Xinjiang Agricultural Sciences ›› 2023, Vol. 60 ›› Issue (11): 2833-2841.DOI: 10.6048/j.issn.1001-4330.2023.11.027
• Agricultural Equipment Engineering and Mechanization· Prataculture • Previous Articles Next Articles
QI Yacong1(), CHEN Yifei2,3, YANG Huimin2,3, WANG Xuenong1,2,3(
)
Received:
2023-02-19
Online:
2023-11-20
Published:
2023-12-07
Correspondence author:
WANG Xuenong (1964-), male, Shannxi Province, researcher, master tutor, research direction: agricultural mechanization technology and equipment, (E-mail)xjwxn2010@sina.com
Supported by:
齐亚聪1(), 陈毅飞2,3, 杨会民2,3, 王学农1,2,3(
)
通讯作者:
王学农(1964-),男,陕西汉中人,研究员,硕士生导师,研究方向为农业机械化技术装备,(E-mail)xjwxn2010@sina.com
作者简介:
齐亚聪(1996-),男,河南兰考人,硕士研究生,研究方向为农业智能化装备, (E-mail)1477605991@qq.com
基金资助:
CLC Number:
QI Yacong, CHEN Yifei, YANG Huimin, WANG Xuenong. Research and test of target detection system based on 3D laser point cloud[J]. Xinjiang Agricultural Sciences, 2023, 60(11): 2833-2841.
齐亚聪, 陈毅飞, 杨会民, 王学农. 基于三维激光点云的靶标探测系统研究与试验[J]. 新疆农业科学, 2023, 60(11): 2833-2841.
参数 Parameter | 数值 Figure |
---|---|
激光帧频Laser frame frequency(Hz) | 5、10、20 |
最大探测距离Maximum range(m) | 200 |
距离分辨率Range resolution(mm) | 4 |
测距精度Range accuracy(cm) | <3 |
Tab.1 R-Fans-32 LiDAR Parameter Tab.
参数 Parameter | 数值 Figure |
---|---|
激光帧频Laser frame frequency(Hz) | 5、10、20 |
最大探测距离Maximum range(m) | 200 |
距离分辨率Range resolution(mm) | 4 |
测距精度Range accuracy(cm) | <3 |
Fig.2 Schematic diagram of the overall structure of the variable spray system Note:1.Walking device; 2.Spray device; 3.Detection device; 4.Control device
编号 NO. | 手工测量值 Manual measure ments (m) | 系统测量值 System measure ments (m) | 差值 Error value (m) | 相对误差 Fractional error (%) |
---|---|---|---|---|
1 | 0.92 | 0.89 | -0.03 | 3.26 |
2 | 1.06 | 1.02 | -0.04 | 3.77 |
3 | 0.88 | 0.84 | -0.04 | 4.55 |
4 | 0.79 | 0.78 | -0.01 | 1.27 |
5 | 0.90 | 0.92 | +0.02 | 2.22 |
6 | 0.94 | 0.91 | -0.03 | 3.19 |
7 | 0.99 | 1.00 | +0.01 | 1.01 |
8 | 1.01 | 0.93 | -0.08 | 7.92 |
9 | 0.97 | 0.91 | -0.06 | 6.19 |
10 | 0.83 | 0.82 | -0.01 | 1.20 |
Tab.2 Height analysis of plant detection
编号 NO. | 手工测量值 Manual measure ments (m) | 系统测量值 System measure ments (m) | 差值 Error value (m) | 相对误差 Fractional error (%) |
---|---|---|---|---|
1 | 0.92 | 0.89 | -0.03 | 3.26 |
2 | 1.06 | 1.02 | -0.04 | 3.77 |
3 | 0.88 | 0.84 | -0.04 | 4.55 |
4 | 0.79 | 0.78 | -0.01 | 1.27 |
5 | 0.90 | 0.92 | +0.02 | 2.22 |
6 | 0.94 | 0.91 | -0.03 | 3.19 |
7 | 0.99 | 1.00 | +0.01 | 1.01 |
8 | 1.01 | 0.93 | -0.08 | 7.92 |
9 | 0.97 | 0.91 | -0.06 | 6.19 |
10 | 0.83 | 0.82 | -0.01 | 1.20 |
参数 Parameter | 数值 Figure |
---|---|
扫描激光Scan the laser(mm) | 675 |
分辨率Resolution ratio(mm2) | 0.025 |
最大测量宽度 Maximum measurement width(mm) | 150 |
最大扫描速度Maximum scan speed(mm/s) | 127 |
精度Accuracy(%) | ±1 |
Tab.3 CL-202 Parameter table of plant leaf area meter
参数 Parameter | 数值 Figure |
---|---|
扫描激光Scan the laser(mm) | 675 |
分辨率Resolution ratio(mm2) | 0.025 |
最大测量宽度 Maximum measurement width(mm) | 150 |
最大扫描速度Maximum scan speed(mm/s) | 127 |
精度Accuracy(%) | ±1 |
编号 NO. | 叶面积 Leaf area (cm2) | 点云数 Point cloud number | 探测叶面积 Probe leaf area (cm2) | 相对误差 Fractional error (%) |
---|---|---|---|---|
1 | 1 504.1 | 1 491 | 1 589.0 | 5.64 |
2 | 1 617.9 | 1 566 | 1 676.6 | 3.63 |
3 | 1 466.0 | 1 401 | 1 483.8 | 1.21 |
4 | 1 506.9 | 1 421 | 1 507.2 | 0.02 |
5 | 1 583.6 | 1 464 | 1 557.4 | 1.65 |
6 | 1 586.9 | 1 472 | 1 566.8 | 1.27 |
7 | 1 398.1 | 1 296 | 1 361.1 | 2.65 |
8 | 1 620.0 | 1 498 | 1 597.2 | 1.41 |
9 | 1 624.3 | 1 494 | 1 592.5 | 1.96 |
10 | 1 481.6 | 1 381 | 1 460.4 | 1.43 |
Tab.4 Analysis of measuring method and System detection method
编号 NO. | 叶面积 Leaf area (cm2) | 点云数 Point cloud number | 探测叶面积 Probe leaf area (cm2) | 相对误差 Fractional error (%) |
---|---|---|---|---|
1 | 1 504.1 | 1 491 | 1 589.0 | 5.64 |
2 | 1 617.9 | 1 566 | 1 676.6 | 3.63 |
3 | 1 466.0 | 1 401 | 1 483.8 | 1.21 |
4 | 1 506.9 | 1 421 | 1 507.2 | 0.02 |
5 | 1 583.6 | 1 464 | 1 557.4 | 1.65 |
6 | 1 586.9 | 1 472 | 1 566.8 | 1.27 |
7 | 1 398.1 | 1 296 | 1 361.1 | 2.65 |
8 | 1 620.0 | 1 498 | 1 597.2 | 1.41 |
9 | 1 624.3 | 1 494 | 1 592.5 | 1.96 |
10 | 1 481.6 | 1 381 | 1 460.4 | 1.43 |
[1] | 周鸣川. 脉宽调制(PWM)变量喷雾及视觉辅助对靶植保技术研究[D]. 杭州: 浙江大学, 2015. |
ZHOU Mingchuan. Pulse width modulation variable spray and target spray based on computer technology research[D]. Hangzhou: Zhejiang University, 2015. | |
[2] | 何雄奎. 我国植保无人机喷雾系统与施药技术[J]. 农业工程技术, 2018, 38(9):33-38. |
HE Xiongkui. Spraying system and application technology of Plant Protection UAV in China[J]. Agricultural Engineering Technology, 2018, 38(9):33-38. | |
[3] | 刘慧, 夏伟, 沈跃, 等. 基于实时传感器的精密变量喷雾发展概况[J]. 中国农机化学报, 2016, 37(3):238-242. |
LIU Hui, XIA Wei, SHEN Yue, et al. Development overview of precision variable spraying based on real-time sensor technology[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(3):238-244,260. | |
[4] |
Rosell J R, Sanz R. A review of methods and applications of the geometric characterization of tree crops in agricultural activities[J]. Computers and Electronics in Agriculture, 2012, 81:124-141.
DOI URL |
[5] | 张美娜, 吕晓兰, 雷哓晖. 可移植的对靶喷雾控制系统设计与试验[J]. 江苏农业学报, 2017, 33(5):1182-1187. |
ZHANG Meina, LYU Xiaolan, LEI Xiaohui. Design and testing on a transplantable target spraying control system for the spraying machine[J]. Jiangsu Journal of Agricultural Sciences, 2017, 33(5):1182-1187. | |
[6] | 翟长远, 朱瑞祥, 张佐经, 等. 精准施药技术现状分析[J]. 农机化研究, 2010, 32(5): 9-12. |
ZHAI Changyuan, ZHU Ruixiang, ZHANG Zuojing, et al. Status Analysis of Precision Pesticide Application Techniques[J]. Journal of Agricultural Mechanization Research, 2010, 32(5):9-12. | |
[7] | 俞龙, 洪添胜, 赵祚喜, 等. 基于超声波的果树冠层三维重构与体积测量[J]. 农业工程学报, 2010, 26(11):204-208. |
YU Long, HONG Tiansheng, ZHAO Zuoxi, et al. 3D-reconstruction and volume measurement of fruit tree canopy based on ultrasonic sensors[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(11):204-208. | |
[8] |
Hossein M, Saeid M, Barat G, et al. Ultrasonic sensing of pistachio canopy for low-volume precision spraying[J]. Computers and Electronics in Agriculture, 2015, 112:149-160.
DOI URL |
[9] |
Joan R.Rosell, Jordi Llorens, Ricardo Sanz, et al. Obtai-ning the three-dimensional structure of tree orchards from remote 2D terrestrial LIDAR scanning[J]. Agricultural and Forest Meteorology, 2009, 149(9):1505-1515.
DOI URL |
[10] | 谷趁趁, 翟长远, 陈立平, 等. 基于激光雷达的树形靶标冠层叶面积探测模型研究[J]. 农业机械学报, 2021, 52(11):278-286. |
GU Chenchen, ZHAI Changyuan, CHEN Liping, et al. Detection Model of Tree Canopy Leaf Area Based on LiDAR Technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(11):278-286. | |
[11] |
Medeiros H, Kim D, Sun J, et al. Modeling Dormant FruitTrees for Agricultural Automation[J]. Journal of Field Robotics, 2017, 34(7):1203-1224.
DOI URL |
[12] | 管贤平, 刘宽, 邱白晶, 等. 基于机载三维激光扫描的大豆冠层几何参数提取[J]. 农业工程学报, 2019, 35(23):96-103. |
GUAN Xianping, LIU Kuan, QIU Baijing, et al. Extraction of geometric parameters of soybean canopy by airborne 3D laser scanning[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(23):96-103. | |
[13] | 吴志鹏, 付威, 娄朝霞, 等. 基于激光雷达的枣树轮廓测量平台的设计与试验[J]. 农机化研究, 2020, 42(12):52-57. |
WU Zhipeng, FU Wei, LOU Zhaoxia, et al. Design and test of a lidar based profile measurement platform for jujube[J]. Journal of Agricultural Mechanization Research, 2020, 42(12):52-57. | |
[14] | 俞龙, 黄健, 赵祚喜, 等. 丘陵山地果树冠层体积激光测量方法与试验[J]. 农业机械学报, 2013, 44(8):224-228. |
YU Long, HUANG Jian, ZHAO Zuoxi, et al. Laser Measurement and Experiment of Hilly Fruit Tree Canopy Volume[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(8):224-228. | |
[15] | 张美娜, 吕晓兰, 邱威, 等. 基于三维激光点云的靶标叶面积密度计算方法[J]. 农业机械学报, 2017, 48(11):172-178. |
ZHANG Meina, LYU Xiaolan, QIU Wei, et al. Calculation Method of Leaf Area Density Based on Three-dimensional Laser Point Cloud[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(11):172-178. | |
[16] | 刘芳, 冯仲科, 杨立岩, 等. 基于三维激光点云数据的树冠体积估算研究[J]. 农业机械学报, 2016, 47(3):328-334. |
LIU Fang, FENG Zhongke, YANG Liyan, et al. Estimation of Tree Crown Volume Based on 3D Laser Point Cloud Data[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(3):328-334. | |
[17] | Bailey B N, MacAfee W. Rapid, high-resolution measurement of leaf area and leaf orientation using terrestrial LiDAR scanning data[J]. Measurement Science and Technology, 2017, 28(6). |
[18] | 刘洋, 刘荣高, 陈镜明, 等. 叶面积指数遥感反演研究进展与展望[J]. 地球信息科学学报, 2013, 15(5):734-743. |
LIU Yang, LIU Ronggao, CHEN Jingming, et al. Current Status and Perspectives of Leaf Area Index Retrieval from Optical Remote Data[J]. Journal of Geo-information Science, 2013, 15(5):735-743.
DOI URL |
|
[19] | Abuelgasim A A, Fernandes R A, Leblanc S G. Evaluation of national and global LAI products derived from optical remote sensing instruments over Canada[J]. IEEE Transactions on Geoscience & Remote Sensing, 2006, 44(7):1872-1884. |
[20] |
Comba L, Biglia A, Aimonino D R, et al. Leaf Area Index evaluation in vineyards using 3D point clouds from UAV imagery[J]. Precision Agriculture, 2020, 21:881-896.
DOI |
[21] | 胡培, 张文爱, 王秀, 等. 基于激光传感器检测树冠大小的实验平台设计[J]. 中国农机化学报, 2015, 36(5):227-230. |
HU Pei, ZHANG Wenai, WANG Xiu, et al. Experimental platform design for detecting tree canopy volume based on laser scanning sensor[J]. Journal of Chinese Agricultural Mechanization, 2015, 36(5):227-230. | |
[22] | 毕松, 王宇豪. 基于自适应半径滤波的农业导航激光点云去噪方法研究[J]. 农业机械学报, 2021, 52(11):234-243. |
BI Song, WANG Yuhao. LiDAR Point Cloud Denoising Method Based on Adaptive Radius Filter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(11):234-243. | |
[23] | 王明华, 王永军, 闾家阳, 等. 基于激光位移传感器的物体表面形貌测量系统[J]. 宇航计测技术, 2022, 42(2):33-38. |
WANG Minghua, WANG Yongjun, LU Jiayang, et al. Measurement System of Surface Topography Based on Laser Displacement Sensor[J]. Journal of Astronautic Metrology and Measurement, 2022, 42(2):33-38. | |
[24] | 李方一, 黄璜, 官春云. 作物叶面积测量的研究进展[J]. 湖南农业大学学报(自然科学版), 2021, 47(3):274-282. |
LI Fangyi, HUANG Huang, GUAN Chunyun. Review on measurement of crop leaf area[J]. Journal of Hunan Agricultural University (Natural Science Ed), 2021, 47(3):274-282. | |
[25] | 李方一, 李锦卫, 黄璜, 等. 单株油菜叶面积田间无损测量方法和策略研究[J]. 激光生物学报, 2021, 30(6):505-517. |
LI Fangyi, LI Jinwei, HUANG Huang, et al. Research on Non-destructive Measurement Methods and Strategies of Individual Rape Leaf Area in Field[J]. Acta Laser Biology Sinica, 2021, 30(6):505-517. |
[1] | ZENG Wanying, GENG Hongwei, CHENG Yukun, LI Sizhong, QIAN Songting, GAO Weishi, ZHANG Liming. Comprehensive evaluation of drought resistance during the rapid growth stage of sugar beet cultivars [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2140-2151. |
[2] | LI Huaisheng, AI Hongyu, MENG Ling, WANG Heya, ZHANG Lei, AI Haifeng. Effects of chasing rate during peak nutrient uptake of transport under n Reduction on spring wheat [J]. Xinjiang Agricultural Sciences, 2023, 60(8): 1866-1872. |
[3] | ZHANG Chao, BAI Yungang, ZHENG Ming, XIAO Jun, DING Ping. Synergistic effect of water and fertilizer on grape in extreme arid area [J]. Xinjiang Agricultural Sciences, 2023, 60(8): 1931-1939. |
[4] | QU Yanbin, WANG Zhenxi, HU Tianqi, DONG Wei, CHEN Zhe. Extraction of the height of Picea schrenkiana var. tianshanica and inversion of accumulation volume based on airborne lidar images [J]. Xinjiang Agricultural Sciences, 2023, 60(4): 958-964. |
[5] | WANG Kai, LI Xiuling, Fazal Haider, BAI Ru, FENG Jianrong, YANG Weiwei. Construction of Apple Leaf Area Estimation Model [J]. Xinjiang Agricultural Sciences, 2023, 60(3): 664-674. |
[6] | YUN Jing, ZHENG Fengling, AN Shazhou, Asiya Manlike, LI Chao, , TIAN Cong. Hyperspectral Inversion of Leaf Area Index in Mountain Steppe Ecosystems Based on the PROSAIL Model [J]. Xinjiang Agricultural Sciences, 2022, 59(2): 451-457. |
[7] | LUO Jingjing, LI Huaisheng, WANG Heya, AI Haifeng, WANG Bing, ZHANG Lei. Effects of Chemical Fertilizer Reduction on Spring Wheat Based on Water and Fertilizer Integration [J]. Xinjiang Agricultural Sciences, 2022, 59(11): 2614-2620. |
[8] | CHEN Wei, DUAN Hongyan, LI Ziying, HAO Haiting, WANG Lan. Toxicity Measurement of Different Fungicides to Erwinia amylovorain Laboratory [J]. Xinjiang Agricultural Sciences, 2021, 58(9): 1723-1728. |
[9] | WANG Junjie, LI Jun, QIAO Zhijun. Effects of Biological Bacterial Fertilizer on Growth Index and Yield of Foxtail Millet [J]. Xinjiang Agricultural Sciences, 2021, 58(6): 1042-1047. |
[10] | DU Wei, ZHANG Jinshan, LI Hongbo, ZHOU Zhenyong, CUI Fanrong, YE Zhibing, ZHANG Yang. Production Performance Measurement and Breeding Improvement for Xinjiang Brown Cattle(Meat Type) [J]. Xinjiang Agricultural Sciences, 2021, 58(5): 973-980. |
[11] | LU Weipeng, ZHANG Longlong, YANG Jianping, DIAO Ming, JIANG Dong. Effects of Different Drip Irrigation Belt Configurations on Spring Wheat Yield [J]. Xinjiang Agricultural Sciences, 2021, 58(2): 237-246. |
[12] | Zhenghe YANG, Chen YU, Huimin YANG, Yifei CHEN, Xin ZHOU, Yan MA, Xuenong WANG. Geometric Parameters Extraction of Tomato Canopy in Greenhouse Based on LiDAR [J]. Xinjiang Agricultural Sciences, 2021, 58(10): 1909-1917. |
[13] | ZHANG Yu, LI Jiang, ZHANG Fuchun, ZHONG Haixia, PAN Mingqi, WU Xinyu. Establishment of Evaluation Model of Leaf Area of Niunai Grape [J]. Xinjiang Agricultural Sciences, 2020, 57(1): 63-68. |
[14] | GE Yuan-mei, CHEN Xiang-yu, HONG Shuai, MA Lu-lu, L Xin , ZHANG Ze. Establishment of Estimation Model for Different Varieties Based on Red Edge Parameters [J]. Xinjiang Agricultural Sciences, 2019, 56(6): 1032-1040. |
[15] | SHI Yuan-qiang, WANG Ji-chuan, SUN Ting, Bilali Aili, ZHANG Jian-fang, GAO Zhen, LI Tong-rui. Study on Density Effects of LAI Dynamic Characteristics in Hybrid Cotton [J]. Xinjiang Agricultural Sciences, 2019, 56(12): 2199-2207. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||