新疆农业科学 ›› 2025, Vol. 62 ›› Issue (4): 781-790.DOI: 10.6048/j.issn.1001-4330.2025.04.001

• 作物遗传育种·耕作栽培·生理生化 • 上一篇    下一篇

基于无人机多光谱影像水氮耦合下棉花LAISPAD值模型的精度估测

赵宇航1(), 颜安2(), 马梦倩1, 肖淑婷1, 孙哲1, 李靖言3   

  1. 1.新疆农业大学资源与环境学院,乌鲁木齐 830052
    2.新疆农业大学草业学院,乌鲁木齐 830052
    3.新疆农业大学计算机与信息工程学院,乌鲁木齐 830052
  • 收稿日期:2024-09-15 出版日期:2025-04-20 发布日期:2025-06-20
  • 通信作者: 颜安(1983-),男,新疆乌鲁木齐人,教授,博士,硕士生/博士生导师,研究方向为数字农业与生态环境遥感监测,(E-mail)yanan@xjau.edu.cn
  • 作者简介:赵宇航(1998-),男,河南开封人,硕士研究生,研究方向为无人机遥感棉花长势监测,(E-mail)860543512@qq.com
  • 基金资助:
    国家自然科学基金项目(32160527)

Estimation of cotton LAI and SPAD under water-nitrogen coupling based on multi-spectral imaging of unmanned aerial vehicle

ZHAO Yuhang1(), YAN An2(), MA Mengqian1, XIAO Shuting1, SUN Zhe1, LI Jingyan3   

  1. 1. College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China
    2. College of Grassland Science, Xinjiang Agricultural University, Urumqi 830052,China
    3. College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi 830052,China
  • Received:2024-09-15 Published:2025-04-20 Online:2025-06-20
  • Supported by:
    National Natural Science Foundation of China(32160527)

摘要:

【目的】基于多光谱遥感数据通过无人机精度估测棉花叶绿素含量和叶面积指数,为预测产量及精准田间管理提供依据。【方法】以新疆阿拉尔市棉花为研究对象,分析影响棉花叶面积指数(Leaf area index,LAI)和叶绿素相对含量(Chlorophyll relative content,SPAD)的因素,设置不同灌溉水平与不同氮素水平营造差异化的冠层结构。利用搭载多光谱传感器的无人机获取主要生育时期棉花的冠层图像得到植被指数 (Vegetation indexs,VIs),基于二阶概率统计滤波(CO-occurrence measures)方法获取均值(MEA) 方差(VAR)、协同性(HOM)、对比度(CON)、相异性(DIS)、信息(ENT)、二阶矩(SEM)、相关性(COR)等 8 个纹理特征(Texture features,TFs)。分别建立基于光谱特征、纹理特征以及二者结合的棉花LAISPAD值的估算模型,并进行差异比较。【结果】(1)棉花LAISPAD值在整个生育期呈先上升后下降的趋势,棉花LAISPAD值最大值均在花期。(2)筛选出相关系数绝对值高的 4种VIs(NDVIOSAVINDCIRVI)与3种TFs(CONENTSEM),基于SVR、BPNN、RF构建棉花LAISPAD值估测模型,估测模型精度最高为RF模型。(3)3种输入变量对棉花LAISPAD值的估测效果按照精度高低排序依次为VIs+TFsVIsTFs。融合后的变量对棉花LAISPAD值估算模型精度最高(R2=0.97,RMSE=0.07、R2=0.91,RMSE=1.63)。【结论】利用无人机多光谱遥感影像提取VIsTFs构建的RF算法模型,可以实现对高精度估测棉花LAISPAD值。

关键词: 棉花; 叶面积指数; 叶绿素相对含量; 水氮耦合; 无人机; 多光谱; 纹理特征

Abstract:

【Objective】 Cotton chlorophyll content and leaf area index are rapidly inferred by UAV using multispectral remote sensing data, which is crucial for predicting yield and making field management decisions. 【Methods】 The cotton in Aral, Xinjiang was taken as the research object, the influencing factors of cotton LAI and SPAD value were taken into consideration in the research, and different irrigation levels and different nitrogen levels were set to create a differentiated canopy structure. Vegetation indexes (VIs) were obtained by using a UAV equipped with multispectral sensors to obtain the canopy images of cotton during the main growth periods, and the mean values (MEA), variance (VAR), synergy (HOM), contrast (CON), dissimilarity (DIS), information (ENT), second-order moment (SEM), correlation (COR) and so on were obtained based on the second-order probabilistic statistical filtering (CO-occurrence measures) method (altogether 8 texture features TFs). The estimation models of cotton LAI and SPAD value based on spectral features, texture features and the combination of the two were established, and the differences were compared. 【Results】 (1) The results showed that the LAI and SPAD value of cotton increased first and then decreased during the whole growth period, and the maximum values of LAI and SPAD value of cotton were at the flowering stage. (2) Four VIs (NDVI, OSAVI, NDCI, RVI) and three TFs (CON, ENT, SEM) with high absolute correlation coefficients were screened out, and cotton LAI and SPAD value estimation models were constructed based on SVR, BPNN, RF, and the highest accuracy of the estimation model was the RF model. (3) The estimation effect of the three input variables on cotton LAI and SPAD value was VIs+TFs, VIs, and TFs in order of accuracy. The fused variables have the highest accuracy for the estimation model of cotton LAI and SPAD value (R2=0.97, RMSE=0.07, R2=0.91, RMSE=1.63). 【Conclusion】 RF algorithm model constructed by using VIs and TFs extracted from multi-spectral remote sensing images of UAV can estimate cotton LAI and SPAD value with high accuracy.

Key words: cotton; leaf area index; chlorophyll content; water-nitrogen coupling; unmanned aerial vehicle; multispectral; texture features

中图分类号: 


ISSN 1001-4330 CN 65-1097/S
邮发代号:58-18
国外代号:BM3342
主管:新疆农业科学院
主办:新疆农业科学院 新疆农业大学 新疆农学会

出版单位:《新疆农业科学》编辑部
地址:乌鲁木齐市南昌路403号新疆农业科学院
邮编:830091
电话:0991-4502046
E-mail:xjnykx-h@xaas.ac.cn


版权所有 © 《新疆农业科学》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发
总访问量: 今日访问: 在线人数:
网站
微信公众号
淘宝购买
微店购买