新疆农业科学 ›› 2025, Vol. 62 ›› Issue (7): 1774-1783.DOI: 10.6048/j.issn.1001-4330.2025.07.022

• 果蔬与加工专栏 • 上一篇    下一篇

二氧化硫在鲜食葡萄果柄中的积累预测模型

马彩云1,2(), 邢世均2,3, 袁宇尧2,3, 张政2,3, 王曼2,3, 魏佳2,3(), 吴斌2,3()   

  1. 1.新疆农业大学食品科学与药学学院, 乌鲁木齐 830052
    2.新疆农产品加工与保鲜重点实验室, 乌鲁木齐 830091
    3.新疆维吾尔自治区农业科学院农产品加工研究所, 乌鲁木齐 830091
  • 收稿日期:2024-12-11 出版日期:2025-07-20 发布日期:2025-09-05
  • 通信作者: 吴斌(1973-),男,新疆人,研究员,博士,研究方向为农产品贮藏与加工,(E-mail)xjuwubin0320@sina.com;
    魏佳(1981-),女,新疆人,副研究员,博士,研究方向为应用化学,(E-mail)jwei_xaas@sina.com
  • 作者简介:马彩云(1994-),女,甘肃人,硕士研究生,研究方向为农产品贮藏与加工,(E-mail)1169399488@qq.com
  • 基金资助:
    国家自然科学基金项目(U2003213);新疆维吾尔自治区自然科学基金项目(2023D01B39);新疆维吾尔自治区重大科技专项(2022A02006);新疆维吾尔自治区重点研发计划(2022B02026);新疆农业科学院农业科技创新稳定支持专项(xjnkywdzc-2023003-2);新疆维吾尔自治区第二批“天池英才”引进计划(青年博士项目)

Prediction model of sulfur dioxide accumulation in fresh grape stalk

MA Caiyun1,2(), XING Shijun2,3, YUAN Yuyao2,3, ZHANG Zheng2,3, WANG Man2,3, WEI Jia2,3(), WU Bin2,3()   

  1. 1. College of Food Sciences and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
    2. Institute of Agricultural Products Processing Research Institute, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
    3. Xinjiang Key Laboratory of Agricultural Products Processing and Preservation, Urumqi 830091, China
  • Received:2024-12-11 Published:2025-07-20 Online:2025-09-05
  • Supported by:
    Natural Science Foundation of China(U2003213);Natural Science Foundation of Xinjiang Uygur Autonomous Region(2023D01B39);Major S &T Project of Xinjiang Uygur Autonomous Region(2022A02006);Key R & D Program Project of Xinjiang Uygur Autonomous Region(2022B02026);Agricultural S & T Innovation Stability Support Special Project of Xinjiang Academy of Agricultural Sciences(xjnkywdzc-2023003-2);He Second Batch of Tianchi Talent Introduction Plan of Xinjiang Uygur Autonomous Region (Young Doctoral Project)

摘要:

【目的】分析不同浓度SO2处理、SO2积累与果柄生理参数和结构间关系,构建SO2积累多元线性回归模型,为SO2在鲜食葡萄中的精准科学的使用提供理论依据。【方法】以火焰无核、夏黑、美人指、无核白、巨峰、红地球、甜蜜蓝宝石、阳光玫瑰、木纳格、克瑞森、紫珍香11种葡萄品种为研究材料,采用不同浓度SO2处理(100、1 000、5 000和10 000 μL/L),利用相关性和多元线性回归分析方法,探究果柄长、宽、表面积、水分含量、皮孔面积与果柄中SO2积累量间的关系。【结果】水分含量和皮孔面积与果柄中SO2积累成正相关。用熏蒸浓度(X1)、水分含量(X2)、皮孔面积(X3)构建预测果柄中SO2积累的多元线性回归方程。得到积累预测模型Y= 0.31X1 + 1 214.08X2 + 1 261.34X3 - 1040.50。回归方程的决定系数(R2)为0.962,显著性F检验对应P为0,自变量对因变量有极限著影响(P<0.01)。该方程符合正态分布,且具有较高的拟合度,经验证发现,模型预测值与实际值平均相对误差为0.04%,误差较低。【结论】采用多元线性回归模型预测果柄中含水量与SO2的积累预测结构较准确,误差较低,有较高可行性。

关键词: 葡萄; 线性回归; 模型预测

Abstract:

【Objective】 Thus laying a theoretical foundation for the accumulation of SO2 in grapes based on linear regression analysis. 【Methods】 Eleven grapes, including Flame Seedless, Summer Black, Manicure Finger, Thompson Seedless, Kyoho, Red Globe, Sweet Sapphire, Sunnny Rose, Munage, Crimson, Zizhenxiang, were studied by using correlation and multiple linear regression analysis methods to explore the relationship between stem length, width, surface area, water content, skin hole area and SO2 accumulation in fruit stalks. 【Results】 The Pearson correlation showed that water content and skin hole area were positively correlated with SO2 accumulation in fruit stalks. The multiple linear regression equation for predicting SO2 accumulation in fruit stem was constructed by fumigation concentration (X1), moisture content (X2) and skin hole area (X3). The cumulative prediction model Y= 0.31X1 + 1,214.08X2 + 1,261.34X3-1,040.50 was obtained. The coefficient of determination (R2) of the regression equation was 0.962, The F test of significance corresponds to a P of 0, and the independent variable had a limiting influence on the dependent variable (P < 0.01). The results of regression standardized residual analysis showed that the equation conformed to normal distribution and had a high degree of fit. The average relative error between the predicted value and the actual value of the model was 0.04%, which was a low error. 【Conclusion】 The prediction structure of water content and SO2 accumulation in fruit stem by using multiple linear regression model is more accurate, the error is lower, and it has high feasibility.

Key words: grape; linear regression; model prediction

中图分类号: 


ISSN 1001-4330 CN 65-1097/S
邮发代号:58-18
国外代号:BM3342
主管:新疆农业科学院
主办:新疆农业科学院 新疆农业大学 新疆农学会

出版单位:《新疆农业科学》编辑部
地址:乌鲁木齐市南昌路403号新疆农业科学院
邮编:830091
电话:0991-4502046
E-mail:xjnykx-h@xaas.ac.cn


版权所有 © 《新疆农业科学》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发
总访问量: 今日访问: 在线人数:
网站
微信公众号
淘宝购买
微店购买