Xinjiang Agricultural Sciences ›› 2021, Vol. 58 ›› Issue (10): 1909-1917.DOI: 10.6048/j.issn.1001-4330.2021.10.019
• Plant Protection·Soil Fertilizer·Water Saving Irrigation·Agroecological Environment·Agricultural Equipment Engineering and Mechanization • Previous Articles Next Articles
Zhenghe YANG1(), Chen YU2, Huimin YANG2, Yifei CHEN2, Xin ZHOU2, Yan MA2, Xuenong WANG2,*(
)
Received:
2020-11-20
Online:
2021-10-20
Published:
2021-10-26
Correspondence author:
Xuenong WANG
Supported by:
杨征鹤1(), 喻晨2, 杨会民2, 陈毅飞2, 周欣2, 马艳2, 王学农2,*(
)
通讯作者:
王学农
作者简介:
杨征鹤(1994-),男,山东菏泽人,硕士研究生,研究方向为设施农业装备, (E-mail) 247329956@qq.com
基金资助:
CLC Number:
Zhenghe YANG, Chen YU, Huimin YANG, Yifei CHEN, Xin ZHOU, Yan MA, Xuenong WANG. Geometric Parameters Extraction of Tomato Canopy in Greenhouse Based on LiDAR[J]. Xinjiang Agricultural Sciences, 2021, 58(10): 1909-1917.
杨征鹤, 喻晨, 杨会民, 陈毅飞, 周欣, 马艳, 王学农. 基于LiDAR的温室番茄冠层几何参数提取[J]. 新疆农业科学, 2021, 58(10): 1909-1917.
参数 Parameter | 人工 Manual (cm) | 平台 Platform (cm) | 相对误差 Relative error (%) |
---|---|---|---|
| 60.0 | 58.3 | -2.8 |
| 80.0 | 76.4 | -4.5 |
| 60.0 | 58.5 | -2.5 |
| 80.0 | 77.3 | -3.4 |
Table 1 Comparison table between the manual measurement value of rule support and the platform detection value
参数 Parameter | 人工 Manual (cm) | 平台 Platform (cm) | 相对误差 Relative error (%) |
---|---|---|---|
| 60.0 | 58.3 | -2.8 |
| 80.0 | 76.4 | -4.5 |
| 60.0 | 58.5 | -2.5 |
| 80.0 | 77.3 | -3.4 |
编号 No. | 人工 Manual (m) | 平台 Platform (m) | 差值 Difference (m) |
---|---|---|---|
1 | 0.70 | 0.73 | -0.03 |
2 | 0.73 | 0.75 | -0.02 |
3 | 0.59 | 0.64 | -0.05 |
4 | 0.50 | 0.56 | -0.06 |
5 | 0.66 | 0.73 | -0.07 |
6 | 0.75 | 0.76 | -0.01 |
7 | 0.55 | 0.58 | -0.03 |
8 | 0.45 | 0.49 | -0.04 |
9 | 0.57 | 0.54 | 0.03 |
10 | 0.81 | 0.84 | -0.03 |
11 | 0.69 | 0.74 | -0.05 |
12 | 0.57 | 0.58 | -0.01 |
13 | 0.70 | 0.70 | 0.00 |
14 | 0.60 | 0.63 | -0.03 |
15 | 0.61 | 0.58 | 0.03 |
16 | 0.49 | 0.45 | 0.04 |
17 | 0.53 | 0.59 | -0.06 |
18 | 0.62 | 0.65 | -0.03 |
19 | 0.60 | 0.65 | -0.05 |
20 | 0.62 | 0.65 | -0.03 |
21 | 1.67 | 1.68 | -0.01 |
22 | 1.59 | 1.63 | -0.04 |
23 | 1.6 | 1.71 | -0.11 |
24 | 1.74 | 1.76 | -0.02 |
25 | 1.60 | 1.58 | 0.02 |
26 | 1.65 | 1.60 | 0.05 |
27 | 1.45 | 1.45 | 0.00 |
28 | 1.60 | 1.64 | -0.04 |
29 | 1.72 | 1.75 | -0.03 |
30 | 1.63 | 1.64 | -0.01 |
31 | 1.50 | 1.56 | -0.06 |
32 | 1.54 | 1.56 | -0.02 |
33 | 1.60 | 1.65 | -0.05 |
34 | 1.54 | 1.57 | -0.03 |
35 | 1.67 | 1.69 | -0.02 |
36 | 1.69 | 1.65 | 0.04 |
37 | 1.68 | 1.67 | 0.01 |
38 | 1.70 | 1.74 | -0.04 |
39 | 1.68 | 1.69 | -0.01 |
40 | 1.74 | 1.73 | 0.01 |
Table 2 Comparison of canopy height measuredmanually with platform measured values
编号 No. | 人工 Manual (m) | 平台 Platform (m) | 差值 Difference (m) |
---|---|---|---|
1 | 0.70 | 0.73 | -0.03 |
2 | 0.73 | 0.75 | -0.02 |
3 | 0.59 | 0.64 | -0.05 |
4 | 0.50 | 0.56 | -0.06 |
5 | 0.66 | 0.73 | -0.07 |
6 | 0.75 | 0.76 | -0.01 |
7 | 0.55 | 0.58 | -0.03 |
8 | 0.45 | 0.49 | -0.04 |
9 | 0.57 | 0.54 | 0.03 |
10 | 0.81 | 0.84 | -0.03 |
11 | 0.69 | 0.74 | -0.05 |
12 | 0.57 | 0.58 | -0.01 |
13 | 0.70 | 0.70 | 0.00 |
14 | 0.60 | 0.63 | -0.03 |
15 | 0.61 | 0.58 | 0.03 |
16 | 0.49 | 0.45 | 0.04 |
17 | 0.53 | 0.59 | -0.06 |
18 | 0.62 | 0.65 | -0.03 |
19 | 0.60 | 0.65 | -0.05 |
20 | 0.62 | 0.65 | -0.03 |
21 | 1.67 | 1.68 | -0.01 |
22 | 1.59 | 1.63 | -0.04 |
23 | 1.6 | 1.71 | -0.11 |
24 | 1.74 | 1.76 | -0.02 |
25 | 1.60 | 1.58 | 0.02 |
26 | 1.65 | 1.60 | 0.05 |
27 | 1.45 | 1.45 | 0.00 |
28 | 1.60 | 1.64 | -0.04 |
29 | 1.72 | 1.75 | -0.03 |
30 | 1.63 | 1.64 | -0.01 |
31 | 1.50 | 1.56 | -0.06 |
32 | 1.54 | 1.56 | -0.02 |
33 | 1.60 | 1.65 | -0.05 |
34 | 1.54 | 1.57 | -0.03 |
35 | 1.67 | 1.69 | -0.02 |
36 | 1.69 | 1.65 | 0.04 |
37 | 1.68 | 1.67 | 0.01 |
38 | 1.70 | 1.74 | -0.04 |
39 | 1.68 | 1.69 | -0.01 |
40 | 1.74 | 1.73 | 0.01 |
编号 No. | 检测值 Detection value (m3) | 参考值 Reference value (m3) | 绝对误差 Absolute error (m3) | 相对误差 Relative error (%) |
---|---|---|---|---|
1 | 0.019 0 | 0.022 3 | -0.003 3 | 14.8 |
2 | 0.017 2 | 0.019 2 | -0.002 0 | 10.4 |
3 | 0.022 1 | 0.025 2 | -0.003 1 | 12.3 |
4 | 0.027 6 | 0.031 7 | -0.004 1 | 12.9 |
5 | 0.016 1 | 0.019 0 | -0.002 9 | 15.3 |
6 | 0.020 3 | 0.024 2 | -0.003 9 | 16.1 |
7 | 0.016 6 | 0.018 9 | -0.002 3 | 12.2 |
8 | 0.019 7 | 0.023 4 | -0.003 7 | 15.8 |
9 | 0.023 4 | 0.026 3 | -0.002 9 | 11.0 |
10 | 0.026 9 | 0.030 6 | -0.003 7 | 12.1 |
11 | 0.074 6 | 0.090 2 | -0.015 6 | 17.3 |
12 | 0.073 9 | 0.087 1 | -0.013 2 | 15.2 |
13 | 0.069 2 | 0.083 1 | -0.013 9 | 16.7 |
14 | 0.076 7 | 0.094 1 | -0.017 4 | 18.5 |
15 | 0.081 0 | 0.094 6 | -0.013 6 | 14.4 |
16 | 0.071 4 | 0.087 4 | -0.016 0 | 18.3 |
17 | 0.065 7 | 0.079 8 | -0.014 1 | 17.7 |
18 | 0.069 4 | 0.087 6 | -0.018 2 | 20.8 |
19 | 0.083 2 | 0.097 6 | -0.014 4 | 14.8 |
20 | 0.076 4 | 0.095 1 | -0.018 7 | 19.7 |
平均值 Average value | -0.009 4 | 15.3 |
Table 3 Detection value and reference value of tomato canopy volume platform
编号 No. | 检测值 Detection value (m3) | 参考值 Reference value (m3) | 绝对误差 Absolute error (m3) | 相对误差 Relative error (%) |
---|---|---|---|---|
1 | 0.019 0 | 0.022 3 | -0.003 3 | 14.8 |
2 | 0.017 2 | 0.019 2 | -0.002 0 | 10.4 |
3 | 0.022 1 | 0.025 2 | -0.003 1 | 12.3 |
4 | 0.027 6 | 0.031 7 | -0.004 1 | 12.9 |
5 | 0.016 1 | 0.019 0 | -0.002 9 | 15.3 |
6 | 0.020 3 | 0.024 2 | -0.003 9 | 16.1 |
7 | 0.016 6 | 0.018 9 | -0.002 3 | 12.2 |
8 | 0.019 7 | 0.023 4 | -0.003 7 | 15.8 |
9 | 0.023 4 | 0.026 3 | -0.002 9 | 11.0 |
10 | 0.026 9 | 0.030 6 | -0.003 7 | 12.1 |
11 | 0.074 6 | 0.090 2 | -0.015 6 | 17.3 |
12 | 0.073 9 | 0.087 1 | -0.013 2 | 15.2 |
13 | 0.069 2 | 0.083 1 | -0.013 9 | 16.7 |
14 | 0.076 7 | 0.094 1 | -0.017 4 | 18.5 |
15 | 0.081 0 | 0.094 6 | -0.013 6 | 14.4 |
16 | 0.071 4 | 0.087 4 | -0.016 0 | 18.3 |
17 | 0.065 7 | 0.079 8 | -0.014 1 | 17.7 |
18 | 0.069 4 | 0.087 6 | -0.018 2 | 20.8 |
19 | 0.083 2 | 0.097 6 | -0.014 4 | 14.8 |
20 | 0.076 4 | 0.095 1 | -0.018 7 | 19.7 |
平均值 Average value | -0.009 4 | 15.3 |
编号 No. | 人工 Manual (m3) | 平台 Platform (m3) | 相对误差 Relative error (%) |
---|---|---|---|
1 | 0.022 6 | 0.019 0 | 15.9 |
2 | 0.025 9 | 0.022 1 | 14.6 |
3 | 0.095 2 | 0.076 7 | 19.4 |
4 | 0.098 6 | 0.081 0 | 17.8 |
5 | 0.097 8 | 0.076 4 | 21.9 |
Table 4 Comparison table between manual measurement and platform detection volume
编号 No. | 人工 Manual (m3) | 平台 Platform (m3) | 相对误差 Relative error (%) |
---|---|---|---|
1 | 0.022 6 | 0.019 0 | 15.9 |
2 | 0.025 9 | 0.022 1 | 14.6 |
3 | 0.095 2 | 0.076 7 | 19.4 |
4 | 0.098 6 | 0.081 0 | 17.8 |
5 | 0.097 8 | 0.076 4 | 21.9 |
[1] | 王万章, 洪添胜, 李捷, 等. 果树农药精确喷雾技术[J]. 农业工程学报, 2004,(6):98-101. |
WANG Wanzhang, HONG Tiansheng, LI Jie, et al. Precision spray technology of fruit tree pesticide[J]. Chinese Journal of Agricultural Engineering, 2004,(6):98-101. | |
[2] | 邱白晶, 闫润, 马靖, 等. 变量喷雾技术研究进展分析[J]. 农业机械学报, 2015, 46(3):59-72. |
QIU Baijing, YAN Run, MA Jing, et al. Journal of agricultural machinery, 2015, 46(3):59-72. | |
[3] | 刘建刚, 赵春江, 杨贵军, 等. 无人机遥感解析田间作物表型信息研究进展[J]. 农业工程学报, 2016, 32(24):98-106. |
LIU Jiangang, ZHAO Chunjiang, YANG Guijun, et al. Advances in the analysis of field crop phenotypic information by remote sensing using uavs[J]. Chinese journal of agricultural engineering, 2016, 32(24):98-106. | |
[4] | Tumbo S D, Salyani M, Whitney J D, et al. Investigation of laser and ultrasonic ranging sensors for measurements of citrus canopy volume[J]. Applied Engineering in Agriculture, 2002, 18(3):367-372. |
[5] | Li H, Zhai C, Weckler P, et al. A Canopy Density Model for Planar Orchard Target Detection Based on Ultrasonic Sensors[J]. Sensors, 2017, 17(12):. |
[6] | Hossein Maghsoudi, Saeid Minaei, Barat Ghobadian, et al. Ultrasonic sensing of pistachio canopy for low-volume precision spraying[J]. Computers and Electronics in Agriculture, 2015,(112):. |
[7] | 翟长远, 赵春江, 王秀, 等. 树型喷洒靶标外形轮廓探测方法[J]. 农业工程学报, 2010, 26(12):173-177. |
ZHAI Changyuan, ZHAO Chunjiang, WANG Xiu, et al. Journal of agricultural engineering, 2010, 26(12):173-177. | |
[8] | Sylvain Jay, Gilles Rabatel, Xavier Hadoux, et al. In-field crop row phenotyping from 3D modeling performed using Structure from Motion[J]. Computers and Electronics in Agriculture, 2015,(110):. |
[9] | 赵源深. 西红柿采摘机器人目标识别、定位与控制技术研究[D]. 上海:上海交通大学, 2018. |
ZHAO Yuanshen. Research on target recognition, location and Control Technology of Tomato picking Robot[D]. Shanghai: Shanghai Jiao Tong University, 2018. | |
[10] | 刘慧, 李宁, 沈跃, 等. 模拟复杂地形的喷雾靶标激光检测与三维重构[J]. 农业工程学报, 2016, 32(18):84-91. |
LIU Hui, LI Ning, SHEN Yue, et al. Laser detection and 3D reconstruction of spray targets for complex terrain[J]. Chinese Journal of agricultural engineering, 2016, 32(18):84-91. | |
[11] |
Saeys W, Lenaerts B, Craessaerts G, et al. Estimation of the crop density of small grains using Li DAR sensors[J]. Biosystems Engineering, 2009, 102(1):22-30.
DOI URL |
[12] |
LI Xudong, ZHAO Huijie, LIU Yang, et al. Laser scanning based three dimensional measurement of vegetation canopy structure[J]. Optics and Lasers in Engineering, 2014, 54(1):152-158.
DOI URL |
[13] | LIU Shouyang, Baret Fred, Abichou Mariem, et al. Estimating wheat green area index from ground-based LiDAR measurement using a 3D canopy structure model[J]. Agricultural and Forest Meteorology, 2017, (247):12-20. |
[14] | 张会霞, 陈宜金, 刘国波. 基于三维激光扫描仪的校园建筑物建模研究[J]. 测绘工程, 2010, 19(1):32-34, 38. |
ZHANG Huixia, CHEN Yijin, LIU Guobo. Research on campus building modeling based on 3d laser scanner[J]. Surveying and mapping engineering, 2010, 19(1):32-34, 38. | |
[15] | Llop Jordi, Gil Emilio, Llorens Jordi, et al. Testing the Suitability of a Terrestrial 2D LiDAR Scanner for Canopy Characterization of Greenhouse Tomato Crops[J]. Sensors (Basel, Switzerland), 2016, 16(9):. |
[16] | 俞龙, 黄健, 赵祚喜, 等. 丘陵山地果树冠层体积激光测量方法与试验[J]. 农业机械学报, 2013, 44(8):224-228. |
YU Long, HUANG Jian, ZHAO Zuoxi, et al. Journal of agricultural machinery, 2013, 44(08):224-228. | |
[17] | 吴志鹏, 付威, 娄朝霞, 等. 基于激光雷达的枣树轮廓测量平台的设计与试验[J]. 农机化研究, 2020, 42(12):52-57. |
WU Zhipeng, FU Wei, LOU Zhaoxia, et al. Design and test of a lidar based profile measurement platform for jujube[J]. Agricultural mechanization research, 2020, 42(12):52-57. | |
[18] | 张美娜, 吕晓兰, 邱威, 等. 基于三维激光点云的靶标叶面积密度计算方法[J]. 农业机械学报, 2017, 48(11):172-178. |
ZHANG Meina, LÜ Xiaolan, QIU Wei, et al. Chinese journal of agricultural machinery[J], 2017, 48(11):172-178. | |
[19] | Ravi, R, Lin Y J, Shamseldin T, et al. Implementation of UAV-Based lidar for high throughput phenotyping[C]. Valencia: IEEE, 2018: 8761-8764. |
[20] | 管贤平, 刘宽, 邱白晶, 等. 基于机载三维激光扫描的大豆冠层几何参数提取[J]. 农业工程学报, 2019, 35(23):96-103. |
GUAN Xianping, LIU Kuan, QIU Baijing, et al. Geometric parameters extraction of soybean canopy based on airborne 3d laser scanning[J]. Chinese journal of agricultural engineering, 2019, 35(23):96-103. | |
[21] | 张立富, 吕东方, 袁明, 等. 3D激光扫描技术及其在森林测绘中的应用研究[J]. 林业机械与木工设备, 2011, 39(8):30-32, 35. |
ZHANG Lifu, LÜ Dongfang, YUAN Ming, et al. Research on 3D laser scanning technology and its application in forest mapping[J]. Forestry machinery and woodworking equipment, 2011, 39(8):30-32, 35. | |
[22] | 刘盈, 吕开云. 基于四参数-ICP的点云配准研究[J]. 江西测绘, 2018,(2):61-64. |
LIU Ying, LÜ Kaiyun. Point Cloud Registration Based on four-parameter ICP[J]. Jiangxi Surveying and Mapping, 2018,(2):61-64. | |
[23] | 李希, 韩燮, 熊风光. 基于RANSAC和TLS的点云平面拟合[J]. 计算机工程与设计, 2017, 38(1):123-126, 143. |
LI Xi, HAN Xie, XIONG Fengguang. Point cloud plane fitting based on RANSAC and TLS[J]. Computer engineering and design, 2017, 38(1):123-126, 143. | |
[24] | 程效军, 唐剑波. 基于最小二乘拟合的墙面平整度检测方法[J]. 测绘信息与工程, 2007,(4):19-20. |
CHENG Xiaojun, TANG Jianbo. Wall Flatness Detection Method based on least-squares Fitting[J]. Surveying and Mapping Information and Engineering, 2007,(4):19-20. | |
[25] | 薄怀志. 三种点云数据平面拟合方法的精度比较与分析[J]. 测绘与空间地理信息, 2018, 41(5):206-208. |
BO Huaizhi. Precision Comparison and Analysis of three plane fitting methods for point cloud data[J]. Surveying and Mapping and Spatial Geographic Information, 2008, 41(5):206-208. | |
[26] | 刘庆一. 基于水平集与多图谱的医学图像分割算法研究[D]. 济南:山东大学, 2019. |
LIU Qingyi. Research on medical Image segmentation Algorithm based on Horizontal set and Multi-atlas[D]. Jinan:Shandong University, 2019. | |
[27] | 高佳丽. 基于交通视频的目标检测与跟踪算法研究[D]. 西安:长安大学, 2019. |
GAO Jiali. Research on Target Detection and Tracking Algorithm based on traffic video [D]. Xi'an: Chang 'an University, 2019. | |
[28] | André F. Colaço, Rodrigo G. Trevisan, José P. Molin, J, et al. A Method to Obtain Orange Crop Geometry Information Using a Mobile Terrestrial Laser Scanner and 3D Modeling[J]. Remote Sensing, 2017, 9(8):. |
[29] |
Bernardini F, Mittleman J, Rushmeier H, et al. The ball-pivoting algorithm for surface reconstruction[J]. IEEE Transactions on Visualization and Computer Graphics, 1999, 5(4):349-359.
DOI URL |
[30] | 马立平. 现代统计分析方法的学与用(十)—多元线性回归分析[J]. 北京统计, 2000,(10):38-39. |
MA Liping. The study and Application of modern statistical Analysis methods (X) - Multiple Linear regression analysis[J]. Beijing Statistics, 2000,(10):38-39. |
[1] | ZHANG Caihong, WANG Guoqiang, JIANG Luyan, LIU Tao, DE Xianming. Variation of environmental factors and analysis of tomato traits in low-energy assembly-type deep-winter production solar greenhouse [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 2043-2053. |
[2] | WANG Runqi, JIA Yonghong, WANG Yujiao, LIU Yue, LI Dandan, DONG Yanxue, Gulinigaer Tuerhong, ZHANG Lulu, ZHANG Jinshan, SHI Shubing. Effect of different drip irrigation on the growth, development, and yield of uniform sowing winter wheat [J]. Xinjiang Agricultural Sciences, 2024, 61(5): 1048-1056. |
[3] | Abdukeyoumu Abudurezike, Gulimila Aikebaier, Palidan Aihaiti, ME Xinhui, MA Yanming, ZHANG Yan, GAO Qiang, XU Lin. Comparative analysis of application and authorization of new agricultural plant right in Xinjing from 2003-2021 [J]. Xinjiang Agricultural Sciences, 2024, 61(3): 766-772. |
[4] | MA Yan, XIAO Lingang, YU Chen, GUO Zhaofeng, ZOU Ping, CAO Xinwei. Research progress of LED light supplement technology of greenhouse vegetables [J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2835-2843. |
[5] | QU Yanbin, WANG Zhenxi, HU Tianqi, DONG Wei, CHEN Zhe. Extraction of the height of Picea schrenkiana var. tianshanica and inversion of accumulation volume based on airborne lidar images [J]. Xinjiang Agricultural Sciences, 2023, 60(4): 958-964. |
[6] | LIU Kai, WU Xiao, SANG Siyu, XU Hongjun, GAO Jie. Effects of Thermal Insulation Cover Methods on Internal Temperature of Chinese Solar Greenhouse [J]. Xinjiang Agricultural Sciences, 2023, 60(3): 633-642. |
[7] | ZENG Jun, WU Lei, GAO Yan, ZHANG Zhuo, LIN Qing, LIU Jianwei, YANG Hongmei, HUO Xiangdong, SHI Yingwu. Effects of photosynthetic bacterial foliar fertilizer on yield and quality of organic tomato in greenhouse [J]. Xinjiang Agricultural Sciences, 2023, 60(12): 3018-3024. |
[8] | QI Yacong, CHEN Yifei, YANG Huimin, WANG Xuenong. Research and test of target detection system based on 3D laser point cloud [J]. Xinjiang Agricultural Sciences, 2023, 60(11): 2833-2841. |
[9] | ZHANG Jinqiang, SU Xuede, LI Pengcheng, YANG Xiang, LI Ming, GUO Shaojie. Study on the Variation of Greenhouse Temperature and Fruit Quality Difference of Summer Black Grape with Two-Harvests-a-Year in Southern Xinjiang [J]. Xinjiang Agricultural Sciences, 2022, 59(8): 1889-1895. |
[10] | XU Junfeng, YANG Rong, ZHAN Faqiang, HOU Min, BAO Huifang, WANG Ning, LONG Xuanqi, ZHANG Zhidong, CUI Weidong. Screening of Functional Bacteria of Organic-Inorganic Liquid Compound Fertilizers and Its Effect on the Quality and Physiological Activity of Greenhouse Tomato [J]. Xinjiang Agricultural Sciences, 2022, 59(7): 1758-1766. |
[11] | MA Yongjie, WANG Xingyi, HAN Congying, LIN Yuhong, MA Hui, ZHANG Xueyan. Evaluation of the Effect of Self-propelled Atomizing Cooling Machine for the Back Wall in Sunlight Greenhouse [J]. Xinjiang Agricultural Sciences, 2022, 59(4): 1016-1024. |
[12] | ZHANG Hongxia, CHEN Xianqiu, TIAN Yu, HAN Huanyong, WANG Fangyong, LUO Honghai. Effects of Dripping Amount under Equal-Row Dense Planting on the Population Growth Characteristics of Different Drought-Resistant Cotton Varieties [J]. Xinjiang Agricultural Sciences, 2022, 59(4): 787-796. |
[13] | TANG Mingyao, TANG Guangmu, SHAO Huawei, YAN Cuixia, MENG yuanduo, WANG Fei, SHEN Chongyang. Survey and Analysis of Fertilizer Market in Xinjiang [J]. Xinjiang Agricultural Sciences, 2022, 59(3): 759-766. |
[14] | NIU Yuan, YANG Xiangkun, ZHANG Zhanqin, MA Fuyu. Effects of Different Irrigation Amounts on Dry Matter Accumulation of Cotton under Film Uncovering Cultivation [J]. Xinjiang Agricultural Sciences, 2022, 59(2): 291-301. |
[15] | HAN Kunlin, WANG Zhaoying, YANG Huimin, CHEN Yifei, JIANG Yongxin, ZHANG Jiaxi. Prediction Model of Tomato Fruit Diameter in Greenhouses Based on PCA-BPNN [J]. Xinjiang Agricultural Sciences, 2022, 59(2): 485-492. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 99
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 110
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||