新疆农业科学 ›› 2025, Vol. 62 ›› Issue (4): 894-902.DOI: 10.6048/j.issn.1001-4330.2025.04.013
收稿日期:
2024-09-19
出版日期:
2025-04-20
发布日期:
2025-06-20
通信作者:
张晓晖(1978-),女,新疆人,副教授,硕士研究生,研究方向为果树栽培与生理及相关调控,(E-mail)22515228@qq.com作者简介:
吕齐(1997-),男,新疆人,硕士研究生,助教,研究方向为果树栽培生理与水肥,(E-mail)1549993076@qq.com
基金资助:
LYU Qi1,2(), ZHANG Xiaohui1(
), ZHANG Jinzhi1, WANG Jingjing3
Received:
2024-09-19
Published:
2025-04-20
Online:
2025-06-20
Supported by:
摘要:
【目的】研究增施有机肥及连续减量滴施化肥对夏黑葡萄果实品质的影响。【方法】以7 a生夏黑葡萄为试验材料,设连续3年未施肥(CK)、连续3年单施化肥(T0)、增施有机肥+1年减量滴施化肥(T1)、增施有机肥+连续2年减量滴施化肥(T2)、增施有机肥+连续3年减量滴施化肥(T3)5个处理,连续3 a定位试验,研究不同年限增施有机肥与化肥减量滴施对夏黑葡萄生长、产量及品质的影响。【结果】T2处理下夏黑葡萄果实纵、横径2次膨大快速期(花后15~22 d和36~43 d)均为最大,单果重、单穗重、产量较T0分别提高了14.6%、4.8%和4.7%,其次为T3。膨大时期T2处理下葡萄叶片净光合速率、气孔导度、蒸腾速率在各处理中均为最高;对于葡萄果实着色及果实品质, T2处理下葡萄果皮花青素含量比T0提高了22.0%,加快了叶绿素分解,促进了果实着色,其次为T3;T2处理下果实可溶性固形物、糖酸比、各类糖、VC、总酚含量等均显著提高。【结论】T2处理在促进葡萄生长、品质方面具有积极作用,T3效果次之,T1与T0间差异不大,滴灌条件下增施有机肥与减量滴施化肥在第二年时效果最佳。
中图分类号:
吕齐, 张晓晖, 张金枝, 王菁菁. 增施有机肥与减量滴施化肥对干旱区夏黑葡萄果实品质的影响[J]. 新疆农业科学, 2025, 62(4): 894-902.
LYU Qi, ZHANG Xiaohui, ZHANG Jinzhi, WANG Jingjing. Effects of increasing organicfertilizer and reducing chemical fertilizer on fruit quality of Xiahei grape in arid areas[J]. Xinjiang Agricultural Sciences, 2025, 62(4): 894-902.
图1 试验设计 注:1:铁丝;2:横木;3:果枝;4:立柱;5:葡萄树;6:滴灌带;7:滴水口;8:水和化肥;9:有机肥(牛粪)
Fig.1 Experimental design Notes:1:Wire; 2: Crossbar; 3: Fruit branch; 4: Column; 5: Grapevine; 6: Drip tape; 8: Water and fertilizer; 9: Organic fertilizer(Cattle wastes)
处理 Treatments | 说明(施加时间) Description (Application time) | 基肥 Basal Fertilizer | 追肥(化肥) T0 pdressing(Chemical fertilizer) (kg/hm2) | ||
---|---|---|---|---|---|
有机肥施加总量 Total amount of organic fertilizer applied(kg/hm2) | 尿素 Urea | 磷酸一铵 Monoammonium phosphate | 硫酸钾 Potassium sulfate | ||
CK | 连续三年未施肥 (2021年-2023年) | 0 | 0 | 0 | 0 |
T0 | 连续三年单施化肥 (2021年-2023年) | 0 | 525 | 375 | 675 |
T1 | 有机肥+减量滴施化肥一年 (2023年) | 2 921.4 | 390.9 | 287.7 | 577.8 |
T2 | 有机肥+减量滴施化肥两年 (2022年-2023年) | 2 921.4 | 390.9 | 287.7 | 577.8 |
T3 | 有机肥+减量滴施化肥三年 (2021年-2023年) | 2 921.4 | 390.9 | 287.7 | 577.8 |
表1 施肥方案
Tab.1 Fertilization scheme
处理 Treatments | 说明(施加时间) Description (Application time) | 基肥 Basal Fertilizer | 追肥(化肥) T0 pdressing(Chemical fertilizer) (kg/hm2) | ||
---|---|---|---|---|---|
有机肥施加总量 Total amount of organic fertilizer applied(kg/hm2) | 尿素 Urea | 磷酸一铵 Monoammonium phosphate | 硫酸钾 Potassium sulfate | ||
CK | 连续三年未施肥 (2021年-2023年) | 0 | 0 | 0 | 0 |
T0 | 连续三年单施化肥 (2021年-2023年) | 0 | 525 | 375 | 675 |
T1 | 有机肥+减量滴施化肥一年 (2023年) | 2 921.4 | 390.9 | 287.7 | 577.8 |
T2 | 有机肥+减量滴施化肥两年 (2022年-2023年) | 2 921.4 | 390.9 | 287.7 | 577.8 |
T3 | 有机肥+减量滴施化肥三年 (2021年-2023年) | 2 921.4 | 390.9 | 287.7 | 577.8 |
处理 Treat- ments | 花后天数 The number of days after anthesis | 平均膨大速率 Average enlargement rate | |||||||
---|---|---|---|---|---|---|---|---|---|
15~22 d | 22~29 d | 29~36 d | 36~43 d | 43~50 d | 50~57 d | 57~64 d | 64~71 d | ||
CK | 0.58±0.083b | 0.24±0.115a | 0.09±0.146b | 0.51±0.048b | 0.15±0.034c | 0.27±0.015a | 0.12±0.020b | 0.05±0.014c | 0.25±0.196a |
T0 | 0.63±0.102b | 0.24±0.041a | 0.15±0.070ab | 0.52±0.046b | 0.31±0.024b | 0.11±0.015b | 0.10±0.006c | 0.07±0.010b | 0.27±0.199a |
T1 | 0.62±0.041b | 0.23±0.064a | 0.15±0.068ab | 0.57±0.015a | 0.31±0.036b | 0.10±0.033b | 0.11±0.007bc | 0.09±0.008a | 0.27±0.202a |
T2 | 0.73±0.015a | 0.17±0.028b | 0.19±0.016a | 0.53±0.011b | 0.36±0.011a | 0.06±0.018c | 0.11±0.010bc | 0.08±0.015ab | 0.28±0.227a |
T3 | 0.64±0.016b | 0.25±0.021a | 0.15±0.015ab | 0.54±0.014ab | 0.30±0.011b | 0.11±0.021b | 0.13±0.020a | 0.06±0.015c | 0.27±0.199a |
表2 不同处理下夏黑葡萄纵径膨大速率的变化
Tab.2 Changes of longitudinal enlargement rate of Xiahei grape under different treatments(mm/d)
处理 Treat- ments | 花后天数 The number of days after anthesis | 平均膨大速率 Average enlargement rate | |||||||
---|---|---|---|---|---|---|---|---|---|
15~22 d | 22~29 d | 29~36 d | 36~43 d | 43~50 d | 50~57 d | 57~64 d | 64~71 d | ||
CK | 0.58±0.083b | 0.24±0.115a | 0.09±0.146b | 0.51±0.048b | 0.15±0.034c | 0.27±0.015a | 0.12±0.020b | 0.05±0.014c | 0.25±0.196a |
T0 | 0.63±0.102b | 0.24±0.041a | 0.15±0.070ab | 0.52±0.046b | 0.31±0.024b | 0.11±0.015b | 0.10±0.006c | 0.07±0.010b | 0.27±0.199a |
T1 | 0.62±0.041b | 0.23±0.064a | 0.15±0.068ab | 0.57±0.015a | 0.31±0.036b | 0.10±0.033b | 0.11±0.007bc | 0.09±0.008a | 0.27±0.202a |
T2 | 0.73±0.015a | 0.17±0.028b | 0.19±0.016a | 0.53±0.011b | 0.36±0.011a | 0.06±0.018c | 0.11±0.010bc | 0.08±0.015ab | 0.28±0.227a |
T3 | 0.64±0.016b | 0.25±0.021a | 0.15±0.015ab | 0.54±0.014ab | 0.30±0.011b | 0.11±0.021b | 0.13±0.020a | 0.06±0.015c | 0.27±0.199a |
处理 Treat- ments | 花后天数 The number of days after anthesis | 平均膨大速率 Average enlargement rate | |||||||
---|---|---|---|---|---|---|---|---|---|
15~22 d | 22~29 d | 29~36 d | 36~43 d | 43~50 d | 50~57 d | 57~64 d | 64~71 d | ||
CK | 0.43±0.167c | 0.32±0.108a | 0.11±0.079a | 0.42±0.020c | 0.22±0.010c | 0.17±0.013a | 0.05±0.016d | 0.09±0.017a | 0.23±0.157a |
T0 | 0.61±0.074b | 0.22±0.057b | 0.13±0.071a | 0.51±0.038b | 0.26±0.015b | 0.03±0.014d | 0.14±0.011b | 0.02±0.011c | 0.24±0.207a |
T1 | 0.60±0.102b | 0.23±0.090b | 0.14±0.070a | 0.53±0.028ab | 0.26±0.014b | 0.06±0.009c | 0.15±0.007b | 0.02±0.010c | 0.25±0.207a |
T2 | 0.72±0.012a | 0.14±0.016c | 0.15±0.014a | 0.56±0.034a | 0.29±0.024a | 0.08±0.020b | 0.07±0.020c | 0.06±0.016b | 0.26±0.235a |
T3 | 0.62±0.013b | 0.22±0.016b | 0.14±0.012a | 0.53±0.150ab | 0.26±0.020b | 0.07±0.012bc | 0.17±0.014a | 0.05±0.023b | 0.26±0.199a |
表3 不同处理下夏黑葡萄横径膨大速率的变化
Tab.3 Changes of transverse diameter enlargement rate of Xiabei grape under different treatments (mm/d)
处理 Treat- ments | 花后天数 The number of days after anthesis | 平均膨大速率 Average enlargement rate | |||||||
---|---|---|---|---|---|---|---|---|---|
15~22 d | 22~29 d | 29~36 d | 36~43 d | 43~50 d | 50~57 d | 57~64 d | 64~71 d | ||
CK | 0.43±0.167c | 0.32±0.108a | 0.11±0.079a | 0.42±0.020c | 0.22±0.010c | 0.17±0.013a | 0.05±0.016d | 0.09±0.017a | 0.23±0.157a |
T0 | 0.61±0.074b | 0.22±0.057b | 0.13±0.071a | 0.51±0.038b | 0.26±0.015b | 0.03±0.014d | 0.14±0.011b | 0.02±0.011c | 0.24±0.207a |
T1 | 0.60±0.102b | 0.23±0.090b | 0.14±0.070a | 0.53±0.028ab | 0.26±0.014b | 0.06±0.009c | 0.15±0.007b | 0.02±0.010c | 0.25±0.207a |
T2 | 0.72±0.012a | 0.14±0.016c | 0.15±0.014a | 0.56±0.034a | 0.29±0.024a | 0.08±0.020b | 0.07±0.020c | 0.06±0.016b | 0.26±0.235a |
T3 | 0.62±0.013b | 0.22±0.016b | 0.14±0.012a | 0.53±0.150ab | 0.26±0.020b | 0.07±0.012bc | 0.17±0.014a | 0.05±0.023b | 0.26±0.199a |
纵径测定时间 Time for longitudinal diameter measurement(d) | 横径测定时间 Time for transverse diameter measurement | |||||||
---|---|---|---|---|---|---|---|---|
15~22 d | 22~29 d | 29~36 d | 36~43 d | 43~50 d | 50~57 d | 57~64 d | 64~71 d | |
15~22 | 0.465** | -0.493** | 0.161 | 0.468* | 0.543** | -0.272 | -0.018 | -0.120 |
22~29 | 0.002 | 0.110 | -0.060 | -0.241 | -0.192 | 0.027 | 0.247 | -0.109 |
29~36 | 0.178 | -0.156 | -0.047 | 0.356* | 0.286 | -0.294* | 0.086 | -0.121 |
36~43 | 0.088 | -0.187 | 0.247 | 0.272 | 0.100 | -0.265 | 0.310* | -0.342* |
43~50 | 0.713** | -0.605** | 0.095 | 0.822** | 0.659** | -0.730** | 0.437** | -0.513** |
50~57 | -0.670** | 0.655** | -0.135 | -0.851** | -0.702** | 0.759** | -0.443** | 0.542** |
57~64 | -0.091 | 0.092 | -0.129 | 0.010 | -0.008 | 0.216 | 0.067 | 0.256 |
64~71 | 0.343* | -0.369** | 0.102 | 0.494** | 0.323* | -0.492** | 0.285 | -0.531** |
表4 夏黑葡萄纵径与横径膨大速率相关性
Tab.4 Correlation analysis between longitudinal diameter and transverse diameter
纵径测定时间 Time for longitudinal diameter measurement(d) | 横径测定时间 Time for transverse diameter measurement | |||||||
---|---|---|---|---|---|---|---|---|
15~22 d | 22~29 d | 29~36 d | 36~43 d | 43~50 d | 50~57 d | 57~64 d | 64~71 d | |
15~22 | 0.465** | -0.493** | 0.161 | 0.468* | 0.543** | -0.272 | -0.018 | -0.120 |
22~29 | 0.002 | 0.110 | -0.060 | -0.241 | -0.192 | 0.027 | 0.247 | -0.109 |
29~36 | 0.178 | -0.156 | -0.047 | 0.356* | 0.286 | -0.294* | 0.086 | -0.121 |
36~43 | 0.088 | -0.187 | 0.247 | 0.272 | 0.100 | -0.265 | 0.310* | -0.342* |
43~50 | 0.713** | -0.605** | 0.095 | 0.822** | 0.659** | -0.730** | 0.437** | -0.513** |
50~57 | -0.670** | 0.655** | -0.135 | -0.851** | -0.702** | 0.759** | -0.443** | 0.542** |
57~64 | -0.091 | 0.092 | -0.129 | 0.010 | -0.008 | 0.216 | 0.067 | 0.256 |
64~71 | 0.343* | -0.369** | 0.102 | 0.494** | 0.323* | -0.492** | 0.285 | -0.531** |
处理 Treatments | 净光合速率Pn (μmol/(m2·s)) | 气孔导度Gs (mol/(m2·s)) | 胞间CO2浓度Ci (μmol/mol) | 蒸腾速率Tr (μmol/(m2·s)) |
---|---|---|---|---|
CK | 18.22±1.011b | 0.37±0.020c | 269.45±3.542a | 7.13±0.529d |
T0 | 18.73±0.705b | 0.42±0.037b | 250.00±8.175bc | 8.62±0.634bc |
T1 | 18.82±0.942b | 0.42±0.015b | 261.47±4.745ab | 7.93±0.224cd |
T2 | 20.98±0.967a | 0.49±0.025a | 252.20±9.479b | 9.84±0.254a |
T3 | 21.31±1.075a | 0.50±0.015a | 238.57±8.045c | 8.90±0.620b |
表5 膨大时期夏黑葡萄光合参数的变化
Tab.5 Changes of photosynthetic parameters of Xiahei grapes during the expansion period
处理 Treatments | 净光合速率Pn (μmol/(m2·s)) | 气孔导度Gs (mol/(m2·s)) | 胞间CO2浓度Ci (μmol/mol) | 蒸腾速率Tr (μmol/(m2·s)) |
---|---|---|---|---|
CK | 18.22±1.011b | 0.37±0.020c | 269.45±3.542a | 7.13±0.529d |
T0 | 18.73±0.705b | 0.42±0.037b | 250.00±8.175bc | 8.62±0.634bc |
T1 | 18.82±0.942b | 0.42±0.015b | 261.47±4.745ab | 7.93±0.224cd |
T2 | 20.98±0.967a | 0.49±0.025a | 252.20±9.479b | 9.84±0.254a |
T3 | 21.31±1.075a | 0.50±0.015a | 238.57±8.045c | 8.90±0.620b |
处理 Treatments | 纵径 Longitudinal diameter(mm) | 横径 Transverse diameter(mm) | 单果重 Berry weight (g) | 单穗重 Bunch weight (g) | 产量 Yield (kg/hm2) |
---|---|---|---|---|---|
CK | 22.34±0.561d | 19.84±0.572e | 5.37±0.265c | 546.1±11.75c | 27 032.0±38.77c |
T0 | 23.66±0.249c | 21.25±0.544d | 6.16±0.254b | 579.5±9.81b | 28 685.3±32.39b |
T1 | 23.89±0.442b | 21.60±0.352c | 6.17±0.211b | 573.8±6.13b | 28 403.1±20.27b |
T2 | 24.35±0.512a | 22.41±0.377a | 7.06±0.124a | 607.1±7.09a | 30 051.5±23.39a |
T3 | 23.95±0.501b | 22.15±0.436b | 6.89±0.173a | 602.1±6.65a | 29 802.3±21.97a |
表6 不同处理下夏黑葡萄产量的变化
Tab.6 Changes yield of Xiahei grape under different treatments
处理 Treatments | 纵径 Longitudinal diameter(mm) | 横径 Transverse diameter(mm) | 单果重 Berry weight (g) | 单穗重 Bunch weight (g) | 产量 Yield (kg/hm2) |
---|---|---|---|---|---|
CK | 22.34±0.561d | 19.84±0.572e | 5.37±0.265c | 546.1±11.75c | 27 032.0±38.77c |
T0 | 23.66±0.249c | 21.25±0.544d | 6.16±0.254b | 579.5±9.81b | 28 685.3±32.39b |
T1 | 23.89±0.442b | 21.60±0.352c | 6.17±0.211b | 573.8±6.13b | 28 403.1±20.27b |
T2 | 24.35±0.512a | 22.41±0.377a | 7.06±0.124a | 607.1±7.09a | 30 051.5±23.39a |
T3 | 23.95±0.501b | 22.15±0.436b | 6.89±0.173a | 602.1±6.65a | 29 802.3±21.97a |
处理 Treat- ments | 可溶性 固形物 Soluble solids (%) | 可滴定酸 Titratable acid (%) | 糖酸比 Sugar acid ratio | VC (mg/100g) | 总酚 Total phenol (mg/g) | 总糖 Total sugar (%) | 果糖 Fruc- tose (%) | 蔗糖 Sucrose (%) | 葡萄糖 Glucose (%) |
---|---|---|---|---|---|---|---|---|---|
CK | 18.51±0.236e | 0.623±0.037a | 29.747±0.640d | 3.552±0.096b | 23.35±0.478e | 14.34±0.373c | 8.03±0.061d | 1.20±0.025d | 5.11±0.035d |
T0 | 19.47±0.141d | 0.593±0.071b | 32.858±0.360c | 3.680±0.055b | 25.18±0.230d | 16.73±0.135b | 8.72±0.036c | 1.29±0.015b | 6.72±0.020c |
T1 | 19.74±0.174c | 0.595±0.032b | 33.203±1.064c | 3.584±0.055b | 26.02±0.135c | 16.74±0.115b | 8.68±0.030c | 1.25±0.0.17c | 6.82±0.015b |
T2 | 20.52±0.109a | 0.528±0.028c | 38.910±0.509a | 3.936±0.096a | 29.16±0.215b | 17.54±0.145a | 9.19±0.025a | 1.36±0.030a | 7.02±0.040a |
T3 | 19.99±0.183b | 0.538±0.034c | 37.197±0.565b | 3.872±0.055a | 30.48±0.642a | 17.32±0.090a | 8.99±0.030b | 1.33±0.020ab | 6.97±0.040a |
表7 不同处理下夏黑葡萄内在品质的变化
Tab.7 Changes internal quality of Xiahei grape under different treatments
处理 Treat- ments | 可溶性 固形物 Soluble solids (%) | 可滴定酸 Titratable acid (%) | 糖酸比 Sugar acid ratio | VC (mg/100g) | 总酚 Total phenol (mg/g) | 总糖 Total sugar (%) | 果糖 Fruc- tose (%) | 蔗糖 Sucrose (%) | 葡萄糖 Glucose (%) |
---|---|---|---|---|---|---|---|---|---|
CK | 18.51±0.236e | 0.623±0.037a | 29.747±0.640d | 3.552±0.096b | 23.35±0.478e | 14.34±0.373c | 8.03±0.061d | 1.20±0.025d | 5.11±0.035d |
T0 | 19.47±0.141d | 0.593±0.071b | 32.858±0.360c | 3.680±0.055b | 25.18±0.230d | 16.73±0.135b | 8.72±0.036c | 1.29±0.015b | 6.72±0.020c |
T1 | 19.74±0.174c | 0.595±0.032b | 33.203±1.064c | 3.584±0.055b | 26.02±0.135c | 16.74±0.115b | 8.68±0.030c | 1.25±0.0.17c | 6.82±0.015b |
T2 | 20.52±0.109a | 0.528±0.028c | 38.910±0.509a | 3.936±0.096a | 29.16±0.215b | 17.54±0.145a | 9.19±0.025a | 1.36±0.030a | 7.02±0.040a |
T3 | 19.99±0.183b | 0.538±0.034c | 37.197±0.565b | 3.872±0.055a | 30.48±0.642a | 17.32±0.090a | 8.99±0.030b | 1.33±0.020ab | 6.97±0.040a |
[1] | 黄秉信, 中国农村统计年鉴[M]. 北京: 中国统计出版社, 2017:193-194. |
HUANG Bingxin Ed. China Rural Statistical Yearbook[M]. Beijing: China Statistics Press, 2017:193-194. | |
[2] | 李久生, 栗岩峰, 王军, 等. 微灌在中国: 历史、现状和未来[J]. 水利学报, 2016, 47(3): 372-381. |
LI Jiusheng, LI Yanfeng, WANG Jun, et al. Microirrigation in China: history, current situation and prospects[J]. Journal of Hydraulic Engineering, 2016, 47(3): 372-381. | |
[3] | 罗彤, 李俊华, 华瑞, 等. 滴施酸性有机肥浸提液对棉田土壤养分活化和利用效率的影响[J]. 植物营养与肥料学报, 2018, 24(5): 1255-1265. |
LUO Tong, LI Junhua, HUA Rui, et al. Effects of organic fertilizer extract on soil nutrient activation and use efficiency in cotton field[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1255-1265. | |
[4] |
陶瑞, 李锐, 谭亮, 等. 减少化肥配施有机肥对滴灌棉花N、P吸收和产量的影响[J]. 棉花学报, 2014, 26(4): 342-349.
DOI |
TAO Rui, LI Rui, TAN Liang, et al. Effects of application of different organic manures with chemical fertilizer on cotton yield, N and P utilization efficiency under drip irrigation[J]. Cotton Science, 2014, 26(4): 342-349. | |
[5] | Sharma R, Banik P. Vermicompost and fertilizer application: effect on productivity and profitability of baby corn (Zea mays L.) and soil health[J]. Compost Science & Utilization, 2014, 22: 83-92. |
[6] | Díaz-Pérez J C, Bautista J, Gunawan G, et al. Sweet onion (Allium cepa L.) as influenced by organic fertilization rate: 2. bulb yield and quality before and after storage[J]. HortScience, 53(4): 459-464. |
[7] | Tao R, Wakelin S A, Liang Y C, et al. Organic fertilization enhances cotton productivity, nitrogen use efficiency, and soil nitrogen fertility under drip irrigated field[J]. Agronomy Journal, 2017, 109(6): 2889-2897. |
[8] | Kumar K A, Swain D K, Bhadoria P B S. Split application of organic nutrient improved productivity, nutritional quality and economics of rice-chickpea cropping system in lateritic soil[J]. Field Crops Research, 2018, 223: 125-136. |
[9] | Cai Y J, Ding W X, Luo J F. Nitrous oxide emissions from Chinese maize-wheat rotation systems: a 3-year field measurement[J]. Atmospheric Environment, 2013, 65: 112-122. |
[10] | 刘晓静, 冯宝春, 冯守千, 等. ‘国光’苹果及其红色芽变花青苷合成与相关酶活性的研究[J]. 园艺学报, 2009, 36(9): 1249-1254. |
LIU Xiaojing, FENG Baochun, FENG Shouqian, et al. Studies on anthocyanin biosynthesis and activities of related enzymes of ‘ralls’ and its bud mutation[J]. Acta Horticulturae Sinica, 2009, 36(9): 1249-1254. | |
[11] | 叶尚红. 植物生理生化实验教程[M]. 昆明: 云南科技出版社, 2004: 71-74. |
YE Shanghong. Experimental course of plant physiology and biochemistry[M]. Kunming: Yunnan Science and Technology Press, 2004: 71-74. | |
[12] | 韩振海, 陈昆松. 实验园艺学[M]. 北京: 高等教育出版社, 2006: 389-392. |
HAN Zhenhai, CHEN Kunsong. Experimental horticulture[M]. Beijing: Higher Education Press, 2006: 389-392. | |
[13] | 李忠芳, 徐明岗, 张会民, 等. 长期施肥和不同生态条件下我国作物产量可持续性特征[J]. 应用生态学报, 2010, 21(5): 1264-1269. |
LI Zhongfang, XU Minggang, ZHANG Huimin, et al. Sustainability of crop yields in China under long-term fertilization and different ecological conditions[J]. Chinese Journal of Applied Ecology, 2010, 21(5): 1264-1269.
PMID |
|
[14] | 林葆, 林继雄, 李家康. 长期施肥的作物产量和土壤肥力变化[J]. 植物营养与肥料学报, 1994,(1): 6-18. |
LIN Bao, LIN Jixiong, LI Jiakang. The changes of crop yield and soil fertility with long-term fertilizer application[J]. Plant Nutrition and Fertilizing Science, 1994,(1): 6-18. | |
[15] |
Marinari S, Masciandaro G, Ceccanti B, et al. Evolution of soil organic matter changes using pyrolysis and metabolic indices: a comparison between organic and mineral fertilization[J]. Bioresource Technology, 2007, 98(13): 2495-2502.
PMID |
[16] | Shen H, Shen J Z, Li Y, et al. Promotion of lateral root growth and leaf quality of flue-cured tobacco by the combined application of humic acids and npk chemical fertilizers[J]. Experimental Agriculture, 2017, 53(1): 59-70. |
[17] | Zhang Y L, Li C H, Wang Y W, et al. Maize yield and soil fertility with combined use of compost and inorganic fertilizers on a calcareous soil on the North China Plain[J]. Soil and Tillage Research, 2016, 155: 85-94. |
[18] | Yang Z C, Zhao N, Huang F, et al. Long-term effects of different organic and inorganic fertilizer treatments on soil organic carbon sequestration and crop yields on the North China Plain[J]. Soil and Tillage Research, 2015, 146: 47-52. |
[19] | 张芮, 成自勇, 王旺田, 等. 不同生育期水分胁迫对延后栽培葡萄产量与品质的影响[J]. 农业工程学报, 2014, 30(24): 105-113. |
ZHANG Rui, CHENG Ziyong, WANG Wangtian, et al. Effect of water stress in different growth stages on grape yield and fruit quality under delayed cultivation facility[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(24): 105-113. | |
[20] | Zhang Z X, Cai Z Q, Liu G Z, et al. Effects of fertilization on the growth, phoT0synthesis, and biomass accumulation in juvenile plants of three coffee (Coffea arabica L.) cultivars[J]. Photosynthetica, 2017, 55(1):134-143. |
[21] | Saikia P, Bhattacharya S S, Baruah K K. Organic substitution in fertilizer schedule: impacts on soil health, photosynthetic efficiency, yield and assimilation in wheat grown in alluvial soil[J]. Agriculture, Ecosystems & Environment, 2015, 203: 102-109. |
[22] | 蒲瑶瑶, 吕秀敏, 邬梦成, 等. 熏蒸条件下有机肥部分替代化肥对西瓜生长及养分利用的影响[J]. 水土保持学报, 2017, 31(6): 306-311, 352. |
PU Yaoyao, LYU Xiumin, WU Mengcheng, et al. Effects of partial substitution for chemical fertilizer by organic manure on the growth and nutrient use of watermelon under fumigation condition[J]. Journal of Soil and Water Conservation, 2017, 31(6): 306-311, 352. | |
[23] | Velasco R, Zharkikh A, Affourtit J, et al. The genome of the domesticated apple (Malus × domestica Borkh.)[J]. Nature Genetics, 2010, 42(10): 833-839. |
[24] | Sharma S, Sharma S D, Kumar P. Response of nectarines to organic fertilization under the rain-fed ecosystem of Northwest Himalayas[J]. Journal of Plant Nutrition, 2017, 40(14): 2014-2025. |
[25] | Illera-Vives M, Seoane Labandeira S, Iglesias Loureiro L, et al. Agronomic assessment of a compost consisting of seaweed and fish waste as an organic fertilizer for organic potato crops[J]. Journal of Applied Phycology, 2017, 29(3): 1663-1671. |
[1] | 马兰, 刘英玉, 祖力胡马尔·艾力, 郑百利, 豆涛, 蔡雨萱, 程雅玲. 新疆某鹅屠宰场中金黄色葡萄球菌的分子特征和耐药性分析[J]. 新疆农业科学, 2025, 62(4): 1022-1031. |
[2] | 侯良忠, 谈锐, 杜保军, 郭同军, 曹宏斌, 古再丽努尔·艾麦提. 新疆全株玉米青贮质量评估及工艺优化分析[J]. 新疆农业科学, 2025, 62(4): 850-857. |
[3] | 花卉, 曾雪玲, 唐章虎, 王绍鹏, 于水云, 章世奎, 周伟权. 外源糖醇钙对库买提杏果实品质及挥发性物质的影响[J]. 新疆农业科学, 2025, 62(4): 876-886. |
[4] | 王澍, 刘保军, 张李娅, 单佳祁, 李克梅, 白剑宇. 葡萄双生病毒A的序列分析及检测[J]. 新疆农业科学, 2025, 62(4): 887-893. |
[5] | 马如海, 黄春燕, 崔辉梅, 郑越辉, 方圆, 王登伟. 黄沙基质不同栽培方式对设施番茄产量与品质的影响[J]. 新疆农业科学, 2025, 62(4): 903-910. |
[6] | 陈俊, 张琦, 杨梦宇, 袁振杨. 生草对苹果园土壤理化性质及果实品质的影响[J]. 新疆农业科学, 2025, 62(4): 936-943. |
[7] | 徐守振, 马麒, 宁新柱, 李吉莲, 宿俊吉, 韩焕勇, 王方永, 林海. 不同行距和脱叶剂对棉花脱叶效果的影响[J]. 新疆农业科学, 2025, 62(3): 546-555. |
[8] | 聂凌帆, 张金汕, 田文强, 孙刚刚, 王泓懿, 张君, 张强斌, 郭飞, 吴利, 石书兵. 不同水氮处理对超晚播冬麦生长、水氮利用及产量的影响[J]. 新疆农业科学, 2025, 62(3): 584-592. |
[9] | 雷嘉诚, 张婧婧, 韩博, 鲁子翱. 基于PyOpenGL的虚拟小麦生长模拟及可视化系统[J]. 新疆农业科学, 2025, 62(3): 609-618. |
[10] | 郝曦煜, 张仲鹃, 张斯文, 张瑾, 郑春秀, 吴世凯, 张永久. 不同有机肥对土壤肥力及鲜食玉米农艺性状、产量与品质的影响[J]. 新疆农业科学, 2025, 62(3): 619-626. |
[11] | 白世践, 户金鸽, 蔡军社, 吴久赟, 马小才, 袁森, 伍国红. 12个葡萄品种在吐鲁番葡萄产区的栽培特性及果实品质分析[J]. 新疆农业科学, 2025, 62(3): 678-687. |
[12] | 刘力萌, 马文彬, 李林贵, 袁岑, 师志海, 刘艳丰, 秦荣艳, 王文奇. 发酵中草药对羔羊生长性能、血清生化及生长激素的影响[J]. 新疆农业科学, 2025, 62(3): 754-765. |
[13] | 胡莎莎, 邵丽萍, 陈丽华, 宋卫平, 赵海, 张新宇, 孙杰. 脱叶剂对机采棉棉铃发育及纤维品质的影响[J]. 新疆农业科学, 2025, 62(2): 270-277. |
[14] | 刘跃, 连世昊, 李家豪, 王泓懿, 田文强, 聂凌帆, 孙刚刚, 贾永红, 石书兵, 于月华, 张金汕. 播期和密度对花生产量形成及品质的影响[J]. 新疆农业科学, 2025, 62(2): 278-285. |
[15] | 陆明昆, 李军宏, 尼陆排尔·于苏甫江, 潘喜鹏, 刘晓成, 张正贵, 潘占磊, 翟梦华, 张要朋, 赵文琪, 王丽宏, 王占彪. 追施硅肥对棉花生长发育及产量品质的影响[J]. 新疆农业科学, 2025, 62(2): 286-293. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 13
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 38
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||