

新疆农业科学 ›› 2025, Vol. 62 ›› Issue (4): 781-790.DOI: 10.6048/j.issn.1001-4330.2025.04.001
赵宇航1(
), 颜安2(
), 马梦倩1, 肖淑婷1, 孙哲1, 李靖言3
收稿日期:2024-09-15
出版日期:2025-04-20
发布日期:2025-06-20
通信作者:
颜安(1983-),男,新疆乌鲁木齐人,教授,博士,硕士生/博士生导师,研究方向为数字农业与生态环境遥感监测,(E-mail)yanan@xjau.edu.cn作者简介:赵宇航(1998-),男,河南开封人,硕士研究生,研究方向为无人机遥感棉花长势监测,(E-mail)860543512@qq.com
基金资助:
ZHAO Yuhang1(
), YAN An2(
), MA Mengqian1, XIAO Shuting1, SUN Zhe1, LI Jingyan3
Received:2024-09-15
Published:2025-04-20
Online:2025-06-20
Supported by:摘要:
【目的】基于多光谱遥感数据通过无人机精度估测棉花叶绿素含量和叶面积指数,为预测产量及精准田间管理提供依据。【方法】以新疆阿拉尔市棉花为研究对象,分析影响棉花叶面积指数(Leaf area index,LAI)和叶绿素相对含量(Chlorophyll relative content,SPAD)的因素,设置不同灌溉水平与不同氮素水平营造差异化的冠层结构。利用搭载多光谱传感器的无人机获取主要生育时期棉花的冠层图像得到植被指数 (Vegetation indexs,VIs),基于二阶概率统计滤波(CO-occurrence measures)方法获取均值(MEA) 方差(VAR)、协同性(HOM)、对比度(CON)、相异性(DIS)、信息(ENT)、二阶矩(SEM)、相关性(COR)等 8 个纹理特征(Texture features,TFs)。分别建立基于光谱特征、纹理特征以及二者结合的棉花LAI与SPAD值的估算模型,并进行差异比较。【结果】(1)棉花LAI和SPAD值在整个生育期呈先上升后下降的趋势,棉花LAI和SPAD值最大值均在花期。(2)筛选出相关系数绝对值高的 4种VIs(NDVI、OSAVI、NDCI、RVI)与3种TFs(CON、ENT、SEM),基于SVR、BPNN、RF构建棉花LAI和SPAD值估测模型,估测模型精度最高为RF模型。(3)3种输入变量对棉花LAI和SPAD值的估测效果按照精度高低排序依次为VIs+TFs、VIs、TFs。融合后的变量对棉花LAI和SPAD值估算模型精度最高(R2=0.97,RMSE=0.07、R2=0.91,RMSE=1.63)。【结论】利用无人机多光谱遥感影像提取VIs与TFs构建的RF算法模型,可以实现对高精度估测棉花LAI和SPAD值。
中图分类号:
赵宇航, 颜安, 马梦倩, 肖淑婷, 孙哲, 李靖言. 基于无人机多光谱影像水氮耦合下棉花LAI与SPAD值模型的精度估测[J]. 新疆农业科学, 2025, 62(4): 781-790.
ZHAO Yuhang, YAN An, MA Mengqian, XIAO Shuting, SUN Zhe, LI Jingyan. Estimation of cotton LAI and SPAD under water-nitrogen coupling based on multi-spectral imaging of unmanned aerial vehicle[J]. Xinjiang Agricultural Sciences, 2025, 62(4): 781-790.
| 植被指数 Vegetation Indexes | 计算公式 Formula | 参考文献 References |
|---|---|---|
| 归一化差异植被指数Normalized Difference Vegetation Index(NDVI) | (NIR-R)/(NIR+R) | [ |
| 绿色归一化植被指数Green Normalized Vegetation Index (GNDVI) | (NIR-G)/(NIR+G) | [ |
| 差值植被指数Difference vegetation index (DVI) | NIR-R | [ |
| 增强型植被指数Enhanced vegetation index (EVI) | 2.5(NIR-R)/(NIR+6R-7.5B+1) | [ |
| 土壤调节植被指数Soil-regulated vegetation index (SAVI) | (1 + L)(NIR-R)/NIR+R+L | [ |
| 优化调节植被指数Optimize the adjustment of vegetation index (OSAVI) | 1.16(NIR-R)/(NIR+R+0.16) | [ |
| 修正型土壤调整植被指数Modified soil-adjusted vegetation index (MSAVI) | [ | |
| 比值植被指数Ratio vegetation index (RVI) | NIR/R | [ |
| 归一化差异红色边缘指数Normalized Difference Red Edge Index (NDRE) | (NIR-RE)/(NIR+RE) | [ |
| 红绿比值指数 Red green ratio index (RGRI) | R/G | [ |
| 绿蓝比值指数Blue-green ratio index (BGRI) | B/G | [ |
| 归一化色素叶绿素比值指数Normalized Pigment Chlorophyll Ratio IndeX(NPCI) | (RE-R)/(RE+R) | [ |
| 蓝色归一化植被指数Blue Normalized Vegetation Index (BNDVI) | (NIR-B)/(NIR+B) | [ |
| 再归一化植被指数Renormalize the vegetation index (RDVI) | [ | |
| 改进的非线性植被指数Improved nonlinear vegetation index (MNLI) | [ | |
| 改进简单植被指数Improved Simple Vegetation Index (MSR) | [ |
表1 植被指数计算公式
Tab.1 Formula for calculating the vegetation index
| 植被指数 Vegetation Indexes | 计算公式 Formula | 参考文献 References |
|---|---|---|
| 归一化差异植被指数Normalized Difference Vegetation Index(NDVI) | (NIR-R)/(NIR+R) | [ |
| 绿色归一化植被指数Green Normalized Vegetation Index (GNDVI) | (NIR-G)/(NIR+G) | [ |
| 差值植被指数Difference vegetation index (DVI) | NIR-R | [ |
| 增强型植被指数Enhanced vegetation index (EVI) | 2.5(NIR-R)/(NIR+6R-7.5B+1) | [ |
| 土壤调节植被指数Soil-regulated vegetation index (SAVI) | (1 + L)(NIR-R)/NIR+R+L | [ |
| 优化调节植被指数Optimize the adjustment of vegetation index (OSAVI) | 1.16(NIR-R)/(NIR+R+0.16) | [ |
| 修正型土壤调整植被指数Modified soil-adjusted vegetation index (MSAVI) | [ | |
| 比值植被指数Ratio vegetation index (RVI) | NIR/R | [ |
| 归一化差异红色边缘指数Normalized Difference Red Edge Index (NDRE) | (NIR-RE)/(NIR+RE) | [ |
| 红绿比值指数 Red green ratio index (RGRI) | R/G | [ |
| 绿蓝比值指数Blue-green ratio index (BGRI) | B/G | [ |
| 归一化色素叶绿素比值指数Normalized Pigment Chlorophyll Ratio IndeX(NPCI) | (RE-R)/(RE+R) | [ |
| 蓝色归一化植被指数Blue Normalized Vegetation Index (BNDVI) | (NIR-B)/(NIR+B) | [ |
| 再归一化植被指数Renormalize the vegetation index (RDVI) | [ | |
| 改进的非线性植被指数Improved nonlinear vegetation index (MNLI) | [ | |
| 改进简单植被指数Improved Simple Vegetation Index (MSR) | [ |
| 纹理特征 Texture feature | 公式 Formula |
|---|---|
| 均值 Mean | |
| 方差 Variance | |
| 同质性 Homogeneity | |
| 对比度 Contrast | |
| 差异性 Dissimilarity | |
| 熵 Entropy | |
| 二阶距 Second Moment | |
| 相关性 Correlation |
表2 纹理特征及其计算公式
Tab.2 Texture features and its formulas
| 纹理特征 Texture feature | 公式 Formula |
|---|---|
| 均值 Mean | |
| 方差 Variance | |
| 同质性 Homogeneity | |
| 对比度 Contrast | |
| 差异性 Dissimilarity | |
| 熵 Entropy | |
| 二阶距 Second Moment | |
| 相关性 Correlation |
| 生育期 Reproductive period | 样本量 Sample size | 最大值 Maximum | 最小值 Minimum | 平均值 Mean | 标准差 Standard deviation | 方差 Variance | 变异系数 Variable Coefficient |
|---|---|---|---|---|---|---|---|
| 蕾期Bud stage | 45 | 2.34 | 1.20 | 1.65 | 0.30 | 0.09 | 0.18 |
| 花期Floresence | 45 | 3.43 | 1.35 | 2.31 | 0.45 | 0.20 | 0.19 |
| 花铃期Flower and boll stage | 45 | 3.22 | 1.35 | 2.25 | 0.41 | 0.17 | 0.18 |
| 盛铃期Peak boll stage | 45 | 3.20 | 1.60 | 2.12 | 0.38 | 0.14 | 0.16 |
| 吐絮期Boll opening stage | 45 | 3.10 | 1.40 | 2.10 | 0.34 | 0.12 | 0.16 |
表3 棉花叶面积指数统计
Tab.3 Statistics of cotton leaf area index
| 生育期 Reproductive period | 样本量 Sample size | 最大值 Maximum | 最小值 Minimum | 平均值 Mean | 标准差 Standard deviation | 方差 Variance | 变异系数 Variable Coefficient |
|---|---|---|---|---|---|---|---|
| 蕾期Bud stage | 45 | 2.34 | 1.20 | 1.65 | 0.30 | 0.09 | 0.18 |
| 花期Floresence | 45 | 3.43 | 1.35 | 2.31 | 0.45 | 0.20 | 0.19 |
| 花铃期Flower and boll stage | 45 | 3.22 | 1.35 | 2.25 | 0.41 | 0.17 | 0.18 |
| 盛铃期Peak boll stage | 45 | 3.20 | 1.60 | 2.12 | 0.38 | 0.14 | 0.16 |
| 吐絮期Boll opening stage | 45 | 3.10 | 1.40 | 2.10 | 0.34 | 0.12 | 0.16 |
| 生育期 Reproductive period | 样本量 Sample size | 最大值 Maximum | 最小值 Minimum | 平均值 Mean | 标准差 Standard deviation | 方差 Variance | 变异系数 Variable Coefficient |
|---|---|---|---|---|---|---|---|
| 蕾期Bud stage | 45 | 45.57 | 31.27 | 39.67 | 3.55 | 12.63 | 0.09 |
| 花期Floresence | 45 | 54.94 | 44.90 | 51.22 | 2.32 | 5.37 | 0.05 |
| 花铃期Flower and boll stage | 45 | 54.55 | 38.24 | 46.98 | 3.93 | 15.46 | 0.08 |
| 盛铃期Peak boll stage | 45 | 53.48 | 38.38 | 45.87 | 3.22 | 10.39 | 0.07 |
| 吐絮期Boll opening stage | 45 | 51.62 | 36.60 | 45.19 | 3.99 | 15.90 | 0.09 |
表4 棉花叶绿素含量统计
Tab.4 Statistics of chlorophyll content in cotton
| 生育期 Reproductive period | 样本量 Sample size | 最大值 Maximum | 最小值 Minimum | 平均值 Mean | 标准差 Standard deviation | 方差 Variance | 变异系数 Variable Coefficient |
|---|---|---|---|---|---|---|---|
| 蕾期Bud stage | 45 | 45.57 | 31.27 | 39.67 | 3.55 | 12.63 | 0.09 |
| 花期Floresence | 45 | 54.94 | 44.90 | 51.22 | 2.32 | 5.37 | 0.05 |
| 花铃期Flower and boll stage | 45 | 54.55 | 38.24 | 46.98 | 3.93 | 15.46 | 0.08 |
| 盛铃期Peak boll stage | 45 | 53.48 | 38.38 | 45.87 | 3.22 | 10.39 | 0.07 |
| 吐絮期Boll opening stage | 45 | 51.62 | 36.60 | 45.19 | 3.99 | 15.90 | 0.09 |
| 模型 Model | 建模集 Modeling sets | 验证集 Validation set | ||||
|---|---|---|---|---|---|---|
| R2 | RMSE | MSE | R2 | RMSE | MSE | |
| SVRLAI | 0.52 | 0.30 | 0.09 | 0.42 | 0.31 | 0.1 |
| BPNNLAI | 0.54 | 0.30 | 0.09 | 0.43 | 0.29 | 0.1 |
| RFLAI | 0.75 | 0.11 | 0.01 | 0.50 | 0.31 | 0.1 |
| SVRSPAD | 0.31 | 3.28 | 16.31 | 0.25 | 3.71 | 20.21 |
| BPNNSPAD | 0.42 | 2.1 | 14.32 | 0.35 | 3.21 | 14.87 |
| RFSPAD | 0.88 | 1.86 | 3.46 | 0.45 | 2.27 | 15.43 |
表5 基于植被指数的棉花LAI和SPAD值估算结果评价
Tab.5 Evaluation of cotton LAI and SPAD estimation results based on vegetation index
| 模型 Model | 建模集 Modeling sets | 验证集 Validation set | ||||
|---|---|---|---|---|---|---|
| R2 | RMSE | MSE | R2 | RMSE | MSE | |
| SVRLAI | 0.52 | 0.30 | 0.09 | 0.42 | 0.31 | 0.1 |
| BPNNLAI | 0.54 | 0.30 | 0.09 | 0.43 | 0.29 | 0.1 |
| RFLAI | 0.75 | 0.11 | 0.01 | 0.50 | 0.31 | 0.1 |
| SVRSPAD | 0.31 | 3.28 | 16.31 | 0.25 | 3.71 | 20.21 |
| BPNNSPAD | 0.42 | 2.1 | 14.32 | 0.35 | 3.21 | 14.87 |
| RFSPAD | 0.88 | 1.86 | 3.46 | 0.45 | 2.27 | 15.43 |
| 模型 Model | 建模集 Modeling sets | 验证集 Validation set | ||||
|---|---|---|---|---|---|---|
| R2 | RMSE | MSE | R2 | RMSE | MSE | |
| SVRLAI | 0.51 | 0.31 | 0.01 | 0.44 | 0.31 | 0.11 |
| BPNNLAI | 0.61 | 0.27 | 0.08 | 0.50 | 0.29 | 0.01 |
| RFLAI | 0.78 | 0.21 | 0.01 | 0.72 | 0.22 | 0.01 |
| SVRSPAD | 0.31 | 4.12 | 17.90 | 0.28 | 4.12 | 17.32 |
| BPNNSPAD | 0.34 | 4.41 | 16.32 | 0.29 | 4.21 | 16.98 |
| RFSPAD | 0.85 | 1.92 | 3.94 | 0.53 | 2.37 | 8.47 |
表6 基于纹理特征的棉花LAI和SPAD值估算结果评价
Tab.6 Evaluation of cotton LAI and SPAD estimation results based on texture characteristics
| 模型 Model | 建模集 Modeling sets | 验证集 Validation set | ||||
|---|---|---|---|---|---|---|
| R2 | RMSE | MSE | R2 | RMSE | MSE | |
| SVRLAI | 0.51 | 0.31 | 0.01 | 0.44 | 0.31 | 0.11 |
| BPNNLAI | 0.61 | 0.27 | 0.08 | 0.50 | 0.29 | 0.01 |
| RFLAI | 0.78 | 0.21 | 0.01 | 0.72 | 0.22 | 0.01 |
| SVRSPAD | 0.31 | 4.12 | 17.90 | 0.28 | 4.12 | 17.32 |
| BPNNSPAD | 0.34 | 4.41 | 16.32 | 0.29 | 4.21 | 16.98 |
| RFSPAD | 0.85 | 1.92 | 3.94 | 0.53 | 2.37 | 8.47 |
| 模型 Model | 建模集 Modeling sets | 验证集 Validation set | ||||
|---|---|---|---|---|---|---|
| R2 | RMSE | MSE | R2 | RMSE | MSE | |
| SVRLAI | 0.70 | 0.23 | 0.01 | 0.60 | 0.26 | 0.01 |
| BPNNLAI | 0.69 | 0.22 | 0.05 | 0.56 | 0.25 | 0.06 |
| RFLAI | 0.97 | 0.07 | 0.01 | 0.79 | 0.20 | 0.04 |
| SVRSPAD | 0.51 | 3.32 | 14.88 | 0.35 | 4.01 | 13.72 |
| BPNNSPAD | 0.47 | 3.96 | 15.75 | 0.45 | 3.74 | 14.11 |
| RFSPAD | 0.91 | 1.63 | 3.11 | 0.58 | 2.67 | 11.23 |
表7 基于植被指数和纹理特征融合的棉花LAI和SPAD值估算结果评价
Tab.7 Evaluation of cotton LAI and SPAD value estimation results based on the combination of vegetation index and texture characteristics
| 模型 Model | 建模集 Modeling sets | 验证集 Validation set | ||||
|---|---|---|---|---|---|---|
| R2 | RMSE | MSE | R2 | RMSE | MSE | |
| SVRLAI | 0.70 | 0.23 | 0.01 | 0.60 | 0.26 | 0.01 |
| BPNNLAI | 0.69 | 0.22 | 0.05 | 0.56 | 0.25 | 0.06 |
| RFLAI | 0.97 | 0.07 | 0.01 | 0.79 | 0.20 | 0.04 |
| SVRSPAD | 0.51 | 3.32 | 14.88 | 0.35 | 4.01 | 13.72 |
| BPNNSPAD | 0.47 | 3.96 | 15.75 | 0.45 | 3.74 | 14.11 |
| RFSPAD | 0.91 | 1.63 | 3.11 | 0.58 | 2.67 | 11.23 |
| [1] | 纪伟帅. 基于无人机多光谱的棉花冠层叶片叶绿素相对含量、叶面积指数反演[D]. 泰安: 山东农业大学, 2021. |
| JI Weishuai. Inversion of chlorophyll relative content and leaf area index of cotton canopy leaves based on UAV multispectral data[D]. Taian: Shandong Agricultural University, 2021. | |
| [2] | 唐华俊. 农业遥感研究进展与展望[J]. 中国农业文摘-农业工程, 2018, 30(5): 6-8, 5. |
| TANG Huajun. Progress and prospect of agricultural remote sensing research[J]. Agricultural Science and Engineering in China, 2018, 30(5): 6-8, 5. | |
| [3] | 陈浩, 冯浩, 杨祯婷, 等. 基于无人机多光谱遥感的夏玉米冠层叶绿素含量估计[J]. 排灌机械工程学报, 2021, 39(6): 622-629. |
| CHEN Hao, FENG Hao, YANG Zhenting, et al. Estimation of chlorophyll content of summer maize canopy based on UAV multispectral remote sensing[J]. Journal of Drainage and Irrigation Machinery Engineering, 2021, 39(6): 622-629. | |
| [4] | 陈小龙, 陈灿, 周莉. 水稻不同生育期叶绿素含量的测定及其相关性分析[J]. 现代农业科技, 2010,(17): 42-44, 52. |
| CHEN Xiaolong, CHEN Can, ZHOU Li. Determination and correlativity analysis of chlorophyll content at different developmental stages in rice[J]. Modern Agricultural Sciences and Technology, 2010,(17): 42-44, 52. | |
| [5] | 王薇, 宋廷宇, 王艳, 等. 番茄叶片SPAD值与叶绿素含量的相关性分析[J]. 北方园艺, 2013,(23): 12-15. |
| WANG Wei, SONG Tingyu, WANG Yan, et al. Correlation analysis on chlorophyll content and SPAD value in tomato leaves[J]. Northern Horticulture, 2013,(23): 12-15. | |
| [6] | Grados D, Reynarfaje X, Schrevens E. A methodological approach to assess canopy NDVI-based tomato dynamics under irrigation treatments[J]. Agricultural Water Management, 2020, 240: 106208. |
| [7] | 王靖, 彭漪, 刘小娟, 等. 基于无人机多光谱数据的水稻LAI反演与应用[J]. 中国农业大学学报, 2021, 26(12): 145-156. |
| WANG Jing, PENG Yi, LIU Xiaojuan, et al. Inversion and application of riceLAI based on UAV multispectral data[J]. Journal of China Agricultural University, 2021, 26(12): 145-156. | |
| [8] | 杨贵军, 李长春, 于海洋, 等. 农用无人机多传感器遥感辅助小麦育种信息获取[J]. 农业工程学报, 2015, 31(21): 184-190. |
| YANG Guijun, LI Changchun, YU Haiyang, et al. UAV based multi-load remote sensing technologies for wheat breeding information acquirement[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(21): 184-190. | |
| [9] | 孙诗睿, 赵艳玲, 王亚娟, 等. 基于无人机多光谱遥感的冬小麦叶面积指数反演[J]. 中国农业大学学报, 2019, 24(11): 51-58. |
| SUN Shirui, ZHAO Yanling, WANG Yajuan, et al. Leaf area index inversion of winter wheat based on multispectral remote sensing of UAV[J]. Journal of China Agricultural University, 2019, 24(11): 51-58. | |
| [10] | 王亚杰. 基于无人机多光谱遥感的玉米叶面积指数监测方法研究[D]. 杨凌: 西北农林科技大学, 2018. |
| WANG Yajie. Study on monitoring method of maize leaf area index based on multi-spectral remote sensing of UAV[D]. Yangling: Northwest A & F University, 2018. | |
| [11] | 乔浪, 张智勇, 陈龙胜, 等. 基于无人机图像的玉米冠层叶绿素含量检测与分布研究[J]. 农业机械学报, 2019, 50(S1): 182-186, 194. |
| QIAO Lang, ZHANG Zhiyong, CHEN Longsheng, et al. Detection and distribution of chlorophyll content in maize canopy based on UAV images[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(S1): 182-186, 194. | |
| [12] |
贺佳, 王来刚, 郭燕, 等. 基于无人机多光谱遥感的玉米LAI估算研究[J]. 农业大数据学报, 2021, 3(4): 20-28.
DOI |
|
HE Jia, WANG Laigang, GUO Yan, et al. Estimating the leaf area index of maize based on unmanned aerial vehicle multispectral remote sensing[J]. Journal of Agricultural Big Data, 2021, 3(4): 20-28.
DOI |
|
| [13] | 牛庆林, 冯海宽, 杨贵军, 等. 基于无人机数码影像的玉米育种材料株高和LAI监测[J]. 农业工程学报, 2018, 34(5): 73-82. |
| NIU Qinglin, FENG Haikuan, YANG Guijun, et al. Monitoring plant height and leaf area index of maize breeding material based on UAV digital images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(5): 73-82. | |
| [14] | 陶惠林, 冯海宽, 杨贵军, 等. 基于无人机成像高光谱影像的冬小麦LAI估测[J]. 农业机械学报, 2020, 51(1): 176-187. |
| TAO Huilin, FENG Haikuan, YANG Guijun, et al. Leaf area index estimation of winter wheat based on UAV imaging hyperspectral imagery[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(1): 176-187. | |
| [15] | 李丽宏, 谢东阳, 王琳, 等. 纹理图像多尺度灰度共生矩阵步长参数的研究[J]. 河北工程大学学报(自然科学版), 2021, 38(3): 108-112. |
| LI Lihong, XIE Dongyang, WANG Lin, et al. Research on the step size parameters of multi-scale gray-level co-occurrence matrix for texture images[J]. Journal of Hebei University of Engineering (Natural Science), 2021, 38(3): 108-112. | |
| [16] | 孟沌超, 赵静, 兰玉彬, 等. 基于无人机可见光影像的玉米冠层SPAD反演模型研究[J]. 农业机械学报, 2020, 51(S2): 366-374. |
| MENG Dunchao, ZHAO Jing, LAN Yubin, et al. Study on maize canopy SPAD inversion model based on UAV visible light image[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S2): 366-374. | |
| [17] |
Lelong C C D, Burger P, Jubelin G, et al. Assessment of unmanned aerial vehicles imagery for quantitative monitoring of wheat crop in small plots[J]. Sensors, 2008, 8(5): 3557-3585.
DOI PMID |
| [18] | 夏天, 吴文斌, 周清波, 等. 冬小麦叶面积指数高光谱遥感反演方法对比[J]. 农业工程学报, 2013, 29(3): 139-147. |
| XIA Tian, WU Wenbin, ZHOU Qingbo, et al. Comparison of two inversion methods for winter wheat leaf area index based on hyperspectral remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(3): 139-147. | |
| [19] | Liu J G, Pattey E, Jégo G. Assessment of vegetation indices for regional crop green LAI estimation from Landsat images over multiple growing seasons[J]. Remote Sensing of Environment, 2012, 123: 347-358. |
| [20] | 任枫荻, 陈圣波, 陈彦冰. 基于高分辨率遥感影像的花粒期玉米叶面积指数估算方法[J]. 江西农业学报, 2021, 33(2): 116-120. |
| REN Fengdi, CHEN Shengbo, CHEN Yanbing. Estimation method of maize leaf area index at anthesis stage based on high-resolution remote sensing image[J]. Acta Agriculturae Jiangxi, 2021, 33(2): 116-120. | |
| [21] | Liang L, Di L P, Zhang L P, et al. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method[J]. Remote Sensing of Environment, 2015, 165: 123-134. |
| [22] | Tanaka S, Kawamura K, Maki M, et al. Spectral index for quantifying leaf area index of winter wheat by field hyperspectral measurements: a case study in Gifu prefecture, central Japan[J]. Remote Sensing, 2015, 7(5): 5329-5346. |
| [23] | Ramoelo A, Skidmore A K, Cho M A, et al. Regional estimation of savanna grass nitrogen using the red-edge band of the spaceborne RapidEye sensor[J]. International Journal of Applied Earth Observation and Geoinformation, 2012, 19: 151-162. |
| [24] | Gitelson A A, Merzlyak M N. Remote estimation of chlorophyll content in higher plant leaves[J]. International Journal of Remote Sensing, 1997, 18(12): 2691-2697. |
| [25] | Verrelst J, Schaepman M E, Koetz B, et al. Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data[J]. Remote Sensing of Environment, 2008, 112(5): 2341-2353. |
| [26] |
Sellaro R, Crepy M, Trupkin S A, et al. Cryptochrome as a sensor of the blue/green ratio of natural radiation in Arabidopsis[J]. Plant Physiology, 2010, 154(1): 401-409.
DOI PMID |
| [27] | Wang F M, Huang J F, Tang Y L, et al. New vegetation index and its application in estimating leaf area index of rice[J]. Rice Science, 2007, 14(3): 195-203. |
| [28] | Roujean J L, Breon F M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements[J]. Remote Sensing of Environment, 1995, 51(3): 375-384. |
| [29] | Gong P, Pu R L, Biging G S, et al. Estimation of forest leaf area index using vegetation indices derived from Hyperion hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(6): 1355-1362. |
| [30] | Xing N C, Huang W J, Xie Q Y, et al. A transformed triangular vegetation index for estimating winter wheat leaf area index[J]. Remote Sens, 2013, 12: 16. |
| [31] | 刘咏梅, 胡念钊, 龙永清, 等. 无人机RGB影像在高寒草地狼毒入侵监测及盖度估算中的应用[J]. 中国草地学报, 2023, 45(2): 1-12. |
| LIU Yongmei, HU Nianzhao, LONG Yongqing, et al. Application of UAV RGB image in monitoring and coverage estimation of Stellera chamaejasme invasion in alpine grasslands, Qinghai-Tibet Plateau[J]. Chinese Journal of Grassland, 2023, 45(2): 1-12. | |
| [32] | 黄茜, 杨伟才, 毛晓敏. 东北春玉米单株茎流变化规律及其农田尺度提升方法[J]. 农业工程学报, 2020, 36(16): 94-102. |
| HUANG Xi, YANG Weicai, MAO Xiaomin. Variations of sap flow rate and its farmland scale improving method for spring maize in NorthEast China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(16): 94-102. | |
| [33] | 徐敏, 赵艳霞, 张顾, 等. 基于机器学习算法的冬小麦始花期预报方法[J]. 农业工程学报, 2021, 37(11): 162-171. |
| XU Min, ZHAO Yanxia, ZHANG Gu, et al. Method for forecasting winter wheat first flowering stage based on machine learning algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(11): 162-171. | |
| [34] | 黄林生, 江静, 黄文江, 等. Sentinel-2影像和BP神经网络结合的小麦条锈病监测方法[J]. 农业工程学报, 2019, 35(17): 178-185. |
| HUANG Linsheng, JIANG Jing, HUANG Wenjiang, et al. Wheat yellow rust monitoring method based on Sentinel-2 image and BPNN model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(17): 178-185. | |
| [35] | 樊鸿叶, 李姚姚, 卢宪菊, 等. 基于无人机多光谱遥感的春玉米叶面积指数和地上部生物量估算模型比较研究[J]. 中国农业科技导报, 2021, 23(9): 112-120. |
| FAN Hongye, LI Yaoyao, LU Xianju, et al. Comparative analysis of LAI and above-ground biomass estimation models based on UAV multispectral remote sensing[J]. Journal of Agricultural Science and Technology, 2021, 23(9): 112-120. | |
| [36] | 张楠楠, 张晓, 王城坤, 等. 基于高光谱和连续投影算法的棉花叶面积指数估测[J]. 农业机械学报, 2022, 53(s1):257-262. |
| ZHANG Nannan, ZHANG Xiao, WANG Chengkun, et al. Cotton LAI estimation based on hyperspectral andsuccessive projection algorithm[J]., 2022, 53(s1): 257-262. | |
| [37] | 高林, 杨贵军, 王宝山, 等. 基于无人机遥感影像的大豆叶面积指数反演研究[J]. 中国生态农业学报, 2015, 23(7): 868-876. |
| GAO Lin, YANG Guijun, WANG Baoshan, et al. Soybean leaf area index retrieval with UAV (unmanned aerial vehicle) remote sensing imagery[J]. Chinese Journal of Eco-Agriculture, 2015, 23(7): 868-876. | |
| [38] | 王修信, 孙涛, 朱启疆, 等. 林地叶面积指数遥感估算方法适用分析[J]. 生态学报, 2014, 34(16): 4612-4619. |
| WANG Xiuxin, SUN Tao, ZHU Qijiang, et al. Assessment of different methods for estimating forest leaf area index from remote sensing data[J]. Acta Ecologica Sinica, 2014, 34(16): 4612-4619. | |
| [39] | 冯浩, 杨祯婷, 陈浩, 等. 基于无人机多光谱影像的夏玉米SPAD估算模型研究[J]. 农业机械学报, 2022, 53(10): 211-219. |
| FENG Hao, YANG Zhenting, CHEN Hao, et al. Estimation of summer maize SPAD based on UAV multispectral images[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(10): 211-219. |
| [1] | 包艳丽, 王晓伟, 李琼诗, 张利召, 陈玉兰. 新疆主要棉区棉花高质量发展水平及差异分析[J]. 新疆农业科学, 2025, 62(4): 1032-1040. |
| [2] | 李珂, 印彩霞, 陈茂光, 崔涵予, 王科, 刘立杨, 汤秋香. 基于无人机多光谱影像结合机器学习的棉花SPAD值估算[J]. 新疆农业科学, 2025, 62(4): 791-799. |
| [3] | 李虎情, 邵冬南, 张翼, 刘峰, 张新宇, 李艳军, 孙杰, 杨永林, 薛飞. 陆地棉GhSHA1基因的特征分析及其功能验证[J]. 新疆农业科学, 2025, 62(4): 800-806. |
| [4] | 薛钦元, 张建良, 李鹏飞, 冯宏祖, 武刚, 王兰. 无人机飞防助剂和杀虫剂组合对其雾滴沉降特性及棉蚜防效的影响[J]. 新疆农业科学, 2025, 62(4): 929-935. |
| [5] | 张凌健, 张凯, 张慧, 郭小梦, 陈国悦, 王奕丁, 贾庆宇. 棉花全生育期植株含水率与顶部茎叶形态特征的关系[J]. 新疆农业科学, 2025, 62(3): 531-538. |
| [6] | 章莲, 陈湘耀, 王潭刚, 马晓梅, 陈兵, 王刚, 段震宇. 高强度地膜对土壤温度、湿度及棉花生长的影响[J]. 新疆农业科学, 2025, 62(3): 539-545. |
| [7] | 徐守振, 马麒, 宁新柱, 李吉莲, 宿俊吉, 韩焕勇, 王方永, 林海. 不同行距和脱叶剂对棉花脱叶效果的影响[J]. 新疆农业科学, 2025, 62(3): 546-555. |
| [8] | 赵玉鹏, 陈波浪, 王治国, 付彦博, 扁青永. 不同碳源物质输入对板结黏土特性及棉花苗期生长的影响[J]. 新疆农业科学, 2025, 62(3): 556-571. |
| [9] | 王勇攀, 马君, 李晨宇, 姚梦瑶, 王子轩, 黄灵芝, 朱海艳, 刘皖蓉, 李波, 杨洋, 高文伟. 基于卷积神经网络和合成数据集训练鉴定棉花种子萌发期的耐盐性[J]. 新疆农业科学, 2025, 62(2): 261-269. |
| [10] | 胡莎莎, 邵丽萍, 陈丽华, 宋卫平, 赵海, 张新宇, 孙杰. 脱叶剂对机采棉棉铃发育及纤维品质的影响[J]. 新疆农业科学, 2025, 62(2): 270-277. |
| [11] | 陆明昆, 李军宏, 尼陆排尔·于苏甫江, 潘喜鹏, 刘晓成, 张正贵, 潘占磊, 翟梦华, 张要朋, 赵文琪, 王丽宏, 王占彪. 追施硅肥对棉花生长发育及产量品质的影响[J]. 新疆农业科学, 2025, 62(2): 286-293. |
| [12] | 王奕丁, 张凯, 张凌健, 张慧, 郭小梦, 陈国悦. 滴灌量对新疆棉花生长发育、产量形成和水分利用效率的影响[J]. 新疆农业科学, 2025, 62(2): 294-301. |
| [13] | 王晓艳, 白云岗, 柴仲平, 卢震林, 刘洪波, 肖军, 阿曼尼萨. 休作期冬灌滴灌调控下“干播湿出”对棉花生长及产量影响[J]. 新疆农业科学, 2025, 62(2): 302-313. |
| [14] | 孙彩琴, 吴佳, 黄海, 郭家鑫, 闵伟, 郭慧娟. 不同盐碱胁迫对棉花根系蛋白质组的影响[J]. 新疆农业科学, 2025, 62(1): 146-160. |
| [15] | 赖成霞, 杨延龙, 汪鹏龙, 朱梦宇, 杨栋, 李春平, 葛风伟, 玛依拉·玉素音, 阳妮, 马君. 新疆北疆部分棉区落叶型棉花黄萎病菌落形态特征及致病力鉴定[J]. 新疆农业科学, 2025, 62(1): 174-181. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||