新疆农业科学 ›› 2025, Vol. 62 ›› Issue (3): 546-555.DOI: 10.6048/j.issn.1001-4330.2025.03.004
徐守振1(), 马麒1, 宁新柱1, 李吉莲1, 宿俊吉2, 韩焕勇1, 王方永1, 林海1(
)
收稿日期:
2024-09-12
出版日期:
2025-03-20
发布日期:
2025-05-14
通信作者:
林海(1970-),男,新疆石河子人,研究员,研究方向为棉花育种与栽培,(E-mail) xjlinh@126.com作者简介:
徐守振(1990-),男,新疆石河子人,助理研究员,研究方向为棉花育种与栽培,(E-mail) xu.shouzhen@foxmail.com
基金资助:
XU Shouzhen1(), MA Qi1, NING Xinzhu1, LI Jilian1, SU Junji2, HAN Huanyong1, WANG Fangyong1, LIN Hai1(
)
Received:
2024-09-12
Published:
2025-03-20
Online:
2025-05-14
Supported by:
摘要:
【目的】研究不同行距配置和脱叶剂对棉花脱叶效果的影响,为减少机采杂质和提高原棉品质提供参考。【方法】以金垦1643为材料,选用新疆北疆棉区主推的行距配置方式及脱叶剂,采用双因素裂区设计,主区为行距配置方式,分别为P6:1膜6行,行距配置为(66 cm+10 cm)和P3:1膜3行,行距配置为等行距76 cm;副区为喷施不同脱叶剂,分别为TR:瑞脱龙(80%噻苯隆)和TS:欣噻利(50%噻苯·乙烯利悬浮剂)。测定不同处理组合下棉株脱叶率、杂叶率、棉铃脱水速率、棉花吐絮率及纤维品质等指标,探讨行距配置对棉花喷施不同脱叶剂的脱叶催熟效果。【结果】脱叶剂发挥药效的主要时间段为喷施药剂后的0~15 d。欣噻利在棉花上的脱叶及吐絮效果更加迅速(0~10 d),且在1膜6行处理下脱叶率及脱叶速率高、棉铃脱水率高、净吐絮率高,可快速促进脱叶吐絮,但会造成杂叶率的显著增加及上部棉铃纤维长度的损伤;而在1膜3行处理下喷施欣噻利脱叶吐絮效果较差。瑞脱龙在棉花上的脱叶及吐絮效果初期(0~5 d)较弱,主要在药后(5~15 d)发挥效果,1膜3行处理下棉花脱叶速度及吐絮速率虽较慢,但最终脱叶率与其他处理无显著差异,且不会造成棉花纤维长度的损伤和杂叶率的增加;而在1膜6行处理下喷施瑞脱龙脱叶吐絮效果较差。【结论】欣噻利在1膜6行配置下脱叶吐絮效果更佳且更迅速,但会造成原棉叶杂率的增加和上部棉铃纤维品质的降低;瑞脱龙在1膜3行配置下脱叶吐絮作用相对缓慢,但最终脱叶吐絮效果仍较高,且不会造成原棉叶杂率的增加和纤维品质的降低。
中图分类号:
徐守振, 马麒, 宁新柱, 李吉莲, 宿俊吉, 韩焕勇, 王方永, 林海. 不同行距和脱叶剂对棉花脱叶效果的影响[J]. 新疆农业科学, 2025, 62(3): 546-555.
XU Shouzhen, MA Qi, NING Xinzhu, LI Jilian, SU Junji, HAN Huanyong, WANG Fangyong, LIN Hai. Effects of different row spacing and defoliant on cotton defoliation[J]. Xinjiang Agricultural Sciences, 2025, 62(3): 546-555.
图1 不同处理下棉花脱叶率的变化 注:P3:1膜3行,P6:1膜6行,TR:瑞脱龙,TS:欣噻利。小写字母表示不同处理之间存在差异,*表示各处理在0.05水平上存在差异,**表示各处理在在0.01水平上存在差异,具有相同字母的差异不显著
Fig.1 Changes of different treatments on the rate of shed leaves in cotton Notes: P3:Uniform row-spacing configuration, P6:Wide-narrow row-spacing configuration, TR: Ruituolong, TS:Xinthili.The lowercase letter indicated that there were differences among different treatments, * indicated that there were differences among different treatments at 0.05 level, * * indicated that there were differences among different treatments at 0.01 level, and the difference with the same letter was not significant
图2 不同处理下棉花相对脱叶率的变化 注:P3:1膜3行,P6:1膜6行,TR:瑞脱龙,TS:欣噻利
Fig.2 Changs of different treatments on relative defoliation rate of cotton Notes: P3:Uniform row-spacing configuration, P6:Wide-narrow row-spacing configuration.TR: Ruituolong, TS: Xinthili
图3 不同处理下棉花杂叶的变化 注:P3:1膜3行,P6:1膜6行,TR:瑞脱龙,TS:欣噻利。小写字母表示不同处理之间在0.05水平上存在差异,具有相同字母的差异不显著,下同
Fig.3 Changes of different treatments on cotton miscellaneous leaves Notes: P3:Uniform row-spacing configuration, P6:Wide-narrow row-spacing configuration.TR: Ruituolong, TS: Xinthili.The lowercase letters indicate that there are differences between different treatments at 0.05 level, and the difference with the same letters is not obvious,the same as below
处理 Treatments | 第5果枝 Fifth fruit branch(%) | 第8果枝 Eighth fruit branch(%) | ||||
---|---|---|---|---|---|---|
0~5 d | 5~10 d | 10~15 d | 0~5 d | 5~10 d | 10~15 d | |
P6TR | 1.18±0.03b | 8.18±0.72b | 4.67±0.56b | 0.48±0.15ab | 0.20±0.04a | 12.22±0.29c |
P3TR | -0.17±0.12d | 10.70±0.14a | 2.38±0.43c | 0.06±0.05c | -0.46±0.07c | 12.52±0.22c |
P6TS | 1.50±0.07a | 6.86±0.27c | 5.52±0.31a | 0.62±0.03a | 0.02±0.06b | 12.93±0.20b |
P3TS | 0.21±0.06c | 10.49±0.64a | 2.48±0.04c | 0.35±0.19b | 0.06±0.04b | 13.51±0.03a |
表1 不同处理棉铃相对脱水速率的差异
Tab.1 Difference of dehydration rate of cotton bolls under different treatments
处理 Treatments | 第5果枝 Fifth fruit branch(%) | 第8果枝 Eighth fruit branch(%) | ||||
---|---|---|---|---|---|---|
0~5 d | 5~10 d | 10~15 d | 0~5 d | 5~10 d | 10~15 d | |
P6TR | 1.18±0.03b | 8.18±0.72b | 4.67±0.56b | 0.48±0.15ab | 0.20±0.04a | 12.22±0.29c |
P3TR | -0.17±0.12d | 10.70±0.14a | 2.38±0.43c | 0.06±0.05c | -0.46±0.07c | 12.52±0.22c |
P6TS | 1.50±0.07a | 6.86±0.27c | 5.52±0.31a | 0.62±0.03a | 0.02±0.06b | 12.93±0.20b |
P3TS | 0.21±0.06c | 10.49±0.64a | 2.48±0.04c | 0.35±0.19b | 0.06±0.04b | 13.51±0.03a |
处理 Treatments | 部位 Position | 上半部平均长度 Upper half mean length(mm) | 整齐度指数 Fiber uniformity | 断裂比强度 Breaking tenacity (cN/tex) | 马克隆值 Micronaire | 断裂伸长率 Breaking elongation (%) | 反射率 Reflectance degree (%) | 纺纱均匀性指数 Spinning consiitency index |
---|---|---|---|---|---|---|---|---|
P3TR | 上部 | 28.83±0.38Ca | 84.40±1.04Aa | 28.53±1.60Aa | 4.87±0.32Aab | 7.63±0.42Ba | 80.07±0.25Ba | 135.33±9.02Aa |
中部 | 29.70±0.62Ba | 84.67±1.31Aa | 28.63±0.81Aa | 5.03±0.06Ab | 8.53±0.70ABa | 81.00±0.36Aa | 137.33±7.09Aab | |
下部 | 30.70±0.17Aa | 86.70±1.06Aa | 27.93±1.20Aa | 4.67±0.15Aab | 9.53±0.40Aa | 79.57±0.35Ba | 149.67±4.73Aa | |
P6TR | 上部 | 28.43±0.75Ba | 85.07±0.40Aa | 29.23±0.81Aa | 4.87±0.12Aab | 7.57±0.21Ba | 78.73±1.12Aa | 139.33±3.06Aa |
中部 | 28.30±0.61Bb | 85.20±0.36Aa | 27.07±1.02Ba | 5.10±0.10Aab | 8.67±0.68ABa | 79.77±0.35Aa | 131.33±0.58Aab | |
下部 | 29.83±0.71Aa | 84.93±1.70Aa | 27.17±0.21Ba | 4.43±0.15Bb | 9.53±0.92Aa | 79.17±1.69Aa | 139.00±8.89Aa | |
P3TS | 上部 | 26.83±0.95Bb | 84.13±1.03Aa | 26.93±0.90Aa | 5.23±0.06Aa | 7.87±0.75Ba | 78.87±0.35Aa | 121.33±9.61Ba |
中部 | 28.43±0.40ABb | 84.00±2.62Aa | 27.30±1.61Aa | 5.33±0.15Aa | 8.17±0.55ABa | 79.83±0.55Aa | 124.67±15.5ABb | |
下部 | 29.73±1.05Aa | 86.43±0.67Aa | 28.37±1.15Aa | 4.90±0.17Ba | 9.30±0.36Aa | 80.13±1.00Aa | 145.67±6.51Aa | |
P6TS | 上部 | 27.67±0.87Aab | 83.40±1.06Ba | 27.13±1.80Aa | 4.67±0.32Ab | 7.53±0.80Ba | 79.67±1.07Aa | 126.00±13.00Ba |
中部 | 29.10±0.26Aab | 85.97±0.55Aa | 28.83±2.34Aa | 4.87±0.21Ab | 9.40±0.66Aa | 81.20±0.72Aa | 144.67±6.03Aa | |
下部 | 30.37±0.78Ba | 85.43±0.55Aa | 26.77±0.32Aa | 4.63±0.31Aab | 9.17±0.29Aa | 80.07±0.32Aa | 140.00±2.65ABa | |
处理Treatments | 0.002** | 0.900ns | 0.510ns | 0.001** | 0.844ns | 0.056 | 0.101ns | |
部位Position | 0.000** | 0.010** | 0.685ns | 0.000** | 0.000** | 0.008** | 0.002** | |
处理×部位 Treatments×Position | 0.322ns | 0.132ns | 0.119ns | 0.553ns | 0.339ns | 0.504ns | 0.055ns |
表2 不同处理下棉花品质的变化
Tab.2 Changes of different treatments on the quality of cotton
处理 Treatments | 部位 Position | 上半部平均长度 Upper half mean length(mm) | 整齐度指数 Fiber uniformity | 断裂比强度 Breaking tenacity (cN/tex) | 马克隆值 Micronaire | 断裂伸长率 Breaking elongation (%) | 反射率 Reflectance degree (%) | 纺纱均匀性指数 Spinning consiitency index |
---|---|---|---|---|---|---|---|---|
P3TR | 上部 | 28.83±0.38Ca | 84.40±1.04Aa | 28.53±1.60Aa | 4.87±0.32Aab | 7.63±0.42Ba | 80.07±0.25Ba | 135.33±9.02Aa |
中部 | 29.70±0.62Ba | 84.67±1.31Aa | 28.63±0.81Aa | 5.03±0.06Ab | 8.53±0.70ABa | 81.00±0.36Aa | 137.33±7.09Aab | |
下部 | 30.70±0.17Aa | 86.70±1.06Aa | 27.93±1.20Aa | 4.67±0.15Aab | 9.53±0.40Aa | 79.57±0.35Ba | 149.67±4.73Aa | |
P6TR | 上部 | 28.43±0.75Ba | 85.07±0.40Aa | 29.23±0.81Aa | 4.87±0.12Aab | 7.57±0.21Ba | 78.73±1.12Aa | 139.33±3.06Aa |
中部 | 28.30±0.61Bb | 85.20±0.36Aa | 27.07±1.02Ba | 5.10±0.10Aab | 8.67±0.68ABa | 79.77±0.35Aa | 131.33±0.58Aab | |
下部 | 29.83±0.71Aa | 84.93±1.70Aa | 27.17±0.21Ba | 4.43±0.15Bb | 9.53±0.92Aa | 79.17±1.69Aa | 139.00±8.89Aa | |
P3TS | 上部 | 26.83±0.95Bb | 84.13±1.03Aa | 26.93±0.90Aa | 5.23±0.06Aa | 7.87±0.75Ba | 78.87±0.35Aa | 121.33±9.61Ba |
中部 | 28.43±0.40ABb | 84.00±2.62Aa | 27.30±1.61Aa | 5.33±0.15Aa | 8.17±0.55ABa | 79.83±0.55Aa | 124.67±15.5ABb | |
下部 | 29.73±1.05Aa | 86.43±0.67Aa | 28.37±1.15Aa | 4.90±0.17Ba | 9.30±0.36Aa | 80.13±1.00Aa | 145.67±6.51Aa | |
P6TS | 上部 | 27.67±0.87Aab | 83.40±1.06Ba | 27.13±1.80Aa | 4.67±0.32Ab | 7.53±0.80Ba | 79.67±1.07Aa | 126.00±13.00Ba |
中部 | 29.10±0.26Aab | 85.97±0.55Aa | 28.83±2.34Aa | 4.87±0.21Ab | 9.40±0.66Aa | 81.20±0.72Aa | 144.67±6.03Aa | |
下部 | 30.37±0.78Ba | 85.43±0.55Aa | 26.77±0.32Aa | 4.63±0.31Aab | 9.17±0.29Aa | 80.07±0.32Aa | 140.00±2.65ABa | |
处理Treatments | 0.002** | 0.900ns | 0.510ns | 0.001** | 0.844ns | 0.056 | 0.101ns | |
部位Position | 0.000** | 0.010** | 0.685ns | 0.000** | 0.000** | 0.008** | 0.002** | |
处理×部位 Treatments×Position | 0.322ns | 0.132ns | 0.119ns | 0.553ns | 0.339ns | 0.504ns | 0.055ns |
[1] |
熊宗伟, 王雪姣, 顾生浩, 等. 中国棉花纤维品质检验和评价的研究进展[J]. 棉花学报, 2012, 24(5): 451-460.
DOI |
XIONG Zongwei, WANG Xuejiao, GU Shenghao, et al. Reviews of the cotton fiber quality inspection and evaluation in China[J]. Cotton Science, 2012, 24(5): 451-460. | |
[2] | 张应波, 田松如, 张翰林, 等. 新疆棉区机采棉推广调研[J]. 中国棉花加工, 2015,(2): 18-20. |
ZHANG Yingbo, TIAN Songru, ZHANG Hanlin, et al. Investigation on popularization of mechanized cotton picking in Xinjiang cotton region[J]. China Cotton Processing, 2015,(2): 18-20. | |
[3] | 刘鹏, 戴俊生. 目标价格改革对新疆棉农种植行为意愿及满意度影响分析[J]. 中国市场, 2016,(30): 231-233. |
LIU Peng, DAI Junsheng. Analysis on the influence of target price reform on cotton farmers' willingness and satisfaction with planting behavior in Xinjiang[J]. China Market, 2016,(30): 231-233. | |
[4] |
张旺锋, 田景山, 董恒义, 等. 新疆北疆机采棉优质高效综合栽培技术规程[J]. 中国棉花, 2019, 46(6): 37-39.
DOI |
ZHANG Wangfeng, TIAN Jingshan, DONG Hengyi, et al. Cultivation technical regulation of fine-quality and high-efficient machine-harvested cotton in northern Xinjiang[J]. China Cotton, 2019, 46(6): 37-39.
DOI |
|
[5] |
毛树春, 李亚兵, 雷亚平, 等. 转型升级新常态提质增效新措施——用“中高端品质” 棉花引领产业发展, 用“良好棉花” 作为转型提质的新抓手[J]. 中国棉花, 2016, 43(6): 12-13.
DOI |
MAO Shuchun, LI Yabing, LEI Yaping, et al. The transformation and upgrading of cotton industry in the new normal economy and the new measure of improving quality and increasing efficiency[J]. China Cotton, 2016, 43(6): 12-13.
DOI |
|
[6] |
周婷婷, 肖庆刚, 杜睿, 等. 我国棉花脱叶催熟技术研究进展[J]. 棉花学报, 2020, 32(2): 170-184.
DOI |
ZHOU Tingting, XIAO Qinggang, DU Rui, et al. Research advances on cotton harvest aids in China[J]. Cotton Science, 2020, 32(2): 170-184. | |
[7] |
吴艳琴, 田景山, 张煦怡, 等. 清理加工工序对新疆机采棉品质的影响[J]. 纺织学报, 2021, 42(11): 24-28.
DOI |
WU Yanqin, TIAN Jingshan, ZHANG Xuyi, et al. Effect of cotton cleaning on fiber quality of machine-harvested cotton in Xinjiang region[J]. Journal of Textile Research, 2021, 42(11): 24-28.
DOI |
|
[8] | 田景山. 新疆机采棉纤维品质影响因素及提质途径研究[D]. 石河子: 石河子大学, 2018. |
TIAN Jingshan. Study on influencing factors and improving ways of machine-picked cotton fiber quality in Xinjiang[D]. Shihezi: Shihezi University, 2018. | |
[9] | Krifa M. Fiber length distribution in cotton processing: dominant features and interaction effects[J]. Textile Research Journal, 2006, 76(5): 426-435. |
[10] | 唐淑荣, 杨伟华, 熊宗伟, 等. 近十几年来我国棉花生产领域纤维品质状况分析[J]. 中国纤检, 2013,(S1): 40-44. |
TANG Shurong, YANG Weihua, XIONG Zongwei, et al. Analysis on the cotton fiber quality of the production field over the past decade[J]. China Fiber Inspection, 2013,(S1): 40-44. | |
[11] | Tian J S, Zhang X Y, Zhang W F, et al. Leaf adhesiveness affects damage to fiber strength during seed cotton cleaning of machine-harvested cotton[J]. Industrial Crops and Products, 2017, 107: 211-216. |
[12] | 雷斌, 张云生, 李忠华, 等. 棉花脱叶剂的田间效果筛选[J]. 新疆农业科学, 2011, 48(12): 2321-2324. |
LEI Bin, ZHANG Yunsheng, LI Zhonghua, et al. Screening test of different disleave agents for accelerating effect[J]. Xinjiang Agricultural Sciences, 2011, 48(12): 2321-2324. | |
[13] |
姜伟丽, 马艳, 马小艳, 等. 不同脱叶催熟剂在棉花上的应用效果[J]. 中国棉花, 2013, 40(10): 11-14.
DOI |
JIANG Weili, MA Yan, MA Xiaoyan, et al. The application effect of different defoliants and ripeners on cotton[J]. China Cotton, 2013, 40(10): 11-14.
DOI |
|
[14] | 宋敏, 高文伟, 李贤超, 等. 脱叶剂瑞脱龙对新疆石河子主栽机采棉品种脱叶敏感性和吐絮率的影响分析[J]. 新疆农业大学学报, 2016, 39(1): 40-44. |
SONG Min, GAO Wenwei, LI Xianchao, et al. Influence of Ruituo dragon defoliant on defoliation sensitivity and boll opening rate of main machine-stripper in shihotze, Xinjiang[J]. Journal of Xinjiang Agricultural University, 2016, 39(1): 40-44. | |
[15] | 高丽丽, 李淦, 徐新霞, 等. 4种棉花脱叶剂脱叶效果的比较研究[J]. 新疆农业大学学报, 2016, 39(1): 35-39. |
GAO Lili, LI Gan, XU Xinxia, et al. Comparison of defolianting effects of the defoliants applied for 4 varieties of cotton[J]. Journal of Xinjiang Agricultural University, 2016, 39(1): 35-39. | |
[16] |
张丽娟, 夏绍南, 李永旗, 等. 新型脱叶剂欣噻利在赣北棉花上的应用效果初报[J]. 中国棉花, 2017, 44(6): 30-32.
DOI |
ZHANG Lijuan, XIA Shaonan, LI Yongqi, et al. Preliminary application effect of a new type defoliant, xinsaili, to cotton in northern Jiangxi[J]. China Cotton, 2017, 44(6): 30-32.
DOI |
|
[17] |
陈兵, 韩焕永, 张国蕾, 等. 4种脱叶催熟剂在棉花上的应用效果研究[J]. 中国棉花, 2017, 44(1): 26-28.
DOI |
CHEN Bing, HAN Huanyong, ZHANG Guolei, et al. Effect of four defoliants and ripeners on cotton[J]. China Cotton, 2017, 44(1): 26-28.
DOI |
|
[18] |
张文, 冯杨, 刘铨义, 等. 脱叶剂不同施用方法对棉花脱叶吐絮及产量和品质的影响[J]. 中国棉花, 2018, 45(5): 26-28.
DOI |
ZHANG Wen, FENG Yang, LIU Quanyi, et al. Effects of different application methods of defoliants on defoliation, boll opening, yield and quality of cotton[J]. China Cotton, 2018, 45(5): 26-28.
DOI |
|
[19] |
胡红岩, 任相亮, 马小艳, 等. 无人机喷施与人工喷施棉花脱叶剂效果对比[J]. 中国棉花, 2018, 45(7): 13-15, 19.
DOI |
HU Hongyan, REN Xiangliang, MA Xiaoyan, et al. Comparison of defoliation effects between unmanned air vehicle spraying and artificial spraying in cotton field[J]. China Cotton, 2018, 45(7): 13-15, 19.
DOI |
|
[20] |
田景山, 张煦怡, 王文敏, 等. 棉花脱叶催熟剂对纤维品质的影响及应用时间的确定[J]. 作物学报, 2020, 46(9): 1388-1397.
DOI |
TIAN Jingshan, ZHANG Xuyi, WANG Wenmin, et al. A method of defoliant application based on fiber damage and boll growth period of machine-harvested cotton[J]. Acta Agronomica Sinica, 2020, 46(9): 1388-1397.
DOI |
|
[21] |
徐守振, 左文庆, 陈民志, 等. 北疆植棉区滴灌量对化学打顶棉花植株农艺性状及产量的影响[J]. 棉花学报, 2017, 29(4): 345-355.
DOI |
XU Shouzhen, ZUO Wenqing, CHEN Minzhi, et al. Effect of drip irrigation amount on the agronomic traits and yield of cotton grown with a chemical topping in northern Xinjiang, China[J]. Cotton Science, 2017, 29(4): 345-355. | |
[22] |
周先林, 覃琴, 王龙, 等. 脱叶剂对两种机采模式下棉花脱叶效果及纤维品质的影响[J]. 中国农业科技导报, 2020, 22(11): 144-152.
DOI |
ZHOU Xianlin, QIN Qin, WANG Long, et al. Influence of defoliant on defoliation effect and fiber quality of cotton under two kinds of mechanical harvesting modes[J]. Journal of Agricultural Science and Technology, 2020, 22(11): 144-152.
DOI |
|
[23] | 田晓莉, 段留生, 李召虎, 等. 棉花化学催熟与脱叶的生理基础[J]. 植物生理学通讯, 2004, 40(6): 758-762. |
TIAN Xiaoli, DUAN Liusheng, LI Zhaohu, et al. Physiological bases of chemical accelerated boll maturation and defoliation in cotton[J]. Plant Physiology Communications, 2004, 40(6): 758-762. | |
[24] | 孙巍, 杨宝玲, 高振江, 等. 浅析我国棉花机械采收现状及制约因素[J]. 中国农机化学报, 2013, 34(6): 9-13. |
SUN Wei, YANG Baoling, GAO Zhenjiang, et al. Analysis of mechanical harvest situation and restricting factors of cotton[J]. Journal of Chinese Agricultural Mechanization, 2013, 34(6): 9-13. | |
[25] | 王聪, 罗宏海, 王明洋, 等. 播种期对不同配置方式杂交棉光合物质生产及产量的影响[J]. 新疆农业科学, 2015, 52(11): 1961-1968. |
WANG Cong, LUO Honghai, WANG Mingyang, et al. Effects of sowing date on photosynthetic production and yield of hybrid cotton material under different plant models[J]. Xinjiang Agricultural Sciences, 2015, 52(11): 1961-1968. | |
[26] | 崔岳宁, 高振江, 杨宝玲. 不同行距种植模式下机采棉品质比较分析[J]. 中国农机化学报, 2016, 37(7): 235-240. |
CUI Yuening, GAO Zhenjiang, YANG Baoling. Quality analysis of different mechanical harvesting cotton planting patterns[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(7): 235-240. | |
[27] |
李建峰, 王聪, 梁福斌, 等. 新疆机采模式下棉花株行距配置对冠层结构指标及产量的影响[J]. 棉花学报, 2017, 29(2): 157-165.
DOI |
LI Jianfeng, WANG Cong, LIANG Fubin, et al. Row spacing and planting density affect canopy structure and yield in machine-picked cotton in Xinjiang[J]. Cotton Science, 2017, 29(2): 157-165. | |
[28] | 李新裕, 陈玉娟, 乔江, 等. 脱叶剂对棉花产量及纤维品质的影响[J]. 中国棉花, 2001, 28(2): 11-13. |
LI Xinyu, CHEN Yujuan, QIAO Jiang, et al. Effect of defoliant on cotton yield and fiber quality[J]. China Cotton, 2001, 28(2): 11-13. | |
[29] |
廖宝鹏, 王崧嫚, 杜明伟, 等. 棉花不同部位主茎叶对脱叶剂噻苯隆的响应及机理[J]. 棉花学报, 2020, 32(5): 418-424.
DOI |
LIAO Baopeng, WANG Songman, DU Mingwei, et al. Responses and underlying mechanisms of different mainstem leaves on cotton to defoliant thidiazuron[J]. Cotton Science, 2020, 32(5): 418-424. | |
[30] | 何强, 王辉, 郭方剑, 等. 脱叶剂对不同品种棉花脱叶率和吐絮率的影响[J]. 绿洲农业科学与工程, 2021, 7(1): 50-55. |
[31] | 王彦, 梁艳, 李鲁华. 棉花采净率调查分析[J]. 新疆农垦科技, 2015, 38(11): 12-14. |
WANG Yan, LIANG Yan, LI Luhua. Investigation and analysis of cotton net picking rate[J]. Xinjiang Farm Research of Science and Technology, 2015, 38(11): 12-14. | |
[32] | 李健伟, 吴鹏昊, 肖绍伟, 等. 机采种植模式对不同株型棉花脱叶及纤维品质的影响[J]. 干旱地区农业研究, 2019, 37(1): 82-88. |
LI Jianwei, WU Penghao, XIAO Shaowei, et al. Effects of cotton planting modes with machine picking on defoliation and fiber quality of different plant types[J]. Agricultural Research in the Arid Areas, 2019, 37(1): 82-88. |
[1] | 张凌健, 张凯, 张慧, 郭小梦, 陈国悦, 王奕丁, 贾庆宇. 棉花全生育期植株含水率与顶部茎叶形态特征的关系[J]. 新疆农业科学, 2025, 62(3): 531-538. |
[2] | 章莲, 陈湘耀, 王潭刚, 马晓梅, 陈兵, 王刚, 段震宇. 高强度地膜对土壤温度、湿度及棉花生长的影响[J]. 新疆农业科学, 2025, 62(3): 539-545. |
[3] | 赵玉鹏, 陈波浪, 王治国, 付彦博, 扁青永. 不同碳源物质输入对板结黏土特性及棉花苗期生长的影响[J]. 新疆农业科学, 2025, 62(3): 556-571. |
[4] | 王勇攀, 马君, 李晨宇, 姚梦瑶, 王子轩, 黄灵芝, 朱海艳, 刘皖蓉, 李波, 杨洋, 高文伟. 基于卷积神经网络和合成数据集训练鉴定棉花种子萌发期的耐盐性[J]. 新疆农业科学, 2025, 62(2): 261-269. |
[5] | 胡莎莎, 邵丽萍, 陈丽华, 宋卫平, 赵海, 张新宇, 孙杰. 脱叶剂对机采棉棉铃发育及纤维品质的影响[J]. 新疆农业科学, 2025, 62(2): 270-277. |
[6] | 陆明昆, 李军宏, 尼陆排尔·于苏甫江, 潘喜鹏, 刘晓成, 张正贵, 潘占磊, 翟梦华, 张要朋, 赵文琪, 王丽宏, 王占彪. 追施硅肥对棉花生长发育及产量品质的影响[J]. 新疆农业科学, 2025, 62(2): 286-293. |
[7] | 王奕丁, 张凯, 张凌健, 张慧, 郭小梦, 陈国悦. 滴灌量对新疆棉花生长发育、产量形成和水分利用效率的影响[J]. 新疆农业科学, 2025, 62(2): 294-301. |
[8] | 王晓艳, 白云岗, 柴仲平, 卢震林, 刘洪波, 肖军, 阿曼尼萨. 休作期冬灌滴灌调控下“干播湿出”对棉花生长及产量影响[J]. 新疆农业科学, 2025, 62(2): 302-313. |
[9] | 孙彩琴, 吴佳, 黄海, 郭家鑫, 闵伟, 郭慧娟. 不同盐碱胁迫对棉花根系蛋白质组的影响[J]. 新疆农业科学, 2025, 62(1): 146-160. |
[10] | 赖成霞, 杨延龙, 汪鹏龙, 朱梦宇, 杨栋, 李春平, 葛风伟, 玛依拉·玉素音, 阳妮, 马君. 新疆北疆部分棉区落叶型棉花黄萎病菌落形态特征及致病力鉴定[J]. 新疆农业科学, 2025, 62(1): 174-181. |
[11] | 王伟, 张仁福, 刘海洋, 李晓维, 姚举. 新疆棉田花蓟马消长规律及空间分布[J]. 新疆农业科学, 2025, 62(1): 202-209. |
[12] | 苗红萍, 王晓伟, 田聪华, 李志, 张玉新, 戴俊生. 塔里木河流域棉花生产与布局演变特征及驱动因素分析[J]. 新疆农业科学, 2024, 61(S1): 217-226. |
[13] | 王俊铎, 崔豫疆, 梁亚军, 龚照龙, 郑巨云, 李雪源. 新疆棉花生产优势区域分析[J]. 新疆农业科学, 2024, 61(S1): 60-69. |
[14] | 郑巨云, 龚照龙, 梁亚军, 耿世伟, 孙丰磊, 阳妮, 李雪源, 王俊铎. 新疆机采棉花生产关键技术模式[J]. 新疆农业科学, 2024, 61(S1): 70-74. |
[15] | 李杰, 刘佳, 王亮, 张娜, 杨延龙, 郑子漂, 魏鑫, 王萌, 周子馨, 阳妮, 龚照龙, 侯献飞, 黄启秀, 阿不都卡地尔·库尔班, 张济鹏, 张鹏忠. “棉、油、糖”科技成果转化现状及应用分析[J]. 新疆农业科学, 2024, 61(S1): 89-94. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 29
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 253
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||