

新疆农业科学 ›› 2025, Vol. 62 ›› Issue (4): 791-799.DOI: 10.6048/j.issn.1001-4330.2025.04.002
李珂1(
), 印彩霞1, 陈茂光1, 崔涵予2, 王科1, 刘立杨1, 汤秋香1(
)
收稿日期:2024-09-15
出版日期:2025-04-20
发布日期:2025-06-20
通信作者:
汤秋香(1981-),女,河南开封人,教授,博士,硕士生/博士生导师,研究方向为农田生态环境与耕作制度,(E-mail)790058828@qq.com作者简介:李珂(2002-),女,河南新乡人,本科生,研究方向为农学,(E-mail)2041633697@qq.com
基金资助:
LI Ke1(
), YIN Caixia1, CHEN Maoguang1, CUI Hanyu2, WANG Ke1, LIU Liyang1, TANG Qiuxiang1(
)
Received:2024-09-15
Published:2025-04-20
Online:2025-06-20
Supported by:摘要:
【目的】基于SPAD值估算进行快速无损监测棉花田间管理,为棉田精准施肥提供技术支撑。【方法】采用大疆创新M350 RTK无人机搭载多光谱传感器获取多时相冠层遥感影像,并计算多光谱植被指数,筛选与SPAD值显著相关的特征,结合极限学习机、随机森林回归、支持向量回归、多元逐步回归四种机器学习算法构建棉花各生育时期SPAD值估算模型。【结果】各植被指数与棉花SPAD值在各生育时期均呈极显著正相关,其中CCCI(冠层叶绿素含量指数)和CIrededge(红边叶绿素指数)与SPAD值间具有较高的相关性,相关系数分别高达0.81、0.78。对比不同生育时期模型精度,开花期模型精度最高,最佳估测模型为ELM,R2为0.741,RMSE为1.448,rRMSE为0.025,现蕾期和吐絮期的最优估算模型为ELM,R2分别为0.656、0.587,盛铃期最优估测模型为RFR,R2为0.577。【结论】棉花叶片SPAD值估算的最佳生育时期处于开花期,最优模型表现为ELM,模型精度R2最高达0.741。
中图分类号:
李珂, 印彩霞, 陈茂光, 崔涵予, 王科, 刘立杨, 汤秋香. 基于无人机多光谱影像结合机器学习的棉花SPAD值估算[J]. 新疆农业科学, 2025, 62(4): 791-799.
LI Ke, YIN Caixia, CHEN Maoguang, CUI Hanyu, WANG Ke, LIU Liyang, TANG Qiuxiang. Research on cotton SPAD estimation based on UAV multispectral images combined with machine learning[J]. Xinjiang Agricultural Sciences, 2025, 62(4): 791-799.
| 植被指数 Vegetation indexes | 公式 Formula | 文献 Reference |
|---|---|---|
| 冠层叶绿素含量指数(CCCI) | [ | |
| 红边叶绿素指数(CIrededge) | [ | |
| 叶片叶绿素指数(LCI) | [ | |
| 修正型红边变换植被指数(MRETVI) | [ | |
| 修正型增强植被指数(MEVI) | [ | |
| 绿色归一化植被指数(GNDVI) | [ | |
| 修正型简单比值指数(MSR) | [ | |
| 双差分指数(DD) | [ | |
| 陆地叶绿素指数(MTCI) | [ |
表1 植被指数计算公式
Tab.1 Calculation formula of Vegetation index
| 植被指数 Vegetation indexes | 公式 Formula | 文献 Reference |
|---|---|---|
| 冠层叶绿素含量指数(CCCI) | [ | |
| 红边叶绿素指数(CIrededge) | [ | |
| 叶片叶绿素指数(LCI) | [ | |
| 修正型红边变换植被指数(MRETVI) | [ | |
| 修正型增强植被指数(MEVI) | [ | |
| 绿色归一化植被指数(GNDVI) | [ | |
| 修正型简单比值指数(MSR) | [ | |
| 双差分指数(DD) | [ | |
| 陆地叶绿素指数(MTCI) | [ |
| 生育时期 Fertility period | 样本数 Number of samples | 最小值 Minimum value | 最大值 Maximum value | 平均数 Average | 标准差 Standard deviation | 变异系数 Cvariation coefficient(%) |
|---|---|---|---|---|---|---|
| 现蕾期 Budding stage | 96 | 43.3 | 62.3 | 55.1 | 3.349 2 | 6.08% |
| 开花期 Flowering period | 96 | 51.5 | 64.6 | 57.8 | 2.744 6 | 4.75% |
| 盛铃期 Full boll period | 96 | 56.8 | 72.4 | 65.2 | 3.107 4 | 4.77% |
| 吐絮期 Opening-boll stage | 96 | 53.1 | 85.7 | 66.1 | 7.245 7 | 10.96% |
表2 各生育时期棉花SPAD值统计特征
Tab.2 Statistical characteristics of SPAD value in cotton at different growth stages
| 生育时期 Fertility period | 样本数 Number of samples | 最小值 Minimum value | 最大值 Maximum value | 平均数 Average | 标准差 Standard deviation | 变异系数 Cvariation coefficient(%) |
|---|---|---|---|---|---|---|
| 现蕾期 Budding stage | 96 | 43.3 | 62.3 | 55.1 | 3.349 2 | 6.08% |
| 开花期 Flowering period | 96 | 51.5 | 64.6 | 57.8 | 2.744 6 | 4.75% |
| 盛铃期 Full boll period | 96 | 56.8 | 72.4 | 65.2 | 3.107 4 | 4.77% |
| 吐絮期 Opening-boll stage | 96 | 53.1 | 85.7 | 66.1 | 7.245 7 | 10.96% |
图2 各生育时期植被指数与棉花SPAD值相关系数的热图 注:A:现蕾期;B:开花期;C:盛铃期;D:吐絮期
Fig.2 Thermogram of correlation coefficient between vegetation index and cotton SPAD value at different growth stages Notes:A: Budding stage; B: Flowering period; C: Full boll period; D: Opening-boll stage
| 生育时期 Fertility period | 估算模型 Estimation model | 验证集Verification set | ||
|---|---|---|---|---|
| R2 | RMSE | rRMSE | ||
| 现蕾期 Budding stage | 随机森林回归RFR | 0.534 | 2.686 | 0.049 |
| 极限学习机ELM | 0.656 | 2.306 | 0.042 | |
| 多元逐步回归MSR | 0.629 | 2.395 | 0.043 | |
| 支持向量回归SVR | 0.512 | 2.747 | 0.050 | |
| 开花期 Flowering period | 随机森林回归RFR | 0.695 | 1.571 | 0.027 |
| 极限学习机ELM | 0.741 | 1.448 | 0.025 | |
| 多元逐步回归MSR | 0.719 | 1.509 | 0.026 | |
| 支持向量回归SVR | 0.737 | 1.458 | 0.025 | |
| 盛铃期 Full boll period | 随机森林回归RFR | 0.577 | 1.980 | 0.031 |
| 极限学习机ELM | 0.549 | 2.044 | 0.032 | |
| 多元逐步回归MSR | 0.520 | 2.109 | 0.033 | |
| 支持向量回归SVR | 0.569 | 2.000 | 0.031 | |
| 吐絮期 Opening-boll stage | 随机森林回归RFR | 0.573 | 5.364 | 0.080 |
| 极限学习机ELM | 0.587 | 5.274 | 0.079 | |
| 多元逐步回归MSR | 0.536 | 5.594 | 0.084 | |
| 支持向量回归SVR | 0.511 | 5.742 | 0.086 | |
表3 各生育时期棉花SPAD值模型估测精度
Tab.3 Estimation accuracy of cotton SPAD value model at different growth stages
| 生育时期 Fertility period | 估算模型 Estimation model | 验证集Verification set | ||
|---|---|---|---|---|
| R2 | RMSE | rRMSE | ||
| 现蕾期 Budding stage | 随机森林回归RFR | 0.534 | 2.686 | 0.049 |
| 极限学习机ELM | 0.656 | 2.306 | 0.042 | |
| 多元逐步回归MSR | 0.629 | 2.395 | 0.043 | |
| 支持向量回归SVR | 0.512 | 2.747 | 0.050 | |
| 开花期 Flowering period | 随机森林回归RFR | 0.695 | 1.571 | 0.027 |
| 极限学习机ELM | 0.741 | 1.448 | 0.025 | |
| 多元逐步回归MSR | 0.719 | 1.509 | 0.026 | |
| 支持向量回归SVR | 0.737 | 1.458 | 0.025 | |
| 盛铃期 Full boll period | 随机森林回归RFR | 0.577 | 1.980 | 0.031 |
| 极限学习机ELM | 0.549 | 2.044 | 0.032 | |
| 多元逐步回归MSR | 0.520 | 2.109 | 0.033 | |
| 支持向量回归SVR | 0.569 | 2.000 | 0.031 | |
| 吐絮期 Opening-boll stage | 随机森林回归RFR | 0.573 | 5.364 | 0.080 |
| 极限学习机ELM | 0.587 | 5.274 | 0.079 | |
| 多元逐步回归MSR | 0.536 | 5.594 | 0.084 | |
| 支持向量回归SVR | 0.511 | 5.742 | 0.086 | |
图3 棉花SPAD值各生育时期ELM模型实测值和预测值的散点图 注:A:现蕾期;B:开花期;C:盛铃期;D:吐絮期
Fig.3 Scatter plot of measured and predicted values of ELM model in cotton SPAD value at different growth stages Notes:A: Budding stage; B: Flowering period; C: Full boll period; D: Opening-boll stage
| [1] | 秦占飞, 常庆瑞, 申健, 等. 引黄灌区水稻红边特征及SPAD高光谱预测模型[J]. 武汉大学学报(信息科学版), 2016, 41(9): 1168-1175. |
| QIN Zhanfei, CHANG Qingrui, SHEN Jian, et al. Red edge characteristics and SPAD estimation model using hyperspectral data for rice in Ningxia irrigation zone[J]. Geomatics and Information Science of Wuhan University, 2016, 41(9): 1168-1175. | |
| [2] | 苏伟, 赵晓凤, 孙中平, 等. 基于Sentinel-2A影像的玉米冠层叶绿素含量估算[J]. 光谱学与光谱分析, 2019, 39(5): 1535-1542. |
|
SU Wei, ZHAO Xiaofeng, SUN Zhongping, et al. Estimating the corn canopy chlorophyll content using the sentinel-2A image[J]. Spectroscopy and Spectral Analysis, 2019, 39(5): 1535-1542.
DOI |
|
| [3] | 夏天, 吴文斌, 周清波, 等. 不同地域冬小麦叶片SPAD高光谱估算研究[J]. 中国农业资源与区划, 2014, 35(4): 49-57. |
| XIA Tian, WU Wenbin, ZHOU Qingbo, et al. Hyperspectral- based estimation of winter wheat SPAD in two different regions[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2014, 35(4): 49-57. | |
| [4] | Marenco R A, Antezana-Vera S A, Nascimento H C S. Relationship between specific leaf area, leaf thickness, leaf water content and SPAD-502 readings in six Amazonian tree species[J]. Photosynthetica, 2009, 47(2): 184-190. |
| [5] |
Uddling J, Gelang-Alfredsson J, Piikki K, et al. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings[J]. Photosynthesis Research, 2007, 91(1): 37-46.
DOI PMID |
| [6] | Pagola M, Ortiz R, Irigoyen I, et al. New method to assess barley nitrogen nutrition status based on image colour analysis[J]. Computers and Electronics in Agriculture, 2009, 65(2): 213-218. |
| [7] | Mulla D J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps[J]. Biosystems Engineering, 2013, 114(4): 358-371. |
| [8] | 周敏姑, 邵国敏, 张立元, 等. 基于无人机遥感的冬小麦叶绿素含量多光谱反演[J]. 节水灌溉, 2019,(9): 40-45. |
| ZHOU Mingu, SHAO Guomin, ZHANG Liyuan, et al. Multi-spectral inversion of SPAD value of winter wheat based on unmanned aerial vehicle remote sensing[J]. Water Saving Irrigation, 2019,(9): 40-45. | |
| [9] | 王烁, 常庆瑞, 刘梦云, 等. 基于高光谱遥感的棉花叶片叶绿素含量估算[J]. 中国农业大学学报, 2017, 22(4): 16-27. |
| WANG Shuo, CHANG Qingrui, LIU Mengyun, et al. Estimation on chlorophyll content of cotton based on optimized spectral index[J]. Journal of China Agricultural University, 2017, 22(4): 16-27. | |
| [10] | 毛智慧, 邓磊, 孙杰, 等. 无人机多光谱遥感在玉米冠层叶绿素预测中的应用研究[J]. 光谱学与光谱分析, 2018, 38(9): 2923. |
| MAO Zhihui, DENG Lei, SUN Jie, et al. Research on the application of UAV multispectral remote sensing in the maize chlorophyll prediction[J]. Spectroscopy and Spectral Analysis, 2018, 38(9): 2923. | |
| [11] | 刘江凡, 赵泽艺, 李朝阳, 等. 基于无人机多光谱遥感的苹果树冠层SPAD反演[J/OL]. 排灌机械工程学报,1-7[2024-01-18]. |
| LIU Jiangfan, ZHAO Zeyi, LI Zhaoyang, et al. Estimation of apple tree canopy SPAD based on UAV multispectral remote sensing[J/OL]. Journal of Drainage and Irrigation Machinery Engineering(JDIME),1-7[2024-01-18]. | |
| [12] | Wang J J, Zhou Q, Shang J L, et al. UAV- and machine learning-based retrieval of wheat SPAD values at the overwintering stage for variety screening[J]. Remote Sensing, 2021, 13(24): 5166. |
| [13] | Sudu B, Rong G, Guga S, et al. Retrieving SPAD Values of Summer Maize Using UAV Hyperspectral Data Based on Multiple Machine Learning Algorithm. Remote Sens. 2022, 14, 5407. |
| [14] | Guo Y H, Chen S Z, Li X X, et al. Machine learning-based approaches for predicting SPAD values of maize using multi-spectral images[J]. Remote Sensing, 2022, 14(6): 1337. |
| [15] | 王丹, 赵朋, 孙家波, 等. 基于无人机多光谱的夏玉米叶绿素含量反演研究[J]. 山东农业科学, 2021, 53(6): 121-126, 132. |
| WANG Dan, ZHAO Peng, SUN Jiabo, et al. Inversion of chlorophyll content in summer maize based on UAV multi-spectrum[J]. Shandong Agricultural Sciences, 2021, 53(6): 121-126, 132. | |
| [16] | 罗亚, 徐建华, 岳文泽. 基于遥感影像的植被指数研究方法述评[J]. 生态科学, 2005, 24(1): 75-79. |
| LUO Ya, XU Jianhua, YUE Wenze. Research on vegetation indices based on the remote sensing images[J]. Ecologic Science, 2005, 24(1): 75-79. | |
| [17] | 周琦, 王建军, 霍中洋, 等. 不同生育期小麦冠层SPAD值无人机多光谱遥感估算[J]. 光谱学与光谱分析, 2023, 43(6): 1912-1920. |
| ZHOU Qi, WANG Jianjun, HUO Zhongyang, et al. UAV multi-spectral remote sensing estimation of wheat canopy SPAD value in different growth periods[J]. Spectroscopy and Spectral Analysis, 2023, 43(6): 1912-1920. | |
| [18] | Wang Y., Tan S., Jia X., et al. Estimating Relative Chlorophyll Content in Rice Leaves Using Unmanned Aerial Vehicle Multi-Spectral Images and Spectral-Textural Analysis. Agronomy 2023, 13, 1541. |
| [19] | Cao Q, Miao Y X, Shen J N, et al. Improving in-season estimation of rice yield potential and responsiveness to topdressing nitrogen application with Crop Circle active crop canopy sensor[J]. Precision Agriculture, 2016, 17(2): 136-154. |
| [20] | Bannari A, Khurshid K S, Staenz K, et al. A comparison of hyperspectral chlorophyll indices for wheat crop chlorophyll content estimation using laboratory reflectance measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(10): 3063-3074. |
| [21] | 冯浩, 杨祯婷, 陈浩, 等. 基于无人机多光谱影像的夏玉米SPAD估算模型研究[J]. 农业机械学报, 2022, 53(10): 211-219. |
| FENG Hao, YANG Zhenting, CHEN Hao, et al. Estimation of summer maize SPAD based on UAV multispectral images[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(10): 211-219. | |
| [22] | 王桥, 叶敏, 魏孟, 等. 基于ELM和MCSCKF的锂离子电池SOC估计[J]. 工程科学学报, 2023, 45(6): 995-1002. |
| WANG Qiao, YE Min, WEI Meng, et al. ELM- and MCSCKF-based state of charge estimation for lithium-ion batteries[J]. Chinese Journal of Engineering, 2023, 45(6): 995-1002. | |
| [23] | Gholizadeh M, Jamei M, Ahmadianfar I, et al. Prediction of nanofluids viscosity using random forest (RF) approach[J]. Chemometrics and Intelligent Laboratory Systems, 2020, 201: 104010. |
| [24] | 陈兆中, 段少坤, 岳云开, 等. 基于无人机航拍图像的水稻叶片SPAD值反演[J/OL]. 杂交水稻,1-9[2024-01-15]. |
| CHEN Zhaozhong, DUAN Shaokun, YUE Yunkai, et al. Inversion of SPAD Values of Rice Canopy Based on Aerial Images Taken by Unmanned Aerial Vehicle[J/OL]. Hybrid Rice, 1-9[2024-01-15]. | |
| [25] |
张琳, 汪廷华, 周慧颖. 基于群智能算法的SVR参数优化研究进展[J]. 计算机工程与应用, 2021, 57(16): 50-64.
DOI |
|
ZHANG Lin, WANG Tinghua, ZHOU Huiying. Research progress on parameter optimization of SVR based on swarm intelligence algorithm[J]. Computer Engineering and Applications, 2021, 57(16): 50-64.
DOI |
|
| [26] | Horler D N H, Dockray M, Barber J. The red edge of plant leaf reflectance[J]. International Journal of Remote Sensing, 1983, 4(2): 273-288. |
| [27] | 黄春燕. 基于高光谱数据的北疆棉花遥感监测研究[D]. 石河子: 石河子大学, 2005. |
| HUANG Chunyan. Study on remote sensing monitoring of cotton in northern Xinjiang based on hyperspectral data[D]. Shihezi: Shihezi University, 2005. | |
| [28] | 刘成成. 基于无人机多光谱影像的棉花叶片SPAD值和LAI反演研究[D]. 塔里木大学, 2023. |
| LIU C. Research on SPAD value and LAI inversion of cotton leaves based on drone multispectral images[D]. Tarim University, 2023. | |
| [29] |
纪伟帅, 陈红艳, 王淑婷, 等. 基于无人机多光谱的华北平原花铃期棉花叶片SPAD建模方法研究[J]. 中国农学通报, 2021, 37(22): 143-150.
DOI |
|
JI Weishuai, CHEN Hongyan, WANG Shuting, et al. Modeling method of cotton leavesSPAD at flowering and boll stage in North China Plain based on UAV multi-spectrum[J]. Chinese Agricultural Science Bulletin, 2021, 37(22): 143-150.
DOI |
|
| [30] | 田明璐, 班松涛, 常庆瑞, 等. 基于无人机成像光谱仪数据的棉花叶绿素含量反演[J]. 农业机械学报, 2016, 47(11): 285-293. |
| TIAN Minglu, BAN Songtao, CHANG Qingrui, et al. Estimation of SPAD value of cotton leaf using hyperspectral images from UAV-based imaging spectroradiometer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(11): 285-293. | |
| [31] |
依尔夏提·阿不来提, 买买提·沙吾提, 白灯莎·买买提艾力, 等. 基于随机森林法的棉花叶片叶绿素含量估算[J]. 作物学报, 2019, 45(1):81-90.
DOI |
|
Yierxiati AbulaitiuBaidengsha, Maimaitiaili Shawuti, Baidengsha Maimaitiaili, et al. Estimation of leaf chlorophyll content in cotton based on the random forest approach[J]. Acta Agronomica Sinica, 2019, 45(1):81.
DOI |
| [1] | 包艳丽, 王晓伟, 李琼诗, 张利召, 陈玉兰. 新疆主要棉区棉花高质量发展水平及差异分析[J]. 新疆农业科学, 2025, 62(4): 1032-1040. |
| [2] | 赵宇航, 颜安, 马梦倩, 肖淑婷, 孙哲, 李靖言. 基于无人机多光谱影像水氮耦合下棉花LAI与SPAD值模型的精度估测[J]. 新疆农业科学, 2025, 62(4): 781-790. |
| [3] | 李虎情, 邵冬南, 张翼, 刘峰, 张新宇, 李艳军, 孙杰, 杨永林, 薛飞. 陆地棉GhSHA1基因的特征分析及其功能验证[J]. 新疆农业科学, 2025, 62(4): 800-806. |
| [4] | 薛钦元, 张建良, 李鹏飞, 冯宏祖, 武刚, 王兰. 无人机飞防助剂和杀虫剂组合对其雾滴沉降特性及棉蚜防效的影响[J]. 新疆农业科学, 2025, 62(4): 929-935. |
| [5] | 张凌健, 张凯, 张慧, 郭小梦, 陈国悦, 王奕丁, 贾庆宇. 棉花全生育期植株含水率与顶部茎叶形态特征的关系[J]. 新疆农业科学, 2025, 62(3): 531-538. |
| [6] | 章莲, 陈湘耀, 王潭刚, 马晓梅, 陈兵, 王刚, 段震宇. 高强度地膜对土壤温度、湿度及棉花生长的影响[J]. 新疆农业科学, 2025, 62(3): 539-545. |
| [7] | 徐守振, 马麒, 宁新柱, 李吉莲, 宿俊吉, 韩焕勇, 王方永, 林海. 不同行距和脱叶剂对棉花脱叶效果的影响[J]. 新疆农业科学, 2025, 62(3): 546-555. |
| [8] | 赵玉鹏, 陈波浪, 王治国, 付彦博, 扁青永. 不同碳源物质输入对板结黏土特性及棉花苗期生长的影响[J]. 新疆农业科学, 2025, 62(3): 556-571. |
| [9] | 王勇攀, 马君, 李晨宇, 姚梦瑶, 王子轩, 黄灵芝, 朱海艳, 刘皖蓉, 李波, 杨洋, 高文伟. 基于卷积神经网络和合成数据集训练鉴定棉花种子萌发期的耐盐性[J]. 新疆农业科学, 2025, 62(2): 261-269. |
| [10] | 胡莎莎, 邵丽萍, 陈丽华, 宋卫平, 赵海, 张新宇, 孙杰. 脱叶剂对机采棉棉铃发育及纤维品质的影响[J]. 新疆农业科学, 2025, 62(2): 270-277. |
| [11] | 陆明昆, 李军宏, 尼陆排尔·于苏甫江, 潘喜鹏, 刘晓成, 张正贵, 潘占磊, 翟梦华, 张要朋, 赵文琪, 王丽宏, 王占彪. 追施硅肥对棉花生长发育及产量品质的影响[J]. 新疆农业科学, 2025, 62(2): 286-293. |
| [12] | 王奕丁, 张凯, 张凌健, 张慧, 郭小梦, 陈国悦. 滴灌量对新疆棉花生长发育、产量形成和水分利用效率的影响[J]. 新疆农业科学, 2025, 62(2): 294-301. |
| [13] | 王晓艳, 白云岗, 柴仲平, 卢震林, 刘洪波, 肖军, 阿曼尼萨. 休作期冬灌滴灌调控下“干播湿出”对棉花生长及产量影响[J]. 新疆农业科学, 2025, 62(2): 302-313. |
| [14] | 孙彩琴, 吴佳, 黄海, 郭家鑫, 闵伟, 郭慧娟. 不同盐碱胁迫对棉花根系蛋白质组的影响[J]. 新疆农业科学, 2025, 62(1): 146-160. |
| [15] | 赖成霞, 杨延龙, 汪鹏龙, 朱梦宇, 杨栋, 李春平, 葛风伟, 玛依拉·玉素音, 阳妮, 马君. 新疆北疆部分棉区落叶型棉花黄萎病菌落形态特征及致病力鉴定[J]. 新疆农业科学, 2025, 62(1): 174-181. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||