

新疆农业科学 ›› 2025, Vol. 62 ›› Issue (6): 1397-1407.DOI: 10.6048/j.issn.1001-4330.2025.06.012
邵莉1,2(
), 梅闯2(
), 冯贝贝2, 闫鹏2, 艾沙江·买买提2, 蔡海山2, 王继勋2, 于坤1(
)
收稿日期:2024-10-30
出版日期:2025-06-20
发布日期:2025-07-29
通信作者:
于坤(1985-),男,山东泰安人,教授,博士,硕士生导师,研究方向为果树植物营养生理生态,(E-mail)yukun410@163.com;作者简介:邵莉(2000-),女,甘肃天水人,硕士研究生,研究方向为果树植物营养生理生态,(E-mail)2119904189@qq.com
基金资助:
SHAO Li1,2(
), MEI Chuang2(
), FENG Beibei2, YAN Peng2, Aishajiang Maimaiti2, CAI Haishan2, WANG Jixun2, YU Kun1(
)
Received:2024-10-30
Published:2025-06-20
Online:2025-07-29
Supported by:摘要:
【目的】研究新疆南疆苹果园不同生草模式对果园气候环境和土壤的生态效应影响,为选择适宜南疆果园绿色可持续生产的人工生草模式提供理论依据。【方法】研究自然生草、三叶草和蒲公英3种生草模式对苹果园温度、湿度、土壤理化性质的影响,调查新疆南疆4个生草园的生草情况。【结果】(1)自然生草果园中萹蓄作为优势草种,表现为生长旺盛,高度适中,但覆盖力不强;三叶草生草园中三叶草表现为高度适宜,覆盖力较强,但产量有所欠缺;蒲公英生草园中蒲公英表现为整体高度适宜,且长势优良,但对地表的覆盖不佳。(2)苹果园三叶草和蒲公英生草模式可以有效降低果园小环境空气温度,升高空气湿度;果园乔化栽培生草处理下,近地面温度的降低幅度和湿度的升高幅度皆高于矮化栽培。(3)与其清耕处理相比,自然生草处理可以显著提高30~60 cm土层碱解氮含量;与其清耕处理相比,三叶草生草处理能显著提高0~30 cm和30~60 cm土层土壤有机质、全氮、碱解氮、速效磷、有效钙含量,及30~60 cm土层有效钾含量;与其清耕处理相比,蒲公英生草处理可以显著降低降低0~30 cm和30~60 cm土层土壤可溶性盐含量,有效提高30~60cm土层土壤有机质含量。【结论】苹果园生草对果园气候环境的影响显著,近地面温度下降,湿度上升,在一定程度上也提高了土壤碱解氮及各养分含量,有助于改善土壤环境及果园环境。
中图分类号:
邵莉, 梅闯, 冯贝贝, 闫鹏, 艾沙江·买买提, 蔡海山, 王继勋, 于坤. 生草模式对南疆苹果园土壤及微环境的影响[J]. 新疆农业科学, 2025, 62(6): 1397-1407.
SHAO Li, MEI Chuang, FENG Beibei, YAN Peng, Aishajiang Maimaiti, CAI Haishan, WANG Jixun, YU Kun. Effect of grass growth pattern on soil environment of apple orchard in southern Xinjiang[J]. Xinjiang Agricultural Sciences, 2025, 62(6): 1397-1407.
| 果园编号 Orchard number | 生草类型 Grass type | 栽植地点 Planting place | 经纬度 Longitude and latitude | 栽培模式 Cultivation mode | 主栽品种 Main varieties |
|---|---|---|---|---|---|
| 1 | 蒲公英 | 阿克苏市依干其乡尤喀科克巴什村 | 41°3'N,80°20'E | 乔化栽培 | 长富2号 |
| 2 | 三叶草 | 阿克苏市依干其乡尤喀克巴里当村 | 41°11'N,80°10'E | 矮化密植 | 天红2号、2001富士 |
| 3 | 自然生草 | 阿克苏市阿依巴格乡托万科克巴什村 | 41°1'N,80°21'E | 矮化密植 | 烟富7、2001富士 |
| 4 | 自然生草 | 喀什地区叶城县洛克乡阿热买里村 | 37°85'N,77°56'E | 矮化密植 | 烟富7、2001富士 |
表1 果园基本信息
Tab.1 Basic information of the orchard
| 果园编号 Orchard number | 生草类型 Grass type | 栽植地点 Planting place | 经纬度 Longitude and latitude | 栽培模式 Cultivation mode | 主栽品种 Main varieties |
|---|---|---|---|---|---|
| 1 | 蒲公英 | 阿克苏市依干其乡尤喀科克巴什村 | 41°3'N,80°20'E | 乔化栽培 | 长富2号 |
| 2 | 三叶草 | 阿克苏市依干其乡尤喀克巴里当村 | 41°11'N,80°10'E | 矮化密植 | 天红2号、2001富士 |
| 3 | 自然生草 | 阿克苏市阿依巴格乡托万科克巴什村 | 41°1'N,80°21'E | 矮化密植 | 烟富7、2001富士 |
| 4 | 自然生草 | 喀什地区叶城县洛克乡阿热买里村 | 37°85'N,77°56'E | 矮化密植 | 烟富7、2001富士 |
| 生草园类型 Grass garden type | 分组 Group | 优劣种 Strengths and weaknesses | 草种名称 Grass species name | 密度 Density (株/m2) | 鲜重 Fresh weight (kg) | 干重 Dry weight (kg) | 干物质率 Dry matter rate (%) | 平均株高 Average plant height (cm) |
|---|---|---|---|---|---|---|---|---|
| 叶城县自然生草园 Yecheng County Natural grass garden | A组 | 优势种 | 苦菊草 | 127 | 1.550 | 0.250 | 16.12 | 65 |
| B组 | 优势种 | 苦菊草 | 160 | 2.700 | 0.500 | 18.51 | / | |
| 劣势种 | 滨藜 | 26 | 0.500 | 0.104 | 20.80 | / | ||
| C组 | 优势种 | 苦菊草 | 163 | 3.450 | 0.400 | 13.04 | 54 | |
| 劣势种 | 芦苇 | 3 | 0.100 | 0.005 2 | 5.20 | / | ||
| 地肤子 | 9 | 0.100 | 0.012 9 | 12.90 | / | |||
| 马刺 | 3 | 0.095 | 0.013 5 | 14.21 | / | |||
| 滨藜 | 3 | 0.100 | 0.010 4 | 10.40 | / | |||
| 阿克苏市自然生草园 Aksu City natural grass garden | A组 | 优势种 | 萹蓄 | 638 | 2.725 | 1.065 | 39.08 | 18 |
| B组 | 萹蓄 | 153 | 2.430 | 0.845 | 34.77 | 49 | ||
| C组 | 节节草 | 397 | 3.300 | 0.580 | 17.58 | 69 | ||
| 三叶草生草园 Clover grass garden | A组 | 优势种 | 三叶草 | 871 | 4.335 | 0.685 | 15.80 | 41 |
| B组 | 837 | 3.795 | 0.550 | 14.49 | 38 | |||
| C组 | 427 | 2.790 | 0.565 | 20.25 | 33 | |||
| 蒲公英生草园 Dandelion grass garden | A组 | 优势种 | 蒲公英 | 90 | 0.970 | 0.440 | 45.36 | 36 |
| B组 | 75 | 0.575 | 0.190 | 33.04 | 32 | |||
| C组 | 144 | 1.015 | 0.370 | 36.45 | 35 |
表2 新疆南疆地区果园生草状况
Tab.2 Grass growth in orchards in Southern Xinjiang
| 生草园类型 Grass garden type | 分组 Group | 优劣种 Strengths and weaknesses | 草种名称 Grass species name | 密度 Density (株/m2) | 鲜重 Fresh weight (kg) | 干重 Dry weight (kg) | 干物质率 Dry matter rate (%) | 平均株高 Average plant height (cm) |
|---|---|---|---|---|---|---|---|---|
| 叶城县自然生草园 Yecheng County Natural grass garden | A组 | 优势种 | 苦菊草 | 127 | 1.550 | 0.250 | 16.12 | 65 |
| B组 | 优势种 | 苦菊草 | 160 | 2.700 | 0.500 | 18.51 | / | |
| 劣势种 | 滨藜 | 26 | 0.500 | 0.104 | 20.80 | / | ||
| C组 | 优势种 | 苦菊草 | 163 | 3.450 | 0.400 | 13.04 | 54 | |
| 劣势种 | 芦苇 | 3 | 0.100 | 0.005 2 | 5.20 | / | ||
| 地肤子 | 9 | 0.100 | 0.012 9 | 12.90 | / | |||
| 马刺 | 3 | 0.095 | 0.013 5 | 14.21 | / | |||
| 滨藜 | 3 | 0.100 | 0.010 4 | 10.40 | / | |||
| 阿克苏市自然生草园 Aksu City natural grass garden | A组 | 优势种 | 萹蓄 | 638 | 2.725 | 1.065 | 39.08 | 18 |
| B组 | 萹蓄 | 153 | 2.430 | 0.845 | 34.77 | 49 | ||
| C组 | 节节草 | 397 | 3.300 | 0.580 | 17.58 | 69 | ||
| 三叶草生草园 Clover grass garden | A组 | 优势种 | 三叶草 | 871 | 4.335 | 0.685 | 15.80 | 41 |
| B组 | 837 | 3.795 | 0.550 | 14.49 | 38 | |||
| C组 | 427 | 2.790 | 0.565 | 20.25 | 33 | |||
| 蒲公英生草园 Dandelion grass garden | A组 | 优势种 | 蒲公英 | 90 | 0.970 | 0.440 | 45.36 | 36 |
| B组 | 75 | 0.575 | 0.190 | 33.04 | 32 | |||
| C组 | 144 | 1.015 | 0.370 | 36.45 | 35 |
图1 三叶草生草园温湿度的变化 注:不同大写字母表示同一离地高度不同时间间差异显著,不同小写字母表示同一时间不同离地高度间差异显著(P< 0.05),下同
Fig.1 Changes of temperature and humidity variation of clover Notes: Different uppercase letters indicate a significant difference in the same height from the ground at different times, while different lowercase letters indicate a significant difference in the same height from the ground at different times (P<0.05),the same as below
图2 蒲公英生草园温湿度的变化 注:Ⅰ:6月19~22日;Ⅱ:6月23~26日;Ⅲ:6月27~30日
Fig.2 Changes of temperature and humidity variation of dandelion Notes: Ⅰ: June 19-22; Ⅱ: June 23-26; Ⅲ: June 27-30
图3 不同生草方式下土壤有机质、全氮、pH值和总盐的变化 注: “Z”代表自然生草,“T”代表三叶草,“M”代表蒲公英。*表示同一生草不同处理间差异显著(n=3,P<0.05),所示标准差棒为双向误差,下同
Fig.3 Changes of grass cultivation on soil organic matter, total nitrogen, pH value and total salt Notes: "Z" stands for natural grass, "T" stands for clover and "M" stands for dandelion. * on the histogram indicates significant difference between different treatments of the same lifetime grass (n=3, P<0.05), and the standard deviation bar shown is a bidirectional error,the same as below
| 土层深度 Soil depth (cm) | 处理 Treatments | 碱解氮 Alkeline - N (g/kg) | 速效磷 Olsen - P (g/kg) | 有效钾 Effective - K (g/kg) | 有效钙 Effective - Ca (g/kg) | 有效铁 Effective - Fe (g/kg) |
|---|---|---|---|---|---|---|
| 0~30 | Z清耕 | 0.76±0.14a | 0.52±0.03a | 0.31±0.09a | 2.14±0.13a | 0.21±0.03a |
| Z | 0.51±0.06b | 0.46±0.03a | 0.18±0.04a | 2.16±0.17a | 0.26±0.02.a | |
| T清耕 | 0.70±0.06b | 1.65±0.16b | 0.16±0.02a | 1.52±0.11b | 0.23±0.03a | |
| T | 1.15±0.16a | 4.75±0.25a | 0.12±0.03a | 2.11±0.22a | 0.15±0.01b | |
| M清耕 | 0.48±0.03a | 0.19±0.03a | 0.12±0.01a | 2.27±0.11a | 0.12±0.02a | |
| M | 0.59±0.09a | 0.14±0.03a | 0.20±0.06a | 1.83±0.19b | 0.12±0.01a | |
| 30~60 | Z清耕 | 0.39±0.04b | 0.16±0.02a | 0.27±0.03a | 1.98±0.10a | 0.13±0.03a |
| Z | 0.51±0.05a | 0.11±0.01b | 0.16±0.05b | 2.16±0.40a | 0.10±0.04a | |
| T清耕 | 0.67±0.05a | 0.67±0.06b | 0.12±0.03b | 1.47±0.03b | 0.14±0.08a | |
| T | 0.55±0.05a | 1.70±0.16a | 0.23±0.04a | 2.22±0.19a | 0.12±0.01a | |
| M清耕 | 0.28±0.02a | 0.05.±0.18a | 0.23±0.07a | 1.99±0.21a | 0.09±0.04a | |
| M | 0.16±0.04b | 0.02±0.37b | 0.20±0.07a | 1.82±0.28a | 0.07±0.05b |
表3 不同生草方式下土壤养分的变化
Tab.3 Changes of different grass growing methods on soil nutrients
| 土层深度 Soil depth (cm) | 处理 Treatments | 碱解氮 Alkeline - N (g/kg) | 速效磷 Olsen - P (g/kg) | 有效钾 Effective - K (g/kg) | 有效钙 Effective - Ca (g/kg) | 有效铁 Effective - Fe (g/kg) |
|---|---|---|---|---|---|---|
| 0~30 | Z清耕 | 0.76±0.14a | 0.52±0.03a | 0.31±0.09a | 2.14±0.13a | 0.21±0.03a |
| Z | 0.51±0.06b | 0.46±0.03a | 0.18±0.04a | 2.16±0.17a | 0.26±0.02.a | |
| T清耕 | 0.70±0.06b | 1.65±0.16b | 0.16±0.02a | 1.52±0.11b | 0.23±0.03a | |
| T | 1.15±0.16a | 4.75±0.25a | 0.12±0.03a | 2.11±0.22a | 0.15±0.01b | |
| M清耕 | 0.48±0.03a | 0.19±0.03a | 0.12±0.01a | 2.27±0.11a | 0.12±0.02a | |
| M | 0.59±0.09a | 0.14±0.03a | 0.20±0.06a | 1.83±0.19b | 0.12±0.01a | |
| 30~60 | Z清耕 | 0.39±0.04b | 0.16±0.02a | 0.27±0.03a | 1.98±0.10a | 0.13±0.03a |
| Z | 0.51±0.05a | 0.11±0.01b | 0.16±0.05b | 2.16±0.40a | 0.10±0.04a | |
| T清耕 | 0.67±0.05a | 0.67±0.06b | 0.12±0.03b | 1.47±0.03b | 0.14±0.08a | |
| T | 0.55±0.05a | 1.70±0.16a | 0.23±0.04a | 2.22±0.19a | 0.12±0.01a | |
| M清耕 | 0.28±0.02a | 0.05.±0.18a | 0.23±0.07a | 1.99±0.21a | 0.09±0.04a | |
| M | 0.16±0.04b | 0.02±0.37b | 0.20±0.07a | 1.82±0.28a | 0.07±0.05b |
| [1] | 李昂. 全产业链视角下苹果产业投入产出效率研究——以新疆南疆苹果主产区为例[D]. 阿拉尔: 塔里木大学, 2023. |
| LI Ang. Research on Input-output efficiency of Apple industry from the perspective of the whole industry chain[D]. Ala’er: Tarim University, 2023. | |
| [2] | Palese A M, Vignozzi N, Celano G, et al. Influence of soil management on soil physical characteristics and water storage in a mature rainfed olive orchard[J]. Soil and Tillage Research, 2014, 144: 96-109. |
| [3] | Rosa J D, Mafra A L, Medeiros J C, et al. Soil physical properties and grape yield influenced by cover crops and management systems[J]. Revista Brasileira de Ciência do Solo, 2013, 37(5): 1352-1360. |
| [4] | Ren J, Li F D, Yin C B. Orchard grass safeguards sustainable development of fruit industry in China[J]. Journal of Cleaner Production, 2023, 382: 135291. |
| [5] | 王燕霞. 我国果园生草的研究进展[J]. 现代农村科技, 2022,(10): 75, 116. |
| WANG Yanxia. Research progress of grass growing in orchards in China[J]. Modern Rural Science and Technology, 2022,(10): 75, 116. | |
| [6] | 毛培春, 孟林, 张国芳, 等. 白三叶对桃园小气侯和桃品质的影响[J]. 草地学报, 2006, 14(4): 360-364. |
| MAO Peichun, MENG Lin, ZHANG Guofang, et al. Effect of planting white clover as a cover crop on the microclimate of a peach orchard and the peach quality[J]. Acta Agrestia Sinica, 2006, 14(4): 360-364. | |
| [7] | Haynes R J, Goh K M. Some effects of orchard soil management on sward composition, levels of available nutrients in the soil, and leaf nutrient content of mature ‘Golden Delicious’ apple trees[J]. Scientia Horticulturae, 1980, 13(1): 15-25. |
| [8] | Wang Z H, Liu R, Fu L, et al. Effects of orchard grass on soil fertility and nutritional status of fruit trees in Korla fragrant pear orchard[J]. Horticulturae, 2023, 9(8): 903. |
| [9] | 李振吾, 籍增顺, 刘执鲁, 等. 山西旱地高效农业协调持续发展技术研究[J]. 山西农业科学, 1997, 25(2): 3-12. |
| LI Zhenwu, JI Zengshun, LIU Zhilu, et al. Research on coordinated and sustainable development technology of efficient agriculture in dry land in Shanxi Province[J]. Journal of Shanxi Agricultural Sciences, 1997, 25(2): 3-12. | |
| [10] | Dong Y Q, Lei T W, Li S Q, et al. Effects of rye grass coverage on soil loss from loess slopes[J]. International Soil and Water Conservation Research, 2015, 3(3): 170-182. |
| [11] | 兖攀, 王久照, 姜继元, 等. 南疆密植苹果园精量播种生草试验研究[J]. 新疆农垦科技, 2021, 44(3): 15-18. |
| YAN Pan, WANG Jiuzhao, JIANG Jiyuan, et al. Experimental study on precision seeding and grass generation in dense apple orchards in southern Xinjiang[J]. Xinjiang Farm Research of Science and Technology, 2021, 44(3): 15-18. | |
| [12] | Francia Martínez J R, Durán Zuazo V H, Martínez Raya A. Environmental impact from mountainous olive orchards under different soil-management systems (SE Spain)[J]. Science of The Total Environment, 2006, 358(1/2/3): 46-60. |
| [13] | 范淼珍, 尹昌, 范分良, 等. 长期不同施肥对红壤碳、氮、磷循环相关酶活性的影响[J]. 应用生态学报, 2015, 26(3): 833-838. |
| FAN Miaozhen, YIN Chang, FAN Fenliang, et al. Effects of different long-term fertilization on the activities of enzymes related to carbon, nitrogen, and phosphorus cycles in a red soil[J]. Chinese Journal of Applied Ecology, 2015, 26(3): 833-838. | |
| [14] | Ramos M E, Benítez E, García P A, et al. Cover crops under different managements vs. frequent tillage in almond orchards in semiarid conditions: Effects on soil quality[J]. Applied Soil Ecology, 2010, 44(1): 6-14. |
| [15] | 邓婉珍. 不同覆盖方式对广西橘园土壤水肥特征及柑橘品质的影响[D]. 桂林: 桂林理工大学, 2021. |
| DENG Wanzhen. Effects of different mulching methods on soil water and fertilizer characteristics and citrus quality in Guangxi Orange orchard[D]. Guilin: Guilin University of Technology, 2021. | |
| [16] | 成斌斌. 土壤pH的测定[J]. 化学教与学, 2014,(4): 95-97. |
| CHENG Binbin. Determination of soil pH[J]. Chemistry Teaching and Learning, 2014,(4): 95-97. | |
| [17] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
| BAO Shidan. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000. | |
| [18] | 刘殊, 廖镜思, 陈清西, 等. 龙眼光合作用对环境温度的响应[J]. 福建农业大学学报, 1997, 26(4). |
| LIU Shu, LIAO Jingsi, CHEN Qingxi, et al. Photosynthetic response of longan to ambient temperature[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 1997, 26(4). | |
| [19] | Xiao L T, Lai S, Chen M L, et al. Effects of grass cultivation on soil arbuscular mycorrhizal fungi community in a tangerine orchard[J]. Rhizosphere, 2022, 24: 100583. |
| [20] | 张玥. 冀南黄冠梨园自然生草种类及对梨园影响研究[D]. 邯郸: 河北工程大学硕士学位论文, 2023. |
| ZHANG Yue. Study on natural grasses species and their effects on Huangguan Pear Orchard in southern Hebei Province[D]. Handan: Hebei University of Engineering, 2023. | |
| [21] | 焦润安, 张舒涵, 李毅, 等. 生草影响果树生长发育及果园环境的研究进展[J]. 果树学报, 2017, 34(12): 1610-1623. |
| JIAO Run’an, ZHANG Shuhan, LI Yi, et al. Research progress about the effect of sod-culture on the growth and development of fruit and orchard environment[J]. Journal of Fruit Science, 2017, 34(12): 1610-1623. | |
| [22] | 李发林, 郑域茹, 郑涛, 等. 果园生草栽培水土保持效应研究进展[J]. 中国农学通报, 2013, 29(34): 34-39. |
| LI Falin, ZHENG Yuru, ZHENG Tao, et al. Research advances on soil and water conservation effect of pasture-planting in orchard[J]. Chinese Agricultural Science Bulletin, 2013, 29(34): 34-39. | |
| [23] | 吴红敏, 杨清培, 曾娇, 等. 不同生草间作处理对柑橘园温度及产量的影响[J]. 江西农业大学学报, 2015, 37(2): 239-248. |
| WU Hongmin, YANG Qingpei, ZENG Jiao, et al. Effects of different grass intercropping treatments on Citrus orchard temperature and yield[J]. Acta Agriculturae Universitatis Jiangxiensis, 2015, 37(2): 239-248. | |
| [24] | 韦鑫, 张朝权, 谢彩云, 等. 果园生草对梨园土壤理化性质和微生物的影响[J]. 北方园艺, 2023,(18): 79-86. |
| WEI Xin, ZHANG Zhaoquan, XIE Caiyun, et al. Effects of grasses cultivation on soil physical and chemical properties and microorganism of pear orchard[J]. Northern Horticulture, 2023,(18): 79-86. | |
| [25] | 哈斯亚提·托逊江, 刘晨, 哈丽代·热合木江, 等. 红枣与牧草间作对果园土壤养分及小环境的影响[J]. 江苏农业科学, 2015, 43(1): 327-329. |
| Hasiyati Tuoxunjiang, Liu Chen, Halidai Rehemujiang, et al. Effects of jujube and forage intercropping on soil nutrients and microenvironment of orchards[J]. Jiangsu Agricultural Sciences, 2015, 43(1): 327-329. | |
| [26] | 赵政阳. 中国果树科学与实践-苹果[M]. 西安: 陕西科学技术出版社, 2015. |
| ZHAO Zhengyang. Fruit Science and Practice of Apple in China[M]. Xi’an: Shaanxi Science & Technology Press, 2015. | |
| [27] | Melville N, Morgan R P C. The influence of grass density on effectiveness of contour grass strips for control of soil erosion on low angle slopes[J]. Soil Use and Management, 2001, 17(4): 278-281. |
| [28] | Sadeghpour A, Hashemi M, DaCosta M, et al. Assessing winter cereals as cover crops for weed control in reduced-tillage switchgrass establishment[J]. Industrial Crops and Products, 2014, 62: 522-525. |
| [29] | Palese A M, Vignozzi N, Celano G, et al. Influence of soil management on soil physical characteristics and water storage in a mature rainfed olive orchard[J]. Soil and Tillage Research, 2014, 144: 96-109. |
| [30] | 王吕, 秦宇航, 吴玉红, 等. 猕猴桃园绿肥品种筛选和生草管理对土壤养分的影响[J]. 果树学报, 2023, 40(9): 1885-1893. |
| WANG Lyu, QIN Yuhang, WU Yuhong, et al. Selection of green manure varieties and effects of grass management modes on soil fertility in kiwifruit orchards[J]. Journal of Fruit Science, 2023, 40(9): 1885-1893. | |
| [31] | 封帆, 谢开云, 艾比布拉·伊马木, 等. 果园生草对苹果园杂草控制、土壤养分及果树营养状况的影响[J]. 新疆农业科学, 2023, 60(4): 982-991. |
| Feng Fan, Xie Kaiyun, Aibibula Yimamu, et al. Effects of intercrop forages on weed control, soil and tree nutrients in orchards[J]. Xinjiang Agricultural Sciences, 2023, 60(4): 982-991. | |
| [32] | 吴振美, 盖志君, 孙梦洁, 等. 不同生草类型对冬枣园土壤理化性状和品质的影响[J]. 农业工程技术, 2023, 43(25): 43-45. |
| WU Zhenmei, GAI Zhijun, SUN Mengjie, et al. Effects of different grass types on soil physicochemical properties and quality of winter jujube garden[J]. Agricultural Engineering Technology, 2023, 43(25): 43-45. | |
| [33] | Zheng B Y, Cai S B, Li H L, et al. Seasonal effects of drip irrigation on soil quality index, microbial stoichiometry, and carbon use efficiency in an apple orchard[J]. Applied Soil Ecology, 2024, 197: 105324. |
| [34] | 樊文霞, 李田甜, 陈国栋, 等. 间距对红枣间作苜蓿土壤团聚体有机碳、全氮及产量的影响[J]. 中国土壤与肥料, 2023,(8): 67-75. |
| FAN Wenxia, LI Tiantian, CHEN Guodong, et al. Effects of spacing on soil aggregate organic carbon, total nitrogen and yield of alfalfa intercropped with jujube[J]. Soil and Fertilizer Sciences in China, 2023,(8): 67-75. | |
| [35] | 黄议漫, 贺明霞. 不同施肥模式对旺苍县茶园土壤养分及产量的影响[J]. 四川农业科技, 2023,(10): 44-47. |
| HUANG Yiman, HE Mingxia. 不同施肥模式对旺苍县茶园土壤养分及产量的影响[J]. Sichuan Agricultural Science and Technology, 2023,(10): 44-47. | |
| [36] | Zhou P, Bai X L, Xu W, et al. Chemical soil disinfestation decreases soil salinisation and the presence of potential pathogens at the cost of higher nitrate leaching[J]. Agriculture, Ecosystems & Environment, 2024, 366: 108935. |
| [37] | Xu X L, Zhang Q, Tan Z Q, et al. Effects of water-table depth and soil moisture on plant biomass, diversity, and distribution at a seasonally flooded wetland of Poyang Lake, China[J]. Chinese Geographical Science, 2015, 25(6): 739-756. |
| [38] | 李昂. 不同绿色覆盖模式的抑盐效应研究[D]. 兰州: 甘肃农业大学, 2005. |
| LI Ang. Study on salt inhibition effect of different green cover modes[D]. Lanzhou: Gansu Agricultural University, 2005. | |
| [39] | 孙计平, 张玉星, 吴照辉, 等. 生草配合施用有机肥对省力高效梨园土壤的培肥效应研究[J]. 草业学报, 2017, 26(4): 80-88. |
| SUN Jiping, ZHANG Yuxing, WU Zhaohui, et al. Effects of cover cropping and organic fertilizer on soil nutrients in a pear orchard[J]. Acta Prataculturae Sinica, 2017, 26(4): 80-88. | |
| [40] | Heo J Y, Park Y S, Um N Y, et al. Selection of native ground cover plants for sod culture in an organic apple orchard[J]. Korean Journal of Plant Resources, 2015, 28(5): 641-647. |
| [41] | 张振境. 龙眼园生草栽培草种引种试种表现及对果园土壤的影响[D]. 南宁: 广西大学, 2018. |
| ZHANG Zhenjing. Introduction test performance of cultivated grass in Longan garden and its influence on orchard soil[D]. Nanning: Guangxi University, 2018. |
| [1] | 冯贝贝, 梅闯, 艾沙江·买买提, 赵月, 闫鹏, 王继勋. 青砧1号与不同品种组合幼树生长势的评价[J]. 新疆农业科学, 2025, 62(5): 1191-1198. |
| [2] | 陈俊, 张琦, 杨梦宇, 袁振杨. 生草对苹果园土壤理化性质及果实品质的影响[J]. 新疆农业科学, 2025, 62(4): 936-943. |
| [3] | 马继龙, 阿丽亚·拜都热拉, 王新英, 刘茂秀, 艾吉尔·阿不拉. 塔里木河中游土壤微生物群落多样性特征及影响因子分析[J]. 新疆农业科学, 2025, 62(4): 982-992. |
| [4] | 张腾艺, 李千里, 冯贝贝, 南坤, 闫鹏, 耿文娟. 金冠、维纳斯黄金、瑞雪苹果采收期的判定及果实品质的变化动态[J]. 新疆农业科学, 2025, 62(2): 314-323. |
| [5] | 冯梅, 曹亚军, 肖莉娟, 王华强, 张枫, 陈刚, 黄鹏, 王永明, 迪力亚尔·凯赛尔. 苹果树和梨树根浸提液对水防风药材种子萌发及幼苗生长的化感效应[J]. 新疆农业科学, 2025, 62(1): 193-201. |
| [6] | 梅闯, 冯贝贝, 马丽亚, 张振军, 张金山, 马艳红, 王继勋, 闫鹏. 疏密改造对新疆富士苹果果园微环境和光谱特性的影响[J]. 新疆农业科学, 2024, 61(7): 1682-1688. |
| [7] | 宋梅, 布卡·欧尔娜, 李国萍, 凌益章. 苹果杂种后代抗寒性遗传规律分析[J]. 新疆农业科学, 2024, 61(7): 1689-1695. |
| [8] | 张振飞, 郭靖, 颜安, 侯正清, 袁以琳, 肖淑婷, 孙哲. 多光谱无人机不同飞行高度下苹果树高的提取[J]. 新疆农业科学, 2024, 61(7): 1710-1716. |
| [9] | 亚森·吐尔迪, 马天宇, 图尔迪麦麦提·努尔麦麦提, 阿地力·沙塔尔. 苹果蠹蛾和梨小食心虫迷向丝在核桃园中的使用模式[J]. 新疆农业科学, 2024, 61(7): 1757-1765. |
| [10] | 耿松毅, 孙洪涛, 赵伟琦, 王梅, 芦屹, 马荣. 苹果树腐烂病发生及新型防治药剂筛选[J]. 新疆农业科学, 2024, 61(6): 1461-1467. |
| [11] | 张振飞, 郭靖, 颜安, 袁以琳, 肖淑婷, 侯正清, 孙哲. 基于多光谱无人机不同飞行高度下苹果树冠幅信息的提取[J]. 新疆农业科学, 2024, 61(6): 1468-1476. |
| [12] | 张艺加, 程平, 王磊, 武胜利. 不同灌溉量对矮化密植苹果树生理特性和苹果产量及品质的影响[J]. 新疆农业科学, 2024, 61(5): 1140-1150. |
| [13] | 叶晓琴, 曹小艳, 阿地力·沙塔尔. 苹果蠹蛾生物学特性及其幼虫对核桃果实的为害习性[J]. 新疆农业科学, 2024, 61(2): 434-440. |
| [14] | 张李娅, 刘保军, 单佳祁, 王澍, 顾爱星, 白剑宇. 海棠感染苹果茎痘病毒发生与检测[J]. 新疆农业科学, 2024, 61(12): 3061-3066. |
| [15] | 陈国祥, 魏杨, 郭文超, 李佩璇, 阿地力·沙塔尔. 核桃园苹果蠹蛾的空间分布型与抽样技术分析[J]. 新疆农业科学, 2024, 61(11): 2769-2778. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||