.com
基金资助:
CLC Number:
LIU Haiyang, WANG Wei, ZHANG Renfu, LEI Bin, YAO Ju. Influence of Biofertilizers on Community Diversity and Population Structure of Soil Bacteria in Cotton Field[J]. Xinjiang Agricultural Sciences, 2021, 58(12): 2256-2264.
刘海洋, 王伟, 张仁福, 雷斌, 姚举. 施用生物菌剂对棉田土壤细菌群落多样性及种群结构的影响[J]. 新疆农业科学, 2021, 58(12): 2256-2264.
处理 Treatment | pH值 pH value | 总盐 Total salt (g/kg) | 全氮 Total nitrogen (g/kg) | 全磷 Total phosphorus (g/kg) | 全钾 Total potassium (g/kg) | 有机质 Organic matter (g/kg) | 速效氮 Available nitrogen (mg/kg) | 速效磷 Available phosphorus (mg/kg) | 速效钾 Available potassium (mg/kg) |
---|---|---|---|---|---|---|---|---|---|
Biofer1 | 8.79 | 2.3 | 0.28 | 0.60 | 14.25 | 5.55 | 27.0 | 9.2 | 65.0 |
CK1 | 8.87 | 2.5 | 0.44 | 0.32 | 14.58 | 8.42 | 24.0 | 9.9 | 117.0 |
Biofer2 | 8.81 | 1.3 | 0.42 | 0.43 | 14.58 | 9.97 | 43.5 | 18.0 | 67.0 |
CK2 | 7.99 | 4.7 | 0.54 | 0.43 | 14.51 | 12.62 | 43.5 | 19.2 | 83.0 |
Table 1 Soil nutrients and physicochemical properties of the experimental plots in 2019
处理 Treatment | pH值 pH value | 总盐 Total salt (g/kg) | 全氮 Total nitrogen (g/kg) | 全磷 Total phosphorus (g/kg) | 全钾 Total potassium (g/kg) | 有机质 Organic matter (g/kg) | 速效氮 Available nitrogen (mg/kg) | 速效磷 Available phosphorus (mg/kg) | 速效钾 Available potassium (mg/kg) |
---|---|---|---|---|---|---|---|---|---|
Biofer1 | 8.79 | 2.3 | 0.28 | 0.60 | 14.25 | 5.55 | 27.0 | 9.2 | 65.0 |
CK1 | 8.87 | 2.5 | 0.44 | 0.32 | 14.58 | 8.42 | 24.0 | 9.9 | 117.0 |
Biofer2 | 8.81 | 1.3 | 0.42 | 0.43 | 14.58 | 9.97 | 43.5 | 18.0 | 67.0 |
CK2 | 7.99 | 4.7 | 0.54 | 0.43 | 14.51 | 12.62 | 43.5 | 19.2 | 83.0 |
取样年度 Sampling year | 处理 Treatment | ACE指数 ACE index | Chao指数 Chao1 index | 香农指数 Shannon index |
---|---|---|---|---|
2017年 | Biofer | 1 704.9±57.9a | 1 728.0±63.2a | 6.34±0.11a |
CK | 1 681.7±67.1a | 1 691.5±72.1a | 6.26±0.12a | |
B-Biofer | 1 695.9±23.6a | 1 699.7±34.1a | 6.20±0.08a | |
B-CK | 1 675.4±29.6a | 1 684.6±34.0a | 6.25±0.08a | |
2018年 | Biofer | 1 667.6±45.7a | 1 686.9±42.0a | 6.33±0.04a |
CK | 1 680.6±34.1a | 1 694.1±46.8a | 6.30±0.06a | |
2019年 | Biofer1 | 970.7±109.5b | 997.9±119.7b | 5.48±2.17a |
CK1 | 1 154.6±36.3a | 1 228.0±57.7a | 5.32±0.49a | |
Biofer2 | 974.6±66.9b | 820.6±106.1b | 4.44±0.66a | |
CK2 | 1 119.9±96.3a | 1 003.6±74.9a | 4.30±0.56a |
Table 2 Diversity index of soil bacteria in cotton field after applying biofilm in different years
取样年度 Sampling year | 处理 Treatment | ACE指数 ACE index | Chao指数 Chao1 index | 香农指数 Shannon index |
---|---|---|---|---|
2017年 | Biofer | 1 704.9±57.9a | 1 728.0±63.2a | 6.34±0.11a |
CK | 1 681.7±67.1a | 1 691.5±72.1a | 6.26±0.12a | |
B-Biofer | 1 695.9±23.6a | 1 699.7±34.1a | 6.20±0.08a | |
B-CK | 1 675.4±29.6a | 1 684.6±34.0a | 6.25±0.08a | |
2018年 | Biofer | 1 667.6±45.7a | 1 686.9±42.0a | 6.33±0.04a |
CK | 1 680.6±34.1a | 1 694.1±46.8a | 6.30±0.06a | |
2019年 | Biofer1 | 970.7±109.5b | 997.9±119.7b | 5.48±2.17a |
CK1 | 1 154.6±36.3a | 1 228.0±57.7a | 5.32±0.49a | |
Biofer2 | 974.6±66.9b | 820.6±106.1b | 4.44±0.66a | |
CK2 | 1 119.9±96.3a | 1 003.6±74.9a | 4.30±0.56a |
Fig.1 Cluster analysis of soil bacteria in cotton field after applying biofilm in different years Note: a:soilsof different treatment in disease nursery of test station in 2017; b: soils of different treatment of test station in 2018; c: soils of different treatment in No.1 cotton field of test station in 2019; d: soils of different treatment in No.2 cotton field of test station in 2019
Fig.3 Significant difference analysis of soil bacteria in cotton field after applying biofilm in different years Note: a: soils of different treatment in disease nursery of test station in 2017; b: soils of different treatment of test station in 2018; c: soils of different treatment in No.1 cotton field of test station in 2019; d: soils of different treatment in No.2 cotton field of test station in 2019
取样年度 Samplingyear | 处理 Treatment | 芽孢杆菌属 Bacillus (%) | 链霉菌属 Streptomyces (%) | 溶杆菌属 Lysobacter (%) | 假单胞菌属 Pseudomonas (%) |
---|---|---|---|---|---|
2017年 | Biofer | 0.21 | 0.48 | 0.28 | 0.37 |
CK | 0.15 | 0.44 | 0.27 | 0.40 | |
B-Biofer | 0.10 | 0.75 | 0.66 | 0.57 | |
B-CK | 0.12 | 0.64 | 0.83 | 0.31 | |
2018年 | Biofer | 1.72 | 0.74 | 1.31 | 1.64 |
CK | 1.30 | 1.22 | 1.14 | 2.59 | |
2019年 | Biofer1 | 2.78 | 0.20 | 0.10 | 0.48 |
CK1 | 1.01 | 0.18 | 0.11 | 0.63 | |
Biofer2 | 3.43 | 0.15 | 0.60 | 0.83 | |
CK2 | 2.48 | 0.06 | 0.05 | 0.87 |
Table 3 Abundance values of 4 major bacterial populations in soils of different treatments
取样年度 Samplingyear | 处理 Treatment | 芽孢杆菌属 Bacillus (%) | 链霉菌属 Streptomyces (%) | 溶杆菌属 Lysobacter (%) | 假单胞菌属 Pseudomonas (%) |
---|---|---|---|---|---|
2017年 | Biofer | 0.21 | 0.48 | 0.28 | 0.37 |
CK | 0.15 | 0.44 | 0.27 | 0.40 | |
B-Biofer | 0.10 | 0.75 | 0.66 | 0.57 | |
B-CK | 0.12 | 0.64 | 0.83 | 0.31 | |
2018年 | Biofer | 1.72 | 0.74 | 1.31 | 1.64 |
CK | 1.30 | 1.22 | 1.14 | 2.59 | |
2019年 | Biofer1 | 2.78 | 0.20 | 0.10 | 0.48 |
CK1 | 1.01 | 0.18 | 0.11 | 0.63 | |
Biofer2 | 3.43 | 0.15 | 0.60 | 0.83 | |
CK2 | 2.48 | 0.06 | 0.05 | 0.87 |
[1] | 刘海洋, 姚举, 张仁福, 等. 黄萎病不同发生程度棉田中土壤微生物多样性[J]. 生态学报, 2018,38(5):1619-1629. |
LIU Haiyang, YAO Ju, ZHANG Renfu, et al. Analysis of soil microbial diversity in cotton fields differing in occurrence of cotton Verticillium wilt in Xinjiang[J]. Acta Ecologica Sinica, 2018,38(5):1619-1629. | |
[2] | 鹿秀云, 马平, 李社增. 防治棉花黄萎病的生防细菌NCD-2的田间效果评价及其鉴定[J]. 植物病理学报, 2005,35(5):451-455. |
LU Xiuyun, MA Ping, LI Shezeng. Evaluation of biocontrol potential of a bacterial strain NCD-2 against Cotton Verticillium wilt in field trials[J]. Acta Phytopathologica Sinica, 2005,35(5):451-455. | |
[3] | 李社增, 马平, 刘杏忠, 等. 利用拮抗细菌防治棉花黄萎病[J]. 华中农业大学学报, 2001,20(5):422-425. |
LI Shezeng, MA Ping, LIU Xingzhong, et al. Biological control of cotton Verticillium wilt by antagonistic bacteria[J]. Journal of Huazhong Agricultural University, 2001,20(5):422-425. | |
[4] | 魏娇洋, 冯龙, 陈英化, 等. 解淀粉芽孢杆菌X-278片剂的研制、定殖及田间防效[J]. 农药学学报, 2014,16(3) : 347-353. |
WEI Jiaoyang, FENG Long, CHEN Yinghua, et al. Development, colonization and field control effect of antiamyloidosis Bacillus x-278 tablets[J]. Journal of Pesticide Science, 2014,16(3):347-353. | |
[5] | 曾红, 杨生强. 棉花黄萎病菌拮抗细菌TUBP1 的分离鉴定及其防病作用[J]. 棉花学报, 2014,26(5):445-451. |
ZENG Hong, YANG Shengqiang. Isolation, identification, and antifungal activity of the antagonistic bacterial strain TUBP1 against Verticillium dahliae Kleb[J]. Cotton Science, 2014,26(5):445-451. | |
[6] | 张冬冬, 李术娜, 郭晓军, 等. 一株棉花黄萎病拮抗芽胞细菌的分离鉴定及活性检测[J]. 棉花学报, 2012,24(4):358-362. |
ZHANG Dongdong, LI Shuna, GUO Xiaojun, et al. Isolation, identification and activity of an antagonistic spore bacterium against cotton Verticillium wilt[J]. Cotton Science, 2012,24(4):358-362. | |
[7] | 翟枫, 段军娜, 张鑫, 等. 棉花黄萎病拮抗细菌LW-4的筛选鉴定及其防治效果[J]. 植物保护学报, 2014,41(3):379-380. |
ZHAI Feng, DUAN Junna, ZHANG Xin, et al. Screening, identification and control effects of antagonistic bacterium LW-4 against cotton Verticillium wilt[J]. Acta Phytophylacica Sinica, 2014,41(3):379-380. | |
[8] | 张慧, 杨兴明, 冉炜, 等. 土传棉花黄萎病拮抗菌的筛选及其生物效应[J]. 土壤学报, 2008,45(6):1095-1101. |
ZHANG Hui, YANG Xingming, RAN Wei, et al. Screening of bacteria antagonistic against soil-borne cotton Verticillium wilt and their biological effect onthesoil-cotton system[J]. Acta Pedologica Sinica, 2008,45(6):1095-1101. | |
[9] | 李斌, 谢关林, 陈若霞, 等. 耕作与栽培方式对瓜类土壤细菌数量及枯萎病拮抗细菌分布的影响[J]. 应用生态学报, 2006,17(10):1937-1940. |
LI Bin, XIE Guanlin, CHEN Ruoxia, et al. Effects of cropping system and cultivation pattern on bacterial populations and anti -fusarium wilt bacteria in melon soils[J]. Chinese Journal of Applied Ecology, 2006,17(10):1937-1940. | |
[10] | 李胜华, 谷丽萍, 刘可星. 有机肥配施对番茄土传病害的防治及土壤微生物多样性的调控[J]. 植物营养与肥料学报, 2009,15(4):965-969. |
LI Shenghua, GU Liping, LIU Kexing. Effects of combined application of organic fertilizers on the control of soilborne diseases andthe regulation of soil microbial diversity[J]. Plant Nutrition and Fertilizer Science, 2009,15(4):965-969. | |
[11] | Marschner P, Yang C.H, Lieberei R, et al. Soil and plant specific effects on bacterial community composition in the rhizosphere[J]. Soil Biology and Biochemistry, 2001,33(11):1437-1445. |
[12] | Tóth Z, Táncsics A, Kriszt B, et al. Extreme effects of drought on composition of the soil bacterial community and decomposition of plant tissue[J]. European Journal of Soil Science, 2017,Doi: 10.1111/ejss.12429. |
[13] | Suzuki C, Nagaoka K, Shimada A, et al. Bacterial communities are more dependent on soil type than fertilizer type, but the reverse is true for fungal communities[J]. Soil Science and Plant Nutrition, 2009, (55):80-90. |
[14] | Luo J, Ran W, Hu J, et al. Application of Bio-Organic Fertilizer Significantly Affected Fungal Diversity of Soils[J]. Soil Science Society of America Journal, 2010,74(6):2039. |
[15] | Preem J K, Truu J, Truu M, et al. Bacterial community structure and its relationship to soil physico-chemical characteristics in alder stands with different management histories[J]. Ecological Engineering, 2012, (49):10-17. |
[16] | Yang L, Tan L, Zhang F, et al. Duration of continuous cropping with straw return affects the composition and structure of soil bacterial communities in cotton fields[J]. Canadian Journal of Microbiology, 2017,64(3):167-181. |
[17] | Shen W, Ni Y, Gao N, et al. Bacterial community composition is shaped by soil secondary salinization and acidification brought on by high nitrogen fertilization rates[J]. Applied Soil Ecology, 2016, (108):76-83. |
[18] | Bainard L D, Hamel C, Gan Y. Edaphic properties override the influence of crops on the composition of the soil bacterial community in a semiarid agro ecosystem[J]. Applied Soil Ecology, 2016, (105):160-168. |
[19] | Meng M, Lin J, Guo X, et al. Impacts of forest conversion on soil bacterial community composition and diversity in subtropical forests[J]. Catena, 2019, (175):167-173. |
[20] | Zhao Q, Dong C, Yang X, et al. Biocontrol of Fusarium wilt disease for Cucumis melo melon using bio-organic fertilizer[J]. Applied Soil Ecology, 2011,47(1):67-75. |
[21] | Sui J, Ji C, Wang X, et al. A plant growth-promoting bacterium alters the microbial community of continuous cropping poplar trees' rhizosphere[J]. Journal of Applied Microbiology, 2019,126(4):1209-1220. |
[22] | Li R, Tao R, Ling N, et al. Chemical, organic and bio-fertilizer management practices effect on soil physicochemical property and antagonistic bacteria abundance of a cotton field: Implications for soil biological quality[J]. Soil and Tillage Research, 2017, (167):30-38. |
[23] | Chen D, Wang X, Zhang W, et al. Persistent organic fertilization reinforces soil-borne disease suppressiveness of rhizosphere bacterial community[J]. Plant and Soil, 2020, (452):313-328. |
[24] | Shin K, Van Diepen G, Blok W, et al. Variability of Effective Micro-organisms (EM) in bokashi and soil and effects on soil-borne plant pathogens[J]. Crop Protection, 2017, (99):168-176. |
[25] | Giotis C, Markelou E, Theodoropoulou A, et al. Effect of soil amendments and biological control agents (bcas) on soil-borne root diseases caused by Pyrenochaeta lycopersici and Verticillium albo-atrum in organic greenhouse tomato production systems[J]. European Journal of Plant Pathology, 2009,123(4):387-400. |
[26] | Lihua L, Jincai M, Ibekwe A, et al. Cucumber Rhizosphere Microbial Community Response to Biocontrol Agent Bacillus subtilis B068150[J]. Agriculture, 2015,6(1):2. |
[27] | Larkin R P, Brewer M T. Effects of biological amendments on soil microbiology and soilborne potato diseases in different cropping systems[J]. Phytopathology, 2005,(95):S56. |
[1] | MIAO Yu, CHEN Cuixia, MA Yanming, XING Guofang, DONG Yusheng, CHEN Zhijun, WANG Xian, XIANG Li. Genetic diversity analysis of phenotypic traits of 276 Central Asian barley germplasm resources [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1888-1895. |
[2] | YANG Lu, WANG Na, FAN Shaoli, CHENG Ping, LI Hong, WANG Yangdong. Analysis of phenotypic trait variation characteristics of Morus nigra L.germplasm resources [J]. Xinjiang Agricultural Sciences, 2024, 61(5): 1172-1181. |
[3] | JIA Donghia, SONG Xianming, GU Yuanguo, LI Qiang, ZENG Youling, MIAO Haocui, GUO Meili, HOU Xianfei. Effect of reducing chemical fertilizer and applying microbial one on the growth and yield of Carthamus tinctorius L. under mulch drip irrigation [J]. Xinjiang Agricultural Sciences, 2024, 61(4): 781-790. |
[4] | GAO Mutian, XIAO Yanmei, LIAO Zhijie, HUANG Cheng. Comprehensive evaluation of kernel and quality traits in maize-teosinte introgression line population [J]. Xinjiang Agricultural Sciences, 2024, 61(4): 885-891. |
[5] | YANG Xiangbo, CHEN Liangyu, YANG Songnan, CHEN Xifeng, XING Weiming, LI Xueying, CONG Weixuan, ZANG Zhenyuan, ZANG Yuanbo, ZHANG Jun. Phenotype analysis and comprehensive evaluation of spring soybean germplasm resources from northeast China [J]. Xinjiang Agricultural Sciences, 2024, 61(12): 2921-2933. |
[6] | SUN Chen, HUAI Guolong, WANG Bin, SUN Jiusheng, YANG Zhiying, SHAN Nana. Effects of reducing fertilizer and applying fulvic acid on soil nutrients and peanut growth [J]. Xinjiang Agricultural Sciences, 2024, 61(12): 2934-2942. |
[7] | OUYANG Danhua, ZHAO Kang, SONG Dongbo, LIU Ziqing, GUO Wangzhen, LIU Yan, GU Aixing, Azhatiguli Maimaitituer, Alikaerjiang Amaier. Identification and comprehensive analysis of Verticillium wilt resistance in 35 cotton strains [J]. Xinjiang Agricultural Sciences, 2024, 61(1): 9-18. |
[8] | WANG Dandan, LI Yan, ZHANG Qingyin, Li Shidong, PANG Yongchao, MA Kunzhi, MA Long, NIU Ruisheng, ZHONG Zengming, QI Lianfen, SHI Jianhua. Effects of different microbial treatments on tomato soil microbial diversity [J]. Xinjiang Agricultural Sciences, 2023, 60(9): 2248-2257. |
[9] | MA Xu, ZHAO Ying, HAN Wei, WU Shengli, HAN Xiaoyan. Principal Component Analysis and Cluster Analysis of Amino Acids in Seabuckthorn Fruit [J]. Xinjiang Agricultural Sciences, 2023, 60(2): 378-388. |
[10] | WANG Wei, XU Le, FAN Yanxing, WANG Fan, MA Yanming, TANG Zhonghua. Multivariable comparative analysis of chickpea seed metabolites based on GC-MS [J]. Xinjiang Agricultural Sciences, 2023, 60(12): 2962-2972. |
[11] | LI Chunyan, LIU Fangting, ZHANG Wangbin. Identification of Pathogens Causing the Abnormal Appearance of Apples in Alar Based on High-Throughput Sequencing Technology [J]. Xinjiang Agricultural Sciences, 2023, 60(1): 171-177. |
[12] | YANG Minghua, WANG Qian, ZHOU Xinli, Aihemaitijiang Mahemuti, PEN Yuncheng, Aierjuma Tuluhan, Buayxam Namat, HOU Lili, LIU Qiang. Multiple Analysis on Character and Yield of Maize Hybrid Combinations [J]. Xinjiang Agricultural Sciences, 2022, 59(9): 2114-2122. |
[13] | LI Yueyan, LI Yushan, WANG Fan, GUO Yawen, WANG Feiyan, GAO Jie, SONG Yu. Genetic Diversity and Cluster Analysis of Tomato Fruit Characters in Different Varieties [J]. Xinjiang Agricultural Sciences, 2022, 59(9): 2147-2157. |
[14] | SHAO Huawei, MENG Ajing, TANG Yan, ZHOU Yan, CHENG Xinying, TANG Lei, WANG Xinyong. Effects of Reducing Fertilizer Application and Increasing Application of Fulvic Acid Potassium Dihydrogen Phosphate Water-soluble Formula Fertilizer on the Growth and Quality of Junzao Jujube [J]. Xinjiang Agricultural Sciences, 2022, 59(9): 2192-2199. |
[15] | LI Xuanwen, XIONG Zhi, WANG Jinhua, ZHOU Yiping, XIONG Zhongping. Study on the Diversity of Gut Bacteria from Adults of Dendrolimus kikuchii [J]. Xinjiang Agricultural Sciences, 2022, 59(9): 2276-2287. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 173
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 202
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||