

新疆农业科学 ›› 2025, Vol. 62 ›› Issue (5): 1041-1050.DOI: 10.6048/j.issn.1001-4330.2025.05.001
方万成1(
), 林涛2,3(
), 崔建平2, 贾涛1, 鲍龙龙1, 王亮2, 樊世语1, 胡正东1, 邵亚杰1, 汤秋香1(
)
收稿日期:2024-10-13
出版日期:2025-05-20
发布日期:2025-07-09
通信作者:
林涛(1981-),男,新疆玛纳斯人,研究员,博士,研究方向为棉花智慧生产,(E-mail)27427732@qq.com;作者简介:方万成(1996-),男,甘肃酒泉人,硕士研究生,研究方向为农业遥感与养分诊断,(E-mail)2947283158@qq.com
基金资助:
FANG Wancheng1(
), LIN Tao2,3(
), CUI Jianping2, JIA Tao1, BAO Longlong1, WANG Liang2, FAN Shiyu1, HU Zhengdong1, SHAO Yajie1, TANG Qiuxiang1(
)
Received:2024-10-13
Published:2025-05-20
Online:2025-07-09
Supported by:摘要:
【目的】通过无人机多光谱影像和机器学习算法估测棉花SPAD值,快速准确的获取棉花叶绿素含量(SPAD值),为精准监测棉花生长状态、提高棉花产量和品质预测提供参考。【方法】利用多光谱遥感技术结合机器学习方法,反演新疆阿克苏地区棉花SPAD值。采用裂区试验设计,选择3个施氮水平和3个灌溉定额,分析不同水氮处理下棉花SPAD值的响应规律,研究不同时期棉花多光谱影像的光谱特征并构建植被指数,分析植被指数与SPAD值的相关性,筛选出相关性高的植被指数。通过4种机器学习算法对试验1和试验2全生育期SPAD值数据和多光谱指数进行建模分析,筛选出最优监测模型,分别预测反演不同时期棉花SPAD值,用不同田块数据验证模型。【结果】棉花不同生长期受到灌水和施肥条件影响显著。筛选合适的光谱指数并用随机森林模型建模取得了较好的估测精度,在花铃期模型估测结果最佳,模型的估测进度R2介于0.68~0.73。RF模型在不同田块间进行叶片SPAD值估算具有较优的稳定性。【结论】基于无人机多光谱影像计算光谱指数采用RF算法建模估测棉花叶片SPAD值具有较优的精度和稳定性。
中图分类号:
方万成, 林涛, 崔建平, 贾涛, 鲍龙龙, 王亮, 樊世语, 胡正东, 邵亚杰, 汤秋香. 基于无人机多光谱遥感和机器学习的棉花SPAD值预测[J]. 新疆农业科学, 2025, 62(5): 1041-1050.
FANG Wancheng, LIN Tao, CUI Jianping, JIA Tao, BAO Longlong, WANG Liang, FAN Shiyu, HU Zhengdong, SHAO Yajie, TANG Qiuxiang. Prediction of SPAD value of cotton based on UAV multispectral remote sensing and machine learning[J]. Xinjiang Agricultural Sciences, 2025, 62(5): 1041-1050.
| 植被指数 Spectral | 全称 Full name | 计算公式 Formula | 文献来源 Reference |
|---|---|---|---|
| DVI | 差值植被指数 | DVI=RNIR-RRed | [ |
| NDVI | 归一化植被指数 | NDVI=(RNIR-RRed)/(RNIR+RRed) | [ |
| GNDVI | 绿色归一化差值植被指数 | GNDVI=(RNIR-RGreen)/(RNIR+RGreen) | [ |
| RDVI | 重归一化植被指数 | RDVI=(RNIR-RRed)/√(RNIR+RRed) | [ |
| RVI | 比值植被指数 | RVI=RNIR/RRed | [ |
| SAVI | 土壤调节植被指数 | SAVI=(RNIR-RRed)/1.5(RNIR+RRed+0.5) | [ |
| OSAVI | 优化土壤调节植被指数 | OSAVI=(RNIR-RRed)/(RNIR+RRed+0.16) | [ |
| NLI | 非线性植被指数 | NLI=(R2NIR-RRed)/(R2NIR+RRed) | [ |
| MNLI | 改进非线性植被指数 | MNLI=(1.5(R2NIR-1.5RGreen)/(R2NIR+RRed+0.5) | [ |
| MSR | 改进简单比值植被指数 | MSR=(RNIR/RRed-1)/(√RNIR/RRed+1) | [ |
| GRVI | 红绿植被指数 | GRVI=(RGreen-RRed)/(RGreen+RRed) | [ |
| NDRE | 红边植被指数 | NDRE=(RNIR-RRE)/(RNIR+RRE) | [ |
表1 植被指数及其计算公式
Tab.1 Vegetation Index and Its Calculation Formula
| 植被指数 Spectral | 全称 Full name | 计算公式 Formula | 文献来源 Reference |
|---|---|---|---|
| DVI | 差值植被指数 | DVI=RNIR-RRed | [ |
| NDVI | 归一化植被指数 | NDVI=(RNIR-RRed)/(RNIR+RRed) | [ |
| GNDVI | 绿色归一化差值植被指数 | GNDVI=(RNIR-RGreen)/(RNIR+RGreen) | [ |
| RDVI | 重归一化植被指数 | RDVI=(RNIR-RRed)/√(RNIR+RRed) | [ |
| RVI | 比值植被指数 | RVI=RNIR/RRed | [ |
| SAVI | 土壤调节植被指数 | SAVI=(RNIR-RRed)/1.5(RNIR+RRed+0.5) | [ |
| OSAVI | 优化土壤调节植被指数 | OSAVI=(RNIR-RRed)/(RNIR+RRed+0.16) | [ |
| NLI | 非线性植被指数 | NLI=(R2NIR-RRed)/(R2NIR+RRed) | [ |
| MNLI | 改进非线性植被指数 | MNLI=(1.5(R2NIR-1.5RGreen)/(R2NIR+RRed+0.5) | [ |
| MSR | 改进简单比值植被指数 | MSR=(RNIR/RRed-1)/(√RNIR/RRed+1) | [ |
| GRVI | 红绿植被指数 | GRVI=(RGreen-RRed)/(RGreen+RRed) | [ |
| NDRE | 红边植被指数 | NDRE=(RNIR-RRE)/(RNIR+RRE) | [ |
| 植被指数 Vegetation Indexes | 蕾期 Bud stage | 花期 Flower season | 花铃期 Flower and boll stage | 吐絮期 Boll opening stage |
|---|---|---|---|---|
| NIR | -0.561 | 0.165 | -0.346 | -0.269 |
| RED | 0.337 | -0.292 | 0.260 | 0.274 |
| RE | -0.178 | -0.443 | -0.702 | -0.461 |
| GREEN | 0.203 | -0.517 | -0.306 | 0.286 |
| BLUE | 0.379 | -0.308 | 0.353 | 0.263 |
| DVI | -0.500 | 0.190 | -0.361 | -0.305 |
| NDVI | -0.422 | 0.259 | -0.382 | -0.309 |
| GNDVI | -0.372 | 0.439 | -0.201 | -0.326 |
| RDVI | -0.464 | 0.215 | -0.384 | -0.309 |
| RVI | -0.426 | 0.251 | -0.258 | -0.298 |
| SAVI | -0.527 | 0.171 | -0.343 | -0.299 |
| OSAVI | -0.443 | 0.238 | -0.395 | -0.310 |
| NLI | -0.468 | 0.243 | -0.403 | -0.306 |
| MNLI | -0.476 | 0.257 | -0.317 | -0.318 |
| MSR | -0.426 | 0.255 | -0.294 | -0.302 |
| GRVI | -0.445 | -0.098 | -0.455 | -0.133 |
| NDRE | -0.193 | 0.462 | 0.390 | 0.087 |
表2 多光谱指数与棉花SPAD值的Pearson相关性(试验1)
Tab.2 Pearson correlation analysis between multispectral index and cotton SPAD value(Experiment 1)
| 植被指数 Vegetation Indexes | 蕾期 Bud stage | 花期 Flower season | 花铃期 Flower and boll stage | 吐絮期 Boll opening stage |
|---|---|---|---|---|
| NIR | -0.561 | 0.165 | -0.346 | -0.269 |
| RED | 0.337 | -0.292 | 0.260 | 0.274 |
| RE | -0.178 | -0.443 | -0.702 | -0.461 |
| GREEN | 0.203 | -0.517 | -0.306 | 0.286 |
| BLUE | 0.379 | -0.308 | 0.353 | 0.263 |
| DVI | -0.500 | 0.190 | -0.361 | -0.305 |
| NDVI | -0.422 | 0.259 | -0.382 | -0.309 |
| GNDVI | -0.372 | 0.439 | -0.201 | -0.326 |
| RDVI | -0.464 | 0.215 | -0.384 | -0.309 |
| RVI | -0.426 | 0.251 | -0.258 | -0.298 |
| SAVI | -0.527 | 0.171 | -0.343 | -0.299 |
| OSAVI | -0.443 | 0.238 | -0.395 | -0.310 |
| NLI | -0.468 | 0.243 | -0.403 | -0.306 |
| MNLI | -0.476 | 0.257 | -0.317 | -0.318 |
| MSR | -0.426 | 0.255 | -0.294 | -0.302 |
| GRVI | -0.445 | -0.098 | -0.455 | -0.133 |
| NDRE | -0.193 | 0.462 | 0.390 | 0.087 |
| 植被指数 Vegetation Indexes | 蕾期 Bud stage | 花期 Flower season | 花铃期 Flower and boll stage | 吐絮期 Boll opening stage |
|---|---|---|---|---|
| NIR | -0.124 | -0.078 | -0.349 | -0.203 |
| RED | 0.063 | 0.085 | -0.044 | 0.032 |
| RE | 0.055 | -0.515 | -0.804 | -0.481 |
| GREEN | -0.086 | -0.322 | -0.289 | -0.020 |
| BLUE | 0.016 | 0.210 | 0.078 | 0.043 |
| DVI | -0.105 | -0.082 | -0.309 | -0.150 |
| NDVI | -0.056 | -0.097 | -0.157 | -0.110 |
| GNDVI | 0.026 | 0.095 | -0.069 | -0.092 |
| RDVI | -0.082 | -0.088 | -0.271 | -0.132 |
| RVI | -0.126 | -0.087 | -0.133 | -0.103 |
| SAVI | -0.126 | -0.077 | -0.324 | -0.162 |
| OSAVI | -0.068 | -0.093 | -0.239 | -0.124 |
| NLI | -0.066 | -0.096 | -0.237 | -0.141 |
| MNLI | -0.081 | -0.024 | -0.282 | -0.120 |
| MSR | -0.105 | -0.091 | -0.143 | -0.106 |
| GRVI | -0.183 | -0.323 | -0.222 | -0.130 |
| NDRE | -0.121 | 0.283 | 0.504 | 0.091 |
表3 多光谱指数与棉花SPAD值的Pearson相关性(试验2)
Tab.3 Pearson correlation analysis between multispectral index and cotton SPAD value(Experiment 2)
| 植被指数 Vegetation Indexes | 蕾期 Bud stage | 花期 Flower season | 花铃期 Flower and boll stage | 吐絮期 Boll opening stage |
|---|---|---|---|---|
| NIR | -0.124 | -0.078 | -0.349 | -0.203 |
| RED | 0.063 | 0.085 | -0.044 | 0.032 |
| RE | 0.055 | -0.515 | -0.804 | -0.481 |
| GREEN | -0.086 | -0.322 | -0.289 | -0.020 |
| BLUE | 0.016 | 0.210 | 0.078 | 0.043 |
| DVI | -0.105 | -0.082 | -0.309 | -0.150 |
| NDVI | -0.056 | -0.097 | -0.157 | -0.110 |
| GNDVI | 0.026 | 0.095 | -0.069 | -0.092 |
| RDVI | -0.082 | -0.088 | -0.271 | -0.132 |
| RVI | -0.126 | -0.087 | -0.133 | -0.103 |
| SAVI | -0.126 | -0.077 | -0.324 | -0.162 |
| OSAVI | -0.068 | -0.093 | -0.239 | -0.124 |
| NLI | -0.066 | -0.096 | -0.237 | -0.141 |
| MNLI | -0.081 | -0.024 | -0.282 | -0.120 |
| MSR | -0.105 | -0.091 | -0.143 | -0.106 |
| GRVI | -0.183 | -0.323 | -0.222 | -0.130 |
| NDRE | -0.121 | 0.283 | 0.504 | 0.091 |
| 试验 Experiments | 模型 Model | 建模集Modeling set | 验证集Validation set | ||||
|---|---|---|---|---|---|---|---|
| R2 | RMSE | RE | R2 | RMSE | RE | ||
| 试验1 Experiments 1 | PLSR | 0.210 | 3.222 | 0.059 | 0.299 | 3.087 | 0.056 |
| SVR | 0.470 | 2.621 | 0.048 | 0.449 | 2.819 | 0.052 | |
| RF | 0.720 | 1.947 | 0.028 | 0.360 | 2.737 | 0.038 | |
| BPN | 0.486 | 2.596 | 0.039 | 0.472 | 2.713 | 0.039 | |
| 试验2 Experiments 2 | PLSR | 0.230 | 3.234 | 0.059 | 0.226 | 3.031 | 0.055 |
| SVR | 0.439 | 2.694 | 0.049 | 0.513 | 2.668 | 0.049 | |
| RF | 0.679 | 2.023 | 0.029 | 0.585 | 2.519 | 0.036 | |
| BPN | 0.468 | 2.641 | 0.039 | 0.399 | 2.893 | 0.043 | |
表4 棉花全生育期叶片SPAD值不同模型估算精度(n=324)
Tab.4 Estimation accuracy of different models for SPAD value of cotton leaves throughout the entire growth period (n=324)
| 试验 Experiments | 模型 Model | 建模集Modeling set | 验证集Validation set | ||||
|---|---|---|---|---|---|---|---|
| R2 | RMSE | RE | R2 | RMSE | RE | ||
| 试验1 Experiments 1 | PLSR | 0.210 | 3.222 | 0.059 | 0.299 | 3.087 | 0.056 |
| SVR | 0.470 | 2.621 | 0.048 | 0.449 | 2.819 | 0.052 | |
| RF | 0.720 | 1.947 | 0.028 | 0.360 | 2.737 | 0.038 | |
| BPN | 0.486 | 2.596 | 0.039 | 0.472 | 2.713 | 0.039 | |
| 试验2 Experiments 2 | PLSR | 0.230 | 3.234 | 0.059 | 0.226 | 3.031 | 0.055 |
| SVR | 0.439 | 2.694 | 0.049 | 0.513 | 2.668 | 0.049 | |
| RF | 0.679 | 2.023 | 0.029 | 0.585 | 2.519 | 0.036 | |
| BPN | 0.468 | 2.641 | 0.039 | 0.399 | 2.893 | 0.043 | |
| 试验 Experiments | 生育期 Growth stage | 建模集Modeling set | 验证集Validation set | ||||
|---|---|---|---|---|---|---|---|
| R2 | RMSE | RE | R2 | RMSE | RE | ||
| 试验1 Experiments 1 | 蕾期 | 0.641 | 1.520 | 0.108 | 0.452 | 1.842 | 0.206 |
| 花期 | 0.521 | 1.965 | 0.167 | 0.335 | 2.848 | 0.249 | |
| 花铃期 | 0.743 | 2.843 | 0.152 | 0.617 | 3.863 | 0.204 | |
| 吐絮期 | 0.586 | 3.046 | 0.138 | 0.402 | 3.922 | 0.225 | |
| 试验2 Experiments 2 | 蕾期 | 0.407 | 1.689 | 0.146 | 0.237 | 1.995 | 0.212 |
| 花期 | 0.560 | 1.735 | 0.137 | 0.227 | 1.934 | 0.269 | |
| 花铃期 | 0.819 | 1.984 | 0.100 | 0.631 | 2.598 | 0.193 | |
| 吐絮期 | 0.584 | 2.438 | 0.150 | 0.344 | 2.846 | 0.199 | |
表5 基于最优模型的棉花不同生育期叶片SPAD值估算精度(n=81)
Tab.5 Estimation accuracy of SPAD values for cotton leaves at different growth stages based on the optimal model (n=81)
| 试验 Experiments | 生育期 Growth stage | 建模集Modeling set | 验证集Validation set | ||||
|---|---|---|---|---|---|---|---|
| R2 | RMSE | RE | R2 | RMSE | RE | ||
| 试验1 Experiments 1 | 蕾期 | 0.641 | 1.520 | 0.108 | 0.452 | 1.842 | 0.206 |
| 花期 | 0.521 | 1.965 | 0.167 | 0.335 | 2.848 | 0.249 | |
| 花铃期 | 0.743 | 2.843 | 0.152 | 0.617 | 3.863 | 0.204 | |
| 吐絮期 | 0.586 | 3.046 | 0.138 | 0.402 | 3.922 | 0.225 | |
| 试验2 Experiments 2 | 蕾期 | 0.407 | 1.689 | 0.146 | 0.237 | 1.995 | 0.212 |
| 花期 | 0.560 | 1.735 | 0.137 | 0.227 | 1.934 | 0.269 | |
| 花铃期 | 0.819 | 1.984 | 0.100 | 0.631 | 2.598 | 0.193 | |
| 吐絮期 | 0.584 | 2.438 | 0.150 | 0.344 | 2.846 | 0.199 | |
| [1] | 周敏姑, 邵国敏, 张立元, 等. 无人机多光谱遥感反演冬小麦SPAD值[J]. 农业工程学报, 2020, 36(20): 125-133. |
| ZHOU Mingu, SHAO Guomin, ZHANG Liyuan, et al. Inversion of SPAD value of winter wheat by multispectral remote sensing of unmanned aerial vehicles[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(20): 125-133. | |
| [2] | 闫成川, 曲延英, 陈全家, 等. 基于无人机多光谱影像的棉花SPAD值及叶片含水量估测[J]. 农业工程学报, 2023, 39(2): 61-67. |
| YAN Chengchuan, QU Yanying, CHEN Quanjia, et al. Estimation of cotton SPAD value and leaf water content based on UAV multispectral images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(2): 61-67. | |
| [3] | 毛智慧, 邓磊, 孙杰, 等. 无人机多光谱遥感在玉米冠层叶绿素预测中的应用研究[J]. 光谱学与光谱分析, 2018, 38(9): 2923. |
| MAO Zhihui, DENG Lei, SUN Jie, et al. Research on the application of UAV multispectral remote sensing in the maize chlorophyll prediction[J]. Spectroscopy and Spectral Analysis, 2018, 38(9): 2923. | |
| [4] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
| BAO Shidan. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000. | |
| [5] | 李振海, 王纪华, 贺鹏, 等. 基于Dualex氮平衡指数测量仪的作物叶绿素含量估算模型[J]. 农业工程学报, 2015, 31(21): 191-197. |
| LI Zhenhai, WANG Jihua, HE Peng, et al. Modelling of crop chlorophyll content based on dualex[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(21): 191-197. | |
| [6] | 邵亚杰, 汤秋香, 崔建平, 等. 融合无人机光谱信息与纹理特征的棉花叶面积指数估测[J]. 农业机械学报, 2023, 54(6): 186-196. |
| SHAO Yajie, TANG Qiuxiang, CUI Jianping, et al. Cotton leaf area index estimation combining UAV spectral and textural features[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(6): 186-196. | |
| [7] | Daughtry C S T, Walthall C L, Kim M S, et al. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance[J]. Remote Sensing of Environment, 2000, 74(2): 229-239. |
| [8] | Navarro G, Caballero I, Silva G, et al. Evaluation of forest fire on Madeira Island using Sentinel-2A MSI imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 58: 97-106. |
| [9] | Fieuzal R, Marais Sicre C, Baup F. Estimation of corn yield using multi-temporal optical and radar satellite data and artificial neural networks[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 57: 14-23. |
| [10] |
谭昌伟, 杜颖, 童璐, 等. 基于开花期卫星遥感数据的大田小麦估产方法比较[J]. 中国农业科学, 2017, 50(16): 3101-3109.
DOI |
|
TAN Changwei, DU Ying, TONG Lu, et al. Comparison of the methods for predicting wheat yield based on satellite remote sensing data at anthesis[J]. Scientia Agricultura Sinica, 2017, 50(16): 3101-3109.
DOI |
|
| [11] | 魏鹏飞, 徐新刚, 李中元, 等. 基于无人机多光谱影像的夏玉米叶片氮含量遥感估测[J]. 农业工程学报, 2019, 35(8): 126-133, 335. |
| WEI Pengfei, XU Xingang, LI Zhongyuan, et al. Remote sensing estimation of nitrogen content in summer maize leaves based on multispectral images of UAV[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(8): 126-133, 335. | |
| [12] | Zhen Z J, Chen S B, Yin T G, et al. Using the negative soil adjustment factor of soil adjusted vegetation index (SAVI) to resist saturation effects and estimate leaf area index (LAI) in dense vegetation areas[J]. Sensors, 2021, 21(6): 2115. |
| [13] |
李鑫川, 徐新刚, 鲍艳松, 等. 基于分段方式选择敏感植被指数的冬小麦叶面积指数遥感反演[J]. 中国农业科学, 2012, 45(17): 3486-3496.
DOI |
|
LI Xinchuan, XU Xingang, BAO Yansong, et al. Retrieving LAI of winter wheat based on sensitive vegetation index by the segmentation method[J]. Scientia Agricultura Sinica, 2012, 45(17): 3486-3496.
DOI |
|
| [14] | Gong P, Pu R L, Biging G S, et al. Estimation of forest leaf area index using vegetation indices derived from Hyperion hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(6): 1355-1362. |
| [15] | Chen J M. Evaluation of vegetation indices and a modified simple ratio for boreal applications[J]. Canadian Journal of Remote Sensing, 1996, 22(3): 229-242. |
| [16] | Roujean J L, Breon F M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements[J]. Remote Sensing of Environment, 1995, 51(3): 375-384. |
| [17] | 刘帅兵, 杨贵军, 景海涛, 等. 基于无人机数码影像的冬小麦氮含量反演[J]. 农业工程学报, 2019, 35(11): 75-85. |
| LIU Shuaibing, YANG Guijun, JING Haitao, et al. Retrieval of winter wheat nitrogen content based on UAV digital image[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(11): 75-85. | |
| [18] | Gitelson A A, Kaufman Y J, Merzlyak M N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS[J]. Remote Sensing of Environment, 1996, 58(3): 289-298. |
| [19] | 李国君. 棉花叶片叶绿素和氮含量与产量的相关性研究[J]. 新疆农垦科技, 2018, 41(11): 37-38. |
| LI Guojun. Study on the correlation between chlorophyll and nitrogen content in cotton leaves and yield[J]. Xinjiang Farm Research of Science and Technology, 2018, 41(11): 37-38. | |
| [20] |
Xiong D L, Chen J, Yu T T, et al. SPAD-based leaf nitrogen estimation is impacted by environmental factors and crop leaf characteristics[J]. Scientific Reports, 2015, 5: 13389.
DOI PMID |
| [21] |
Cao Y F, Xu H L, Song J, et al. Applying spectral fractal dimension index to predict the SPAD value of rice leaves under bacterial blight disease stress[J]. Plant Methods, 2022, 18(1): 67.
DOI PMID |
| [22] | 李宗新, 董树亭, 王空军, 等. 不同肥料运筹对夏玉米田间土壤氮素淋溶与挥发影响的原位研究[J]. 植物营养与肥料学报, 2007, 13(6): 998-1005. |
| LI Zongxin, DONG Shuting, WANG Kongjun, et al. In situ study on influence of different fertilization strategies for summer maize on soil nitrogen leaching and volatilization[J]. Plant Nutrition and Fertilizer Science, 2007, 13(6): 998-1005. | |
| [23] | Xiao W. Interactive effects of irrigation and nitrogen fertilizer on nitrogen fertilizer recovery and nitrate-N movement across soil profile in a winter wheat field[J/OL]. Acta Ecologica Sinica, 2008. |
| [24] | Sudu B, Rong G Z, Guga S R, et al. Retrieving SPAD values of summer maize using UAV hyperspectral data based on multiple machine learning algorithm[J]. Remote Sensing, 2022, 14(21): 5407. |
| [25] | Yuan X T, Zhang X, Zhang N N, et al. Hyperspectral estimation of SPAD value of cotton leaves under Verticillium wilt stress based on GWO-ELM[J]. Agriculture, 2023, 13(9): 1779. |
| [26] | 刘一博, 裴杰, 方华军, 等. 利用无人机影像反演水稻SPAD值的最优空间窗口确定[J]. 农业工程学报, 2023, 39(19): 165-174. |
| LIU Yibo, PEI Jie, FANG Huajun, et al. Optimizing spatial window selection for rice SPAD value retrieval using multispectral UAV images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(19): 165-174. | |
| [27] | Zhang L Y, Han W T, Niu Y X, et al. Evaluating the sensitivity of water stressed maize chlorophyll and structure based on UAV derived vegetation indices[J]. Computers and Electronics in Agriculture, 2021, 185: 106174. |
| [28] | Jiang J, Atkinson P M, Zhang J Y, et al. Combining fixed-wing UAV multispectral imagery and machine learning to diagnose winter wheat nitrogen status at the farm scale[J]. European Journal of Agronomy, 2022, 138: 126537. |
| [29] | 田明璐, 班松涛, 常庆瑞, 等. 基于无人机成像光谱仪数据的棉花叶绿素含量反演[J]. 农业机械学报, 2016, 47(11): 285-293. |
| TIAN Minglu, BAN Songtao, CHANG Qingrui, et al. Estimation of SPAD value of cotton leaf using hyperspectral images from UAV-based imaging spectroradiometer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(11): 285-293. | |
| [30] | 刘江凡, 赵泽艺, 李朝阳, 等. 基于无人机多光谱遥感的苹果树冠层SPAD反演[J]. 排灌机械工程学报, 2024, 42(5): 525-531. |
| LIU Jiangfan, ZHAO Zeyi, LI Zhaoyang, et al. Estimation of apple tree canopy SPAD based on UAV multispectral remote sensing[J]. Journal of Drainage and Irrigation Machinery Engineering, 2024, 42(5): 525-531. | |
| [31] | 陈兆中, 段少坤, 岳云开, 等. 基于无人机航拍图像的水稻叶片SPAD值反演[J]. 杂交水稻, 2024, 39(2): 14-22. |
| CHEN Zhaozhong, DUAN Shaokun, YUE Yunkai, et al. Inversion of SPAD values of rice canopy based on aerial images taken by unmanned aerial vehicle[J]. Hybrid Rice, 2024, 39(2): 14-22. | |
| [32] | 刘芸, 石楠, 胡文瑞, 等. 不同棉花品种SPAD值光谱估测模型及产量估测[J]. 农业研究与应用, 2023, 36(4): 1-8. |
| LIU Yun, SHI Nan, HU Wenrui, et al. Spectral estimation models for SPAD values and yield estimation of different cotton varieties[J]. Agricultural Research and Application, 2023, 36(4): 1-8. | |
| [33] | 霍飞超. 南疆1膜3行模式密度与缩节胺对棉花生长及产量的影响[D]. 阿拉尔: 塔里木大学, 2020. |
| HUO Feichao. Effects of pattern density of 1 film and 3 rows of plastic film in South Xinjiang and thalidomide on growth and yield of cotton[D]. Aral: Tarim University, 2020. |
| [1] | 廖兴洋, 王方永, 傅积海, 陈伟明, 韩焕勇. 不同用量滴灌水与缩节胺协同打顶对新疆机采棉群体结构产量品质的影响[J]. 新疆农业科学, 2025, 62(5): 1051-1063. |
| [2] | 张梦珂, 林丽, 林豪, 惠瑞晗, 杨可攀. 不同灌溉频次对陆地棉生长指标和产量的影响[J]. 新疆农业科学, 2025, 62(5): 1064-1074. |
| [3] | 穆光荣, 李杰, 古丽娜孜·居来提, 娄善伟, 帕尔哈提·买买提, 马腾飞, 张鹏忠, 吴湘林, 张立祯, 巴特尔·巴克. 钾肥配施及用量对膜下滴灌棉花生长发育及产量的影响[J]. 新疆农业科学, 2025, 62(5): 1075-1083. |
| [4] | 陈创洲, 张炎, 哈丽哈什·依巴提, 佘玲艺, 樊林鑫, 张优. 施氮对棉花生长发育、产量及棉田土壤养分的影响[J]. 新疆农业科学, 2025, 62(5): 1092-1101. |
| [5] | 包艳丽, 王晓伟, 李琼诗, 张利召, 陈玉兰. 新疆主要棉区棉花高质量发展水平及差异分析[J]. 新疆农业科学, 2025, 62(4): 1032-1040. |
| [6] | 赵宇航, 颜安, 马梦倩, 肖淑婷, 孙哲, 李靖言. 基于无人机多光谱影像水氮耦合下棉花LAI与SPAD值模型的精度估测[J]. 新疆农业科学, 2025, 62(4): 781-790. |
| [7] | 李珂, 印彩霞, 陈茂光, 崔涵予, 王科, 刘立杨, 汤秋香. 基于无人机多光谱影像结合机器学习的棉花SPAD值估算[J]. 新疆农业科学, 2025, 62(4): 791-799. |
| [8] | 李虎情, 邵冬南, 张翼, 刘峰, 张新宇, 李艳军, 孙杰, 杨永林, 薛飞. 陆地棉GhSHA1基因的特征分析及其功能验证[J]. 新疆农业科学, 2025, 62(4): 800-806. |
| [9] | 张凌健, 张凯, 张慧, 郭小梦, 陈国悦, 王奕丁, 贾庆宇. 棉花全生育期植株含水率与顶部茎叶形态特征的关系[J]. 新疆农业科学, 2025, 62(3): 531-538. |
| [10] | 章莲, 陈湘耀, 王潭刚, 马晓梅, 陈兵, 王刚, 段震宇. 高强度地膜对土壤温度、湿度及棉花生长的影响[J]. 新疆农业科学, 2025, 62(3): 539-545. |
| [11] | 徐守振, 马麒, 宁新柱, 李吉莲, 宿俊吉, 韩焕勇, 王方永, 林海. 不同行距和脱叶剂对棉花脱叶效果的影响[J]. 新疆农业科学, 2025, 62(3): 546-555. |
| [12] | 赵玉鹏, 陈波浪, 王治国, 付彦博, 扁青永. 不同碳源物质输入对板结黏土特性及棉花苗期生长的影响[J]. 新疆农业科学, 2025, 62(3): 556-571. |
| [13] | 王勇攀, 马君, 李晨宇, 姚梦瑶, 王子轩, 黄灵芝, 朱海艳, 刘皖蓉, 李波, 杨洋, 高文伟. 基于卷积神经网络和合成数据集训练鉴定棉花种子萌发期的耐盐性[J]. 新疆农业科学, 2025, 62(2): 261-269. |
| [14] | 胡莎莎, 邵丽萍, 陈丽华, 宋卫平, 赵海, 张新宇, 孙杰. 脱叶剂对机采棉棉铃发育及纤维品质的影响[J]. 新疆农业科学, 2025, 62(2): 270-277. |
| [15] | 陆明昆, 李军宏, 尼陆排尔·于苏甫江, 潘喜鹏, 刘晓成, 张正贵, 潘占磊, 翟梦华, 张要朋, 赵文琪, 王丽宏, 王占彪. 追施硅肥对棉花生长发育及产量品质的影响[J]. 新疆农业科学, 2025, 62(2): 286-293. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||