新疆农业科学 ›› 2024, Vol. 61 ›› Issue (9): 2183-2190.DOI: 10.6048/j.issn.1001-4330.2024.09.012
• 作物遗传育种·种质资源·分子遗传学·耕作栽培·生理生化 • 上一篇 下一篇
刘晶1(), 杜明川1, 张文婷1, 鲍海娟1, 景美玲1, 杜文华2(
)
收稿日期:
2024-03-28
出版日期:
2024-09-20
发布日期:
2024-10-09
通信作者:
杜文华(1968-),女,甘肃临洮人,教授,研究方向为小黑麦育种与栽培,(E-mail)duwh@gsau.edu.cn作者简介:
刘晶(1983-),女,山西平陆人,副教授,研究方向为小黑麦育种与栽培,(E-mail)654138133@qq.com
基金资助:
LIU Jing1(), DU Mingchuan1, ZHANG Wenting1, BAO Haijuan1, JING Meiling1, DU Wenhua2(
)
Received:
2024-03-28
Published:
2024-09-20
Online:
2024-10-09
Supported by:
摘要:
【目的】筛选出青海省不同地区适宜种植的小黑麦种质以及适合种植小黑麦的地区。【方法】采用甘农4号、甘农2号、品系C25(简称C25)小黑麦种质为材料,比较青海省不同地区(同德县、湟中区、格尔木市)小黑麦生产性能和营养品质,筛选适合青海种植的小黑麦种质和地区。【结果】(1)C25的生产性能指标显著高于甘农4号、甘农2号;C25的中性洗涤纤维含量(46.75%)最低,显著低于其他2个小黑麦品种;甘农2号的酸性洗涤纤维含量(32%)最低,C25的酸性洗涤纤维含量(32.77%)次之,显著低于其他小黑麦种质。(2)同德县试验点小黑麦的生产性能指标(干草产量、株高和枝条数)显著高于其他2个试验点;同德县试验点小黑麦的可溶性糖含量(9.41%)显著高于其他2个试验点。(3)同德县C25干草产量(11.19 t/hm2)最高,显著高于其他水平;湟中区甘农4号可溶性糖含量(11.60%)最高,同德县C25次之,显著高于其他水平;湟中区C25中酸性洗涤纤维含量(41.67%)最低,显著低于其他水平。(4)同德县C25排名第1,湟中区C25排名第2和同德县甘农4号排名第3。【结论】同德县试验点适合种植的小黑麦种质为C25,甘农4号次之;湟中区试验点适合种植的小黑麦材料为C25,甘农4号次之;格尔木市试验点适合种植的小黑麦种质为C25,甘农2号次之。3个试验点中,同德县最适合种植小黑麦;3个小黑麦种质中,小黑麦C25最适合在青海种植。
中图分类号:
刘晶, 杜明川, 张文婷, 鲍海娟, 景美玲, 杜文华. 青海不同地区小黑麦种质的筛选[J]. 新疆农业科学, 2024, 61(9): 2183-2190.
LIU Jing, DU Mingchuan, ZHANG Wenting, BAO Haijuan, JING Meiling, DU Wenhua. Screening of triticale germplasm in different areas of Qinghai[J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2183-2190.
变异来源 Source of variation | F值 | ||||||
---|---|---|---|---|---|---|---|
干草产量 Hay yield | 株高 Plant height | 枝条数 The number of braches | 可溶性糖 SS | 粗蛋白 CP | 酸性洗 涤纤维 ADF | 中性洗 涤纤维 NDF | |
试验点间Withinexperimental sites | 35.98** | 122.65** | 0.42 | 1 151.58** | 1 456.78** | 14.76** | 71.74** |
种质间Within genotypes | 27.23** | 32.07** | 5.16* | 1 209.66** | 838.94** | 1.42 | 23.55** |
试验点×种质Experiment site Genotype | 0.88 | 10.61** | 0.71 | 815.19** | 173.33** | 1.47 | 8.27** |
表1 参试小黑麦种质在青海不同地区生产性能和营养品质的方差
Tab.1 Analysis of variance of Production performance and nutritional quality were tested triticale germplasms in qinghai different regions
变异来源 Source of variation | F值 | ||||||
---|---|---|---|---|---|---|---|
干草产量 Hay yield | 株高 Plant height | 枝条数 The number of braches | 可溶性糖 SS | 粗蛋白 CP | 酸性洗 涤纤维 ADF | 中性洗 涤纤维 NDF | |
试验点间Withinexperimental sites | 35.98** | 122.65** | 0.42 | 1 151.58** | 1 456.78** | 14.76** | 71.74** |
种质间Within genotypes | 27.23** | 32.07** | 5.16* | 1 209.66** | 838.94** | 1.42 | 23.55** |
试验点×种质Experiment site Genotype | 0.88 | 10.61** | 0.71 | 815.19** | 173.33** | 1.47 | 8.27** |
图1 不同试验点间干草产量的差异 注:不同字母表示差异显著(P<0.05),下同
Fig.1 Differences in hay yield between different experimental sites Note: Different letters indicate significant differences (P<0.05), the same as below
水平 Level | 干草产量 Hay yield (t/hm2) | 株高 Plant height (cm) | 枝条数 Number of branches (ten thousand/hm2) | 营养品质Nutrition quality (%) | |||
---|---|---|---|---|---|---|---|
SS (%) | CP (%) | ADF (%) | NDF (%) | ||||
A1B1 | 7.49±0.42a | 124.00±1.16b | 575.55±13.52a | 8.57±0.05c | 11.19±0.02b | 33.67±3.18a | 50.67±0.33cd |
A1B2 | 8.10±0.41a | 117.33±5.90bc | 584.45±58.92a | 8.65±0.11c | 8.20±0.09e | 31.00±0.00a | 45.33±0.33b |
A1B3 | 11.19±0.63a | 134.67±2.85a | 686.67±84.68a | 11.01±0.10b | 7.24±0.04g | 33.00±1.00a | 46.33±0.33b |
A2B1 | 5.84±0.81a | 115.00±2.52bc | 528.89±16.02a | 4.64±0.05f | 7.47±0.10g | 27.33±2.40a | 50.00±0.58cd |
A2B2 | 6.77±0.88a | 112.33±2.96c | 513.33±20.37a | 11.60±0.06a | 5.07±0.15h | 31.67±0.33a | 48.00±1.73bc |
A2B3 | 8.76±0.28a | 117.33±0.67bc | 746.68±26.94a | 5.65±0.06e | 7.78±0.10f | 27.00±0.58a | 41.67±1.86a |
A3B1 | 4.67±0.50a | 71.67±0.88e | 477.78±9.69a | 5.57±0.09e | 12.57±0.07a | 35.00±0.58a | 55.00±1.00e |
A3B2 | 4.10±0.24a | 82.00±4.36d | 684.45±92.40a | 8.03±0.08d | 8.98±0.04d | 41.67±0.33a | 58.67±0.33f |
A3B3 | 6.87±0.53a | 110.33±1.45c | 817.78±218.49a | 5.45±0.10e | 10.69±0.12c | 37.67±4.84a | 52.00±0.58d |
表2 试验点与种质交互作用间小黑麦生产性能,SS、CP、ADF和NDF含量的多重比较
Tab.2 Multiple comparisons of triticale production performance, SS, CP, ADF and NDF content between germplasm interactions at test sites
水平 Level | 干草产量 Hay yield (t/hm2) | 株高 Plant height (cm) | 枝条数 Number of branches (ten thousand/hm2) | 营养品质Nutrition quality (%) | |||
---|---|---|---|---|---|---|---|
SS (%) | CP (%) | ADF (%) | NDF (%) | ||||
A1B1 | 7.49±0.42a | 124.00±1.16b | 575.55±13.52a | 8.57±0.05c | 11.19±0.02b | 33.67±3.18a | 50.67±0.33cd |
A1B2 | 8.10±0.41a | 117.33±5.90bc | 584.45±58.92a | 8.65±0.11c | 8.20±0.09e | 31.00±0.00a | 45.33±0.33b |
A1B3 | 11.19±0.63a | 134.67±2.85a | 686.67±84.68a | 11.01±0.10b | 7.24±0.04g | 33.00±1.00a | 46.33±0.33b |
A2B1 | 5.84±0.81a | 115.00±2.52bc | 528.89±16.02a | 4.64±0.05f | 7.47±0.10g | 27.33±2.40a | 50.00±0.58cd |
A2B2 | 6.77±0.88a | 112.33±2.96c | 513.33±20.37a | 11.60±0.06a | 5.07±0.15h | 31.67±0.33a | 48.00±1.73bc |
A2B3 | 8.76±0.28a | 117.33±0.67bc | 746.68±26.94a | 5.65±0.06e | 7.78±0.10f | 27.00±0.58a | 41.67±1.86a |
A3B1 | 4.67±0.50a | 71.67±0.88e | 477.78±9.69a | 5.57±0.09e | 12.57±0.07a | 35.00±0.58a | 55.00±1.00e |
A3B2 | 4.10±0.24a | 82.00±4.36d | 684.45±92.40a | 8.03±0.08d | 8.98±0.04d | 41.67±0.33a | 58.67±0.33f |
A3B3 | 6.87±0.53a | 110.33±1.45c | 817.78±218.49a | 5.45±0.10e | 10.69±0.12c | 37.67±4.84a | 52.00±0.58d |
水平 Level | 干草产量 Hay yield | 株高 Plant height | 枝条数 Number of branches | 营养品质Nutrition quality (%) | |||
---|---|---|---|---|---|---|---|
SS | CP | ADF | NDF | ||||
A1B1 | 0.477 9 | 0.830 7 | 0.287 2 | 0.565 1 | 0.815 2 | 0.545 3 | 0.470 6 |
A1B2 | 0.563 9 | 0.724 9 | 0.314 7 | 0.576 6 | 0.416 7 | 0.727 3 | 0.784 7 |
A1B3 | 1.000 0 | 1.000 0 | 0.614 7 | 0.914 8 | 0.289 2 | 0.591 0 | 0.725 9 |
A2B1 | 0.246 2 | 0.687 8 | 0.151 0 | 0.000 0 | 0.319 4 | 0.977 5 | 0.510 0 |
A2B2 | 0.376 4 | 0.645 5 | 0.104 9 | 1.000 0 | 0.000 0 | 0.681 7 | 0.627 6 |
A2B3 | 0.657 9 | 0.724 9 | 0.791 2 | 0.145 6 | 0.360 7 | 1.000 0 | 1.000 0 |
A3B1 | 0.081 3 | 0.000 0 | 0.000 0 | 0.134 1 | 1.000 0 | 0.454 7 | 0.215 9 |
A3B2 | 0.000 0 | 0.164 0 | 0.608 8 | 0.486 6 | 0.521 1 | 0.000 0 | 0.000 0 |
A3B3 | 0.391 4 | 0.613 8 | 1.000 0 | 0.116 9 | 0.749 0 | 0.272 7 | 0.392 4 |
表3 试验点与小黑麦种质交互作用的生产性能和营养品质数据的无量化处理
Tab.3 The experimental points and germplasm interactions related to the production performance and nutritional quality of triticale
水平 Level | 干草产量 Hay yield | 株高 Plant height | 枝条数 Number of branches | 营养品质Nutrition quality (%) | |||
---|---|---|---|---|---|---|---|
SS | CP | ADF | NDF | ||||
A1B1 | 0.477 9 | 0.830 7 | 0.287 2 | 0.565 1 | 0.815 2 | 0.545 3 | 0.470 6 |
A1B2 | 0.563 9 | 0.724 9 | 0.314 7 | 0.576 6 | 0.416 7 | 0.727 3 | 0.784 7 |
A1B3 | 1.000 0 | 1.000 0 | 0.614 7 | 0.914 8 | 0.289 2 | 0.591 0 | 0.725 9 |
A2B1 | 0.246 2 | 0.687 8 | 0.151 0 | 0.000 0 | 0.319 4 | 0.977 5 | 0.510 0 |
A2B2 | 0.376 4 | 0.645 5 | 0.104 9 | 1.000 0 | 0.000 0 | 0.681 7 | 0.627 6 |
A2B3 | 0.657 9 | 0.724 9 | 0.791 2 | 0.145 6 | 0.360 7 | 1.000 0 | 1.000 0 |
A3B1 | 0.081 3 | 0.000 0 | 0.000 0 | 0.134 1 | 1.000 0 | 0.454 7 | 0.215 9 |
A3B2 | 0.000 0 | 0.164 0 | 0.608 8 | 0.486 6 | 0.521 1 | 0.000 0 | 0.000 0 |
A3B3 | 0.391 4 | 0.613 8 | 1.000 0 | 0.116 9 | 0.749 0 | 0.272 7 | 0.392 4 |
水平 Level | 加权关联度 Weighted correlation | 加权排序 Weighted rank |
---|---|---|
A1B1 | 0.564 4 | 4 |
A1B2 | 0.568 6 | 3 |
A1B3 | 0.717 4 | 1 |
A2B1 | 0.525 9 | 7 |
A2B2 | 0.560 3 | 5 |
A2B3 | 0.686 0 | 2 |
A3B1 | 0.465 2 | 8 |
A3B2 | 0.417 3 | 9 |
A3B3 | 0.553 5 | 6 |
表4 试验点与种质交互作用的加权关联度
Tab.4 Weighted correlation of germplasm interactions and test sites
水平 Level | 加权关联度 Weighted correlation | 加权排序 Weighted rank |
---|---|---|
A1B1 | 0.564 4 | 4 |
A1B2 | 0.568 6 | 3 |
A1B3 | 0.717 4 | 1 |
A2B1 | 0.525 9 | 7 |
A2B2 | 0.560 3 | 5 |
A2B3 | 0.686 0 | 2 |
A3B1 | 0.465 2 | 8 |
A3B2 | 0.417 3 | 9 |
A3B3 | 0.553 5 | 6 |
[9] | HE Jiangfeng, ZHAO Mengli, ZHENG Yihui, et al. Forage characteristics and application perspective of Triticale in grassland ecology[J]. Chinese Journal of Grassland, 2012, 34(1): 101-107. |
[10] | 王伟强, 刘晶, 田新会, 等. ‘甘农4号’小黑麦品种在青海省不同区域的适应性评价[J]. 草地学报, 2020, 28(6):1626-1634. |
WANG Weiqiang, LIU Jing, TIAN Xinhui, et al. Evaluations on the adaptability of Triticosecale Wittmack‘Gannong No.4’in different regions of Qinghai Province[J]. Acta Agrestia Sinica, 2020, 28(6):1626-1634. | |
[11] | 史志强, 裴亚斌, 徐强, 等. 甘南高寒牧区甘农2号小黑麦与箭筈豌豆的混播效果[J]. 草业科学, 2021, 38(9): 1771-1781. |
SHI Zhiqiang, PEI Yabin, XU Qiang, et al. Studies on the mixed effect of triticale variety Gannong No. 2 and vetch in alpine pastures of Gannan[J]. Pratacultural Science, 2021, 38(9): 1771-1781. | |
[12] | 王旭, 褚红丽, 杜文华, 等. 小黑麦种质在兰州地区的种子产量及构成因素分析[J]. 草原与草坪, 2021, 41(1): 119-125. |
WANG Xu, CHU Hongli, DU Wenhua, et al. Analysis of seed yield and yield components of triticale lines in Lanzhou[J]. Grassland and Turf, 2021, 41(1): 119-125. | |
[13] | 刘晶, 赵方媛, 杜文华, 等. 甘肃省不同生态区高产优质小黑麦种质的筛选[J]. 草原与草坪, 2019, 39(5): 44-52. |
LIU Jing, ZHAO Fangyuan, DU Wenhua, et al. Screening of high yield and high quality triticale genotypes in different ecological regions of Gansu Province[J]. Grassland and Turf, 2019, 39(5): 44-52. | |
[14] | 赵雅姣, 田新会, 杜文华. 饲草型小黑麦在定西地区的最佳刈割期[J]. 草业科学, 2015, 32(7): 1143-1149. |
ZHAO Yajiao, TIAN Xinhui, DU Wenhua. Studies on the optimal cutting period of forage triticale in Dingxi Area[J]. Pratacultural Science, 2015, 32(7): 1143-1149. | |
[15] | 赵方媛, 王文, 陈平, 等. 甘农2号小黑麦在云贵高原的生产性能研究[J]. 草原与草坪, 2019, 39(1): 43-47, 53. |
ZHAO Fangyuan, WANG Wen, CHEN Ping, et al. Studies on the production performance of triticale in Yunnan-Guizhou Plateau[J]. Grassland and Turf, 2019, 39(1): 43-47, 53. | |
[16] | 张述伟, 宗营杰, 方春燕, 等. 蒽酮比色法快速测定大麦叶片中可溶性糖含量的优化[J]. 食品研究与开发, 2020, 41(7): 196-200. |
ZHANG Shuwei, ZONG Yingjie, FANG Chunyan, et al. Optimization of anthrone colorimetric method for rapid determination of soluble sugar in barley leaves[J]. Food Research and Development, 2020, 41(7): 196-200. | |
[17] | 陈丽萍. 杜马斯燃烧法与凯氏定氮法的比较[J]. 黑龙江粮食, 2018, (10): 48-49. |
CHEN Liping. Comparison between Du Masi combustion method and Kjeldahl nitrogen determination method[J]. Heilongjiang Grain, 2018, (10): 48-49. | |
[18] | 时建青, 徐红蕊. 范氏洗涤纤维分析法及其简化法测定NDF效果对比[J]. 江西饲料, 2005, (3): 15-16. |
SHI Jianqing, XU Hongrui. Comparison of the effect of Van der Waals washing fiber analysis method and its simplified method in determining NDF[J]. Grain Oil And Feed Technology, 2005, (3): 15-16. | |
[19] | 段娜宁, 王伟, 徐成体, 等. 高寒地区8种小黑麦生产性能比较研究[J]. 青海畜牧兽医杂志, 2021, 51(4): 24-28, 33. |
DUAN Naning, WANG Wei, XU Chengti, et al. Comparative study on production performance of 8 Triticale varieties in alpine region[J]. Chinese Qinghai Journal of Animal and Veterinary Sciences, 2021, 51(4): 24-28, 33. | |
[20] | 韩建国. 播种比例和施氮量及刈割期对燕麦与豌豆混播草地产草量和质量的影响[J]. 草地学报, 1999, 7(2): 87. |
[1] | 郭建文, 李林渊, 田新会, 等. 饲草型小黑麦新品系在甘肃高海拔地区的生产性能和品质研究[J]. 草原与草坪, 2018, 38(4): 72-77. |
GUO Jianwen, LI Linyuan, TIAN Xinhui, et al. Study on the production performance and quality of forage triticale line in different areas of Gansu Province[J]. Grassland and Turf, 2018, 38(4): 72-77. | |
[2] | 游永亮, 李源, 赵海明, 等. 种植密度对饲用小黑麦、饲用黑麦种子生产性能的影响[J]. 草业科学, 2017, 34(7):1522-1529. |
YOU Yongliang, LI Yuan, ZHAO Haiming, et al. Effect of planting density on × Triticale Wittmack and Secale cereale seed productivity[J]. Pratacultural Science, 2017, 34(7):1522-1529. | |
[3] | 王东霞, 王伟, 李春喜, 等. 青海省不同海拔生态区饲用小黑麦生产性能分析[J]. 分子植物育种, 2020, 18(18): 6216-6228. |
WANG Dongxia, WANG Wei, LI Chunxi, et al. Analysis on production performance of forage Triticale in different altitude ecological regions of Qinghai Province[J]. Molecular Plant Breeding, 2020, 18(18): 6216-6228. | |
[4] | 李冬梅, 田新会, 杜文华. 小黑麦新品系的草产量及营养价值研究[J]. 草地学报, 2016, 24(6): 1164-1169. |
LI Dongmei, TIAN Xinhui, DU Wenhua. Studies on the forage yield and nutritional value of new Triticale lines[J]. Acta Agrestia Sinica, 2016, 24(6): 1164-1169. | |
[5] | ZHAO Fangyuan, NIU Kuiju, TIAN Xinhui. Triticale Improvement: Mining of Genes Related to Yellow Rust Resistance in Triticale Based on Transcriptome Sequencing. Front Plant Sci. 2022 May 9; 13:883147. |
[6] | Liu J, Tuo W J, Du W H, et al. Typical correlation analysis between forage type Triticale production performance and different pilot ecological factors[J]. Journal of Botanical Research, 2021, 3(1): 46-51. |
[7] | Zhao Y J, Liu X J, Tong C C, et al. Effect of root interaction on nodulation and nitrogen fixation ability of alfalfa in the simulated alfalfa/triticale intercropping in pots[J]. Scientific Reports, 2020, 10(1): 4269. |
[8] | 孙敏, 郭媛. 小黑麦生物学特性、营养价值及利用前景[J]. 山西农业大学学报(自然科学版), 2003, (3):200-203. |
SUN Min, GUO Yuan. Bilogy propertynutritive value and use foreground of Triticale[J]. Journal of Shanxi Agricultural University(Natural Science), 2003, (3):200-203. | |
[9] | 何江峰, 赵萌莉, 郑轶慧, 等. 小黑麦的饲用特性及其在草地生态中的应用前景[J]. 中国草地学报, 2012, 34(1): 101-107. |
[20] | HAN Jianguo. The Effects of Seeding Rate,Nitrogen Fertilizer and Harvest Time on the Yield and Quality of Oat-Pea Mixture[J]. Acta Agrestia Sinica, 1999, 7(2): 87. |
[21] | 邝肖, 季婧, 梁文学, 等. 北方寒区紫花苜蓿/无芒雀麦混播比例和刈割时期对青贮品质的影响[J]. 草业学报, 2018, 27(12): 187-198. |
KUANG Xiao, JI Jing, LIANG Wenxue, et al. Effects of mixed sowing ratio and mowing period of Medicago sativa and Bromus inermis on silage quality in cold regions of North China[J]. Acta Prataculturae Sinica, 2018, 27(12): 187-198. | |
[22] | 张梨梨, 史敏, 李彦忠. 炭疽病对沙尔沁地区苜蓿产量和品质的影响[J]. 草业学报, 2020, 29(6): 117-126. |
ZHANG Lili, SHI Min, LI Yanzhong. Effect of anthracnose infection on alfalfa yield and quality in the Shaerqin Area[J]. Acta Prataculturae Sinica, 2020, 29(6): 117-126. | |
[23] | 赵江涛, 李晓峰, 李航, 等. 可溶性糖在高等植物代谢调节中的生理作用[J]. 安徽农业科学, 2006, 34(24): 6423-6425, 6427. |
ZHAO Jiangtao, LI Xiaofeng, LI Hang, et al. Research on the role of the soluble sugar in the regulation of physiological metabolism in higher plant[J]. Journal of Anhui Agricultural Sciences, 2006, 34(24): 6423-6425, 6427. | |
[24] | 蒙正兵, 张瑜, 龙忠富, 等. 不同收获期对饲用小黑麦青干草及青贮品质的影响[J]. 贵州农业科学, 2017, 45(1): 95-98. |
MENG Zhengbing, ZHANG Yu, LONG Zhongfu, et al. Effects of different harvest time on Triticale green hay and silage quality[J]. Guizhou Agricultural Sciences, 2017, 45(1): 95-98. |
[1] | 刘慧杰, 王俊豪, 龚照龙, 梁亚军, 王俊铎, 李雪源, 郑巨云, 王冀川. 197份陆地棉品种萌发期耐盐性鉴定[J]. 新疆农业科学, 2024, 61(7): 1574-1581. |
[2] | 马勇, 刘慧, 高红梅, 康雪, 马春晖. 不同氮素水平下紫花苜蓿与多年生黑麦草混播对其产量和营养品质的影响[J]. 新疆农业科学, 2024, 61(7): 1793-1804. |
[3] | 阿不都卡地尔·库尔班, 潘竟海, 陈友强, 刘华君, 董心久, 白晓山, 李思忠, 高卫时, 沙红, 李小惠. 基于产量相关性状综合评价晚播甜菜品种的适应性[J]. 新疆农业科学, 2024, 61(6): 1368-1377. |
[4] | 杨君妍, 闫淼, 吴海波, 杨文莉, 王豪杰, 毛建才, 翟文强, 李俊华. 高温对不同厚皮甜瓜品种种子萌发的影响及其耐热性综合评价[J]. 新疆农业科学, 2024, 61(6): 1386-1396. |
[5] | 孙萌, 颜安, 李靖言, 卢前成, 范君, 孙哲, 袁以琳. 不同水氮处理对紫花苜蓿生长发育、品质及水肥利用效率的影响[J]. 新疆农业科学, 2024, 61(6): 1512-1526. |
[6] | 朱韬, 雷庆元, 马亮. 不同水氮用量对复播玉米生长发育、产量及利用效率的影响和选优模型验证[J]. 新疆农业科学, 2024, 61(4): 835-844. |
[7] | 聂芳, 琚艳君, 陈卓雅, 刘敏, 刘河疆, 刘志虎, 开建荣, 苟春林, 赵多勇. 枸杞营养品质时空变化规律及特征分析[J]. 新疆农业科学, 2024, 61(3): 642-651. |
[8] | 杨明花, 廖必勇, 刘强, 冯国瑞, 达吾来·杰克山, 布阿依夏木·那曼提, 刘琪, 艾尔居玛·吐卢汗, 彭云承. 基于主成分分析的玉米杂交组合脱水性综合评价[J]. 新疆农业科学, 2024, 61(2): 318-325. |
[9] | 欧源, 罗莎莎, 王如月, 孙雅丽, 虎海防. 盐胁迫对美国黑核桃幼苗生长和生理特性的影响[J]. 新疆农业科学, 2024, 61(2): 393-401. |
[10] | 郝曦煜, 刘婷婷, 王辉, 冷静文, 宫世航, 刘伟, 梁杰. 基于熵权法和灰色关联度分析法综合评价谷子品种的农艺性状及产量与品质[J]. 新疆农业科学, 2024, 61(12): 2902-2912. |
[11] | 杨祥波, 陈亮宇, 杨松楠, 陈喜凤, 邢伟明, 李雪莹, 丛炜轩, 臧振原, 臧远波, 张君. 东北春大豆种质资源表型分析及综合性评价[J]. 新疆农业科学, 2024, 61(12): 2921-2933. |
[12] | 徐斌, 王征, 宋占腾, 玛尔哈巴·帕尔哈提, 朱靖蓉, 车凤斌, 李永海, 武凤艳, 苗福红. 11份野生沙棘种质资源果实品质分析与综合评价[J]. 新疆农业科学, 2024, 61(12): 3020-3031. |
[13] | 崔豫疆, 龚照龙, 王俊铎, 郑巨云, 桑志伟, 阳妮, 梁亚军, 李雪源, 曲延英. 245份陆地棉品种农艺性状及产量构成因素综合评价[J]. 新疆农业科学, 2024, 61(10): 2358-2365. |
[14] | 麦合穆提·拜合提, 丁峰, 李彦, 党龙芯. 基于熵权-TOPSIS的浅埋式滴灌紫花苜蓿灌水定额的综合评价[J]. 新疆农业科学, 2024, 61(10): 2537-2546. |
[15] | 刘佳慧, 李红, 汪晶晶, 常持银. 新疆番茄制品出口贸易高质量发展的测度与评价[J]. 新疆农业科学, 2024, 61(10): 2593-2600. |
阅读次数 | ||||||||||||||||||||||||||||||||||
全文 27
|
|
|||||||||||||||||||||||||||||||||
摘要 113
|
|
|||||||||||||||||||||||||||||||||