| [1] |
Wu H H, Ren Z Y, Zheng L, et al. The bHLH transcription factor GhPAS1 mediates BR signaling to regulate plant development and architecture in cotton[J]. The Crop Journal, 2021, 9(5): 1049-1059.
|
| [2] |
Narnoliya L, Basu U, Bajaj D, et al. Transcriptional signatures modulating shoot apical meristem morphometric and plant architectural traits enhance yield and productivity in chickpea[J]. Plant Journal, 2019, 98(5): 864-883.
DOI
|
| [3] |
Xue Z H, Liu L Y, Zhang C. Regulation of shoot apical meristem and axillary meristem development in plants[J]. International Journal of Molecular Sciences, 2020, 21(8): 2917.
|
| [4] |
Nikolaev S V, Penenko A V, Lavreha V V, et al. A model study of the role of proteins CLV1, CLV2, CLV3, and WUS in regulation of the structure of the shoot apical meristem[J]. Russian Journal of Developmental Biology, 2007, 38(6): 383-388.
|
| [5] |
Kyozuka J. Control of shoot and root meristem function by cytokinin[J]. Current Opinion in Plant Biology, 2007, 10(5): 442-446.
DOI
PMID
|
| [6] |
Azizi P, Rafii M Y, Maziah M, et al. Understanding the shoot apical meristem regulation: a study of the phytohormones, auxin and cytokinin, in rice[J]. Mechanisms of Development, 2015, 135: 1-15.
DOI
PMID
|
| [7] |
Gordon S P, Chickarmane V S, Ohno C, et al. Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(38): 16529-16534.
DOI
PMID
|
| [8] |
Nidhi S, Preciado J, Tie L. Knox homologs shoot meristemless (STM) and KNAT6 are epistatic to CLAVATA3 (CLV3) during shoot meristem development in Arabidopsis thaliana[J]. Molecular Biology Reports, 2021, 48(9): 6291-6302.
|
| [9] |
Byrne M E, Barley R, Curtis M, et al. Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis[J]. Nature, 2000, 408(6815): 967-971.
|
| [10] |
Scofield S, Dewitte W, Murray J A. STM sustains stem cell function in the Arabidopsis shoot apical meristem and controls KNOX gene expression independently of the transcriptional repressor AS1[J]. Plant Signaling & Behavior, 2014, 9: e28934.
|
| [11] |
Sonoda Y, Yao S G, Sako K, et al. SHA1, a novel RING finger protein, functions in shoot apical meristem maintenance in Arabidopsis[J]. The Plant Journal, 2007, 50(4): 586-596.
|
| [12] |
易艳萍, 曹诚, 马清钧. 泛素化和磷酸化协同作用调控蛋白质降解[J]. 生物技术通讯, 2006, 17(4): 618-620.
|
|
YI Yanping, CAO Cheng, MA Qingjun. Ubiquitination and phosphorylation cooperate to regulate the degradation of protein[J]. Letters in Biotechnology, 2006, 17(4): 618-620.
|
| [13] |
张翼, 邵冬南, 薛飞, 等. 陆地棉细胞色素P450超家族基因GhCYP85A2-1的克隆与功能分析[J]. 新疆农业科学, 2021, 58(2): 197-205.
DOI
|
|
ZHANG Yi, SHAO Dongnan, XUE Fei, et al. Cloning and functional analysis of cytochrome P450 superfamily gene GhCYP85A2-1 in upland cotton[J]. Xinjiang Agricultural Sciences, 2021, 58(2): 197-205.
DOI
|
| [14] |
Delk N A, Johnson K A, Chowdhury N I, et al. CML24, regulated in expression by diverse stimuli, encodes a potential Ca2+ sensor that functions in responses to abscisic acid, daylength, and ion stress[J]. Plant Physiology, 2005, 139(1): 240-253.
|
| [15] |
Tsai Y C, Delk N A, Chowdhury N I, et al. Arabidopsis potential calcium sensors regulate nitric oxide levels and the transition to flowering[J]. Plant Signaling & Behavior, 2007, 2(6): 446-454.
|
| [16] |
Ayadi M, Delaporte V, Li Y F, et al. Analysis of GT-3a identifies a distinct subgroup of trihelix DNA-binding transcription factors in Arabidopsis[J]. FEBS Letters, 2004, 562(1/2/3): 147-154.
|
| [17] |
Lee Y K, Kumari S, Olson A, et al. Role of a ZF-HD Transcription factor in miR157-Mediated feed-forward regulatory module that determines plant architecture inArabidopsis[J]. Internation Journal of Molecular Sciences, 2022, 23(15).
|
| [18] |
Nikolaev SV, Penenko AV, Lavrekha VV, et al. A model study of the role of proteins CLV1, CLV2, CLV3, and WUS in regulation of the structure of the shoot apical meristem[J]. Ontogenez, 2007, 38(6):457-62.
PMID
|
| [19] |
Fletcher J C. The CLV-WUS stem cell signaling pathway: a roadmap to crop yield optimization[J]. Plants (Basel), 2018, 7(4): 87.
|
| [20] |
Guo Y. F, Han L H, Hymes M, et al. CLAVATA2 forms a distinct CLE-binding receptor complex regulating Arabidopsis stem cell specification[J]. The Plant Journal, 2010, 63(6): 889-900.
DOI
PMID
|
| [21] |
XIN W, WANG Z C, LIANG Y, et al. Dynamic expression reveals a two-step patterning of WUS and CLV3 during axillary shoot meristem formation in Arabidopsis[J]. Journal of Plant Physiology, 2017, 214: 1-6.
DOI
PMID
|
| [22] |
高丽. 拟南芥CLAVATA3受体的研究进展[J]. 河北师范大学学报(自然科学版), 2014, 38(4): 425-432.
|
|
GAO Li. Research progress of CLAVATA3 receptors of Arabidopsis thaliana[J]. Journal of Hebei Normal University (Natural Science Edition), 2014, 38(4): 425-432.
|
| [23] |
Durbak A R, Tax F E. CLAVATA signaling pathway receptors of Arabidopsis regulate cell proliferation in fruit organ formation as well as in meristems[J]. Genetics, 2011, 189(1): 177-194.
|
| [24] |
Su Y H, Zhou C, Li Y J, et al. Integration of pluripotency pathways regulates stem cell maintenance in theArabidopsisshoot meristem[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(36): 22561-22571.
|
| [25] |
Diévart A, Dalal M, Tax F E, et al. CLAVATA1 dominant-negative alleles reveal functional overlap between multiple receptor kinases that regulate meristem and organ development[J]. The Plant Cell, 2003, 15(5): 1198-1211.
|