新疆农业科学 ›› 2024, Vol. 61 ›› Issue (12): 2954-2965.DOI: 10.6048/j.issn.1001-4330.2024.12.010
收稿日期:
2024-05-13
出版日期:
2024-12-20
发布日期:
2025-01-16
通信作者:
白世践(1986-),男,云南人,高级农艺师,研究方向为葡萄育种与栽培,(E-mail)594748964@qq.com作者简介:
户金鸽(1982-),女,新疆塔城人,副研究员,硕士,研究方向为葡萄育种与栽培,(E-mail)hujinge2007@sina.com
基金资助:
HU Jinge1(), BAI Shijian1(
), ZHENG Ming2
Received:
2024-05-13
Published:
2024-12-20
Online:
2025-01-16
Supported by:
摘要:
【目的】 分析无核白和芽变长粒无核白(长粒无核白)葡萄之间的植物学性状、果实品质、葡萄干多酚和抗氧化活性的差异,为葡萄育种提供新的种质资源。【方法】 以无核白葡萄及芽变长粒无核白为试材,调查植物学性状、光合响应曲线、果实品质和葡萄干品质差异,分析葡萄干酚类物质和抗氧化活性之间的关系。【结果】 长粒无核白葡萄主要变异特征表现在嫩叶、嫩梢、叶柄颜色和果粒上。与普通无核白相比,长粒无核白葡萄幼叶正面颜色绿色带红条带,新梢腹侧颜色绿带红条带、节间背侧颜色绿带红条带、节间腹侧绿带红条带。无核白萌芽率高于长粒无核白,其萌芽率分别为65.00%(2022年无核白)、63.82%(2023年无核白)、50.48%(2022年长粒无核白)、53.45%(2023年长粒无核白)。在整个果实发育期间,长粒无核白的果形指数始终显著高于无核白,花后16 d无核白葡萄的果形指数最大是1.80,而长粒无核白果实的果形指数在花后28 d达到最大,为2.12。长粒无核白果粒质量、果实还原糖含量、糖酸比显著高于无核白。无核白和长粒无核白果穗质量、果穗长度、果穗宽度、果实可溶性固形物、可滴定酸、VC和果皮色差差异不明显。无核白的出干率、平均质量均显著高于长粒无核白,而长粒无核白的果形指数(3.10)显著高于无核白葡萄干(2.13)。长粒无核白葡萄干的总黄烷醇、总类黄酮、总单宁、总酚显著高于无核白葡萄干,长粒无核白葡萄干的含量分别是1 808.59、2 286.43、51.11和498.53 mg/kg。长粒无核白葡萄干的DPPH自由基清除能力、对Fe2+的还原能力显著高于无核白葡萄,长粒无核白葡萄干的ABTS自由基清除能力低于无核白葡萄干,但无显著差异。葡萄干总黄烷醇、总类黄酮、总单宁、总酚、DPPH自由基清除能力、FRAP(对Fe2+的还原能力)彼此之间的相关系数大于0.926,为显著或极显著差异,而ABTS和总黄烷醇、总类黄酮、总单宁、总酚、DPPH自由基清除能力和FRAP(对Fe2+的还原能力)呈负相关,但无显著差异。【结论】 生产上芽变长粒无核白葡萄可以作为优良品种开发利用,亦可为育种提供新的种质资源。
中图分类号:
户金鸽, 白世践, 郑明. 无核白及芽变长粒无核白葡萄的差异性分析[J]. 新疆农业科学, 2024, 61(12): 2954-2965.
HU Jinge, BAI Shijian, ZHENG Ming. Difference analysis between thompson seedless and bud mutation long-berry thompson seedless grape[J]. Xinjiang Agricultural Sciences, 2024, 61(12): 2954-2965.
图1 长粒无核白幼叶和嫩梢(左),无核白幼叶和嫩梢(右)
Fig.1 The left picture shows young leaves and tender ends of long-berry Thompson seedless(Left), and picture shows young leaves and tender ends of Thompson seedless(Right)
调查项目 Investigation items | 无核白 Thompson Seedless | 长粒无核白 Long-berry Thompson Seedless |
---|---|---|
萌芽始期Germinate stage | 4月15日(2022年) 4月21日(2023年) | 4月12日(2022年) 4月17日(2023年) |
萌芽率Germinate rate(%) | 65.00(2022年) 63.82(2023年) | 50.48(2022年) 53.45(2023年) |
嫩梢:梢尖开合程度 Tender shoot: opening and closing degree | 半开张 | 半开张 |
嫩梢:梢尖匍匐绒毛密度 Tender shoot: creeping villi density | 疏 | 疏 |
嫩梢:梢尖匍匐绒毛花青苷显色强度 Tender shoot: color intensity of stolonin | 无 | 弱 |
幼叶:正面颜色Spire: front color | 黄绿 | 绿色带有红色斑 |
幼叶:背面主脉间匍匐绒毛密度 Spire: density of creeping villi between main dorsal veins | 无或极疏 | 无或极疏 |
新梢:节间腹侧颜色 Shoot: internode ventral color | 绿色 | 绿色带红条带 |
花序:花器类型 Inflorescence: flower type | 两性花 | 两性花 |
成龄叶大小:Adult leaf size(cm) | 叶长(20.30),叶宽(14.98) | 叶长(20.27),叶宽(19.05) |
成龄叶:形状Adult leaf: shape | 近五角形 | 近五角形 |
成龄叶:裂片数Adult leaf: number of lobes | 5裂 | 5裂 |
成龄叶:叶柄洼开叠类型Adult leaf: petiole folding type | 半开张 | 半开张 |
成龄叶:锯齿长度Adult leaf: sawtooth length(cm) | 1.33 | 1.24 |
成龄叶:锯齿长度/锯齿宽度 Adult leaf: sawtooth length/sawtooth width(cm) | 0.89 | 0.91 |
成龄叶:锯齿形状Adult leaf: sawtooth shape | 两侧直与两侧凸相混合 | 两侧直与两侧凸相混合 |
成龄叶:正面主脉上花青苷显色强度 Adult leaf: anthocyanin shows strength on the positive main vein | 无或极弱 | 无或极弱 |
成龄叶:背面主脉间匍匐绒毛密度 Adult leaf: density of creeping villi between main dorsal veins | 无或极弱 | 无或极弱 |
成龄叶:背面主脉上匍匐绒毛密度 Adult leaf: creeping villi density on dorsal main vein | 无或极弱 | 无或极弱 |
果粒颜色Fruit color | 黄绿偏黄 | 黄绿偏黄 |
嫩梢:梢尖直立绒毛密度 Tender shoot: tip vertical villi density | 无或极疏 | 无或极疏 |
幼叶:背面主脉上直立绒毛密度 Spire: density of upright villi on dorsal main vein | 无或极疏 | 无或极疏 |
新梢:节间背侧颜色Shoot: dorsal internode color | 绿色 | 绿带红条带 |
新梢:节腹侧颜色Shoot: node ventral color | 绿色 | 绿带红条带 |
新梢:节背侧颜色Shoot: dorsal segment color | 绿色 | 绿带红条带 |
卷须长度Tendril length(cm) | 11.24 | 13.9 |
成龄叶:叶柄长度/中脉长度之比 Adult leaf: petiole length/ petiole width | 0.80 | 0.80 |
成熟枝条:主要色泽 Mature branch: main color | 黄褐色 | 黄褐色 |
表1 无核白和长粒无核白葡萄性状主要性状差异
Tab.1 Main character differences between Thompson seedless and Long-berry Thompson seedless
调查项目 Investigation items | 无核白 Thompson Seedless | 长粒无核白 Long-berry Thompson Seedless |
---|---|---|
萌芽始期Germinate stage | 4月15日(2022年) 4月21日(2023年) | 4月12日(2022年) 4月17日(2023年) |
萌芽率Germinate rate(%) | 65.00(2022年) 63.82(2023年) | 50.48(2022年) 53.45(2023年) |
嫩梢:梢尖开合程度 Tender shoot: opening and closing degree | 半开张 | 半开张 |
嫩梢:梢尖匍匐绒毛密度 Tender shoot: creeping villi density | 疏 | 疏 |
嫩梢:梢尖匍匐绒毛花青苷显色强度 Tender shoot: color intensity of stolonin | 无 | 弱 |
幼叶:正面颜色Spire: front color | 黄绿 | 绿色带有红色斑 |
幼叶:背面主脉间匍匐绒毛密度 Spire: density of creeping villi between main dorsal veins | 无或极疏 | 无或极疏 |
新梢:节间腹侧颜色 Shoot: internode ventral color | 绿色 | 绿色带红条带 |
花序:花器类型 Inflorescence: flower type | 两性花 | 两性花 |
成龄叶大小:Adult leaf size(cm) | 叶长(20.30),叶宽(14.98) | 叶长(20.27),叶宽(19.05) |
成龄叶:形状Adult leaf: shape | 近五角形 | 近五角形 |
成龄叶:裂片数Adult leaf: number of lobes | 5裂 | 5裂 |
成龄叶:叶柄洼开叠类型Adult leaf: petiole folding type | 半开张 | 半开张 |
成龄叶:锯齿长度Adult leaf: sawtooth length(cm) | 1.33 | 1.24 |
成龄叶:锯齿长度/锯齿宽度 Adult leaf: sawtooth length/sawtooth width(cm) | 0.89 | 0.91 |
成龄叶:锯齿形状Adult leaf: sawtooth shape | 两侧直与两侧凸相混合 | 两侧直与两侧凸相混合 |
成龄叶:正面主脉上花青苷显色强度 Adult leaf: anthocyanin shows strength on the positive main vein | 无或极弱 | 无或极弱 |
成龄叶:背面主脉间匍匐绒毛密度 Adult leaf: density of creeping villi between main dorsal veins | 无或极弱 | 无或极弱 |
成龄叶:背面主脉上匍匐绒毛密度 Adult leaf: creeping villi density on dorsal main vein | 无或极弱 | 无或极弱 |
果粒颜色Fruit color | 黄绿偏黄 | 黄绿偏黄 |
嫩梢:梢尖直立绒毛密度 Tender shoot: tip vertical villi density | 无或极疏 | 无或极疏 |
幼叶:背面主脉上直立绒毛密度 Spire: density of upright villi on dorsal main vein | 无或极疏 | 无或极疏 |
新梢:节间背侧颜色Shoot: dorsal internode color | 绿色 | 绿带红条带 |
新梢:节腹侧颜色Shoot: node ventral color | 绿色 | 绿带红条带 |
新梢:节背侧颜色Shoot: dorsal segment color | 绿色 | 绿带红条带 |
卷须长度Tendril length(cm) | 11.24 | 13.9 |
成龄叶:叶柄长度/中脉长度之比 Adult leaf: petiole length/ petiole width | 0.80 | 0.80 |
成熟枝条:主要色泽 Mature branch: main color | 黄褐色 | 黄褐色 |
光响应参数 The light response parameter | 无核白 Thompson Seedless | 长粒无核白 Long-berry Thompson Seedless |
---|---|---|
光饱和点 Light saturation point Im(μmol/(m2·s)) | 1 085.58 | 2 029.79 |
光补偿点 Light compensation point Ic(μmol/(m2·s)) | 10.53 | 6.78 |
最大净光合速率 Maximum net photosynthetic | 36.96 | 6.14 |
表观量子效率 Apparent quantum yield AQY(%) | 0.11 | 0.02 |
暗呼吸速率 Dark respiration rate Rd(μmol/(m2·s)) | 1.72 | 0.59 |
决定系数 R-Squared(R2) | 0.994 9 | 0.923 04 |
表2 无核白和长粒无核白葡萄光响应参数差异
Tab.2 Differences in the light response parameter between Thompson Seedless and Long-berry Thompson Seedless
光响应参数 The light response parameter | 无核白 Thompson Seedless | 长粒无核白 Long-berry Thompson Seedless |
---|---|---|
光饱和点 Light saturation point Im(μmol/(m2·s)) | 1 085.58 | 2 029.79 |
光补偿点 Light compensation point Ic(μmol/(m2·s)) | 10.53 | 6.78 |
最大净光合速率 Maximum net photosynthetic | 36.96 | 6.14 |
表观量子效率 Apparent quantum yield AQY(%) | 0.11 | 0.02 |
暗呼吸速率 Dark respiration rate Rd(μmol/(m2·s)) | 1.72 | 0.59 |
决定系数 R-Squared(R2) | 0.994 9 | 0.923 04 |
图2 叶子飘模型拟合葡萄叶片光响应曲线 注:A:无核白;B:长粒无核白
Fig.2 The leaf floating model fits the light rosponse curve of grape leaves Notes:A:Thompson seedless;B:Long-berry Thompson seedless
图3 无核白和长粒无核白葡萄果形指数的差异 注:小写字母表示在5%水平上的显著差异,下同
Fig.3 Differences in fruit shape index between Thompson seedless and long-berry Thompson seedless Note: Lowercase letters indicate significant differences at the 5% level, the same as below
品质指标 Quality indexes | 无核白 Thompson Seedless | 长粒无核白 Long-berry Thompson Seedless |
---|---|---|
果穗质量 Berry weight(g) | 116.80±23.47 a | 139.28±60.77 a |
果穗长度 Bunch length(mm) | 16.32±7.90 a | 16.90±3.78 a |
果穗宽度 Bunch width(mm) | 8.50±0.42 a | 8.56±0.77 a |
果穗紧密度 | 适中 | 适中偏疏 |
果粒质量 Berry weight(g) | 0.94±0.07 b | 1.40±0.13 a |
可溶性固形物 Soluble solid(°Brix) | 25.47±0.42 a | 26.27±0.83 a |
可滴定酸 Titratable acid(%) | 0.64±0.04 a | 0.61±0.02 a |
维生素C VC(mg/100g) | 11.18±0.21 a | 12.03±0.53 a |
还原糖 Reducing sugar(mg/L) | 217.47±7.07 b | 283.57±1.12 a |
糖酸比 Sugar-acid ratio | 34.20±2.51 b | 46.34±1.65 a |
产量 Yield per 667m2 (kg/667m2) | 691.38 | 105.87 |
表3 无核白及长粒无核白葡萄果实品质的差异
Tab.3 Differences in berry quality between Thompson seedless and long-berry Thompson seedless
品质指标 Quality indexes | 无核白 Thompson Seedless | 长粒无核白 Long-berry Thompson Seedless |
---|---|---|
果穗质量 Berry weight(g) | 116.80±23.47 a | 139.28±60.77 a |
果穗长度 Bunch length(mm) | 16.32±7.90 a | 16.90±3.78 a |
果穗宽度 Bunch width(mm) | 8.50±0.42 a | 8.56±0.77 a |
果穗紧密度 | 适中 | 适中偏疏 |
果粒质量 Berry weight(g) | 0.94±0.07 b | 1.40±0.13 a |
可溶性固形物 Soluble solid(°Brix) | 25.47±0.42 a | 26.27±0.83 a |
可滴定酸 Titratable acid(%) | 0.64±0.04 a | 0.61±0.02 a |
维生素C VC(mg/100g) | 11.18±0.21 a | 12.03±0.53 a |
还原糖 Reducing sugar(mg/L) | 217.47±7.07 b | 283.57±1.12 a |
糖酸比 Sugar-acid ratio | 34.20±2.51 b | 46.34±1.65 a |
产量 Yield per 667m2 (kg/667m2) | 691.38 | 105.87 |
色差 Chromatic Aberration | 无核白 Thompson Seedless | 长粒无核白 Long-berry Thompson Seedless |
---|---|---|
L | 47.64±1.72 a | 46.14±3.03 a |
a | 1.93±0.61 a | 2.52±0.89 a |
b | 18.96±1.46 a | 17.87±3.04 a |
a/b | 0.10±0.03 a | 0.15±0.08 a |
C | 19.07±1.49 a | 18.09±2.87 a |
h° | 5.75±1.59 a | 8.62±4.61 a |
ΔE | 51.32±2.03 a | 49.59±3.76 a |
表4 无核白及长粒无核白葡萄果皮色差的差异
Tab.4 Differences in chromatic between Thompson seedless and long-berry Thompson seedless
色差 Chromatic Aberration | 无核白 Thompson Seedless | 长粒无核白 Long-berry Thompson Seedless |
---|---|---|
L | 47.64±1.72 a | 46.14±3.03 a |
a | 1.93±0.61 a | 2.52±0.89 a |
b | 18.96±1.46 a | 17.87±3.04 a |
a/b | 0.10±0.03 a | 0.15±0.08 a |
C | 19.07±1.49 a | 18.09±2.87 a |
h° | 5.75±1.59 a | 8.62±4.61 a |
ΔE | 51.32±2.03 a | 49.59±3.76 a |
测定指标 Test indexes | 无核白 Thompson Seedless | 长粒无核白 Long-berry Thompson Seedless |
---|---|---|
出干率 Drying rate(%) | 26.41±0.03 a | 24.21±0.15 b |
葡萄干平均质量 mean raisin weight(g) | 0.30±0.02 a | 0.25±0.02 b |
葡萄干纵径 Raisin longitudinal diameter(mm) | 12.32±0.79 b | 15.22±1.28 a |
葡萄干横径 Raisin transverse diameter(mm) | 5.83±0.54 a | 4.96±0.58 b |
葡萄干果形指数 Shape index | 2.13±0.26 b | 3.10±0.39 a |
表5 无核白和芽变长粒无核白葡萄干性状差异
Tab.5 Differences in raisin between Thompson seedless and long-berry Thompson seedless
测定指标 Test indexes | 无核白 Thompson Seedless | 长粒无核白 Long-berry Thompson Seedless |
---|---|---|
出干率 Drying rate(%) | 26.41±0.03 a | 24.21±0.15 b |
葡萄干平均质量 mean raisin weight(g) | 0.30±0.02 a | 0.25±0.02 b |
葡萄干纵径 Raisin longitudinal diameter(mm) | 12.32±0.79 b | 15.22±1.28 a |
葡萄干横径 Raisin transverse diameter(mm) | 5.83±0.54 a | 4.96±0.58 b |
葡萄干果形指数 Shape index | 2.13±0.26 b | 3.10±0.39 a |
测定指标 Test indexes | 无核白 Thompson Seedless | 长粒无核白 Long-berry Thompson Seedless |
---|---|---|
可溶性固形物 Soluble solid(°Brix) | 73.75±1.25 a | 63.75±3.75 b |
还原糖 Reduce sugar(g/L) | 778.33±11.27 a | 727.83±16.13 b |
可滴定酸 Titratable acid(%) | 4.38±0.11 b | 4.94±0.11 a |
糖酸比 Sugar/acid rate | 178.01±6.62 a | 147.49±6.10 b |
维生素C Vitamin C(mg/100g) | 6.10±0.92 b | 8.13±0.55 a |
表6 无核白和长粒无核白葡萄干品质的差异
Tab.6 Differences in raisin quality between Thompson seedless and long-berry Thompson seedless
测定指标 Test indexes | 无核白 Thompson Seedless | 长粒无核白 Long-berry Thompson Seedless |
---|---|---|
可溶性固形物 Soluble solid(°Brix) | 73.75±1.25 a | 63.75±3.75 b |
还原糖 Reduce sugar(g/L) | 778.33±11.27 a | 727.83±16.13 b |
可滴定酸 Titratable acid(%) | 4.38±0.11 b | 4.94±0.11 a |
糖酸比 Sugar/acid rate | 178.01±6.62 a | 147.49±6.10 b |
维生素C Vitamin C(mg/100g) | 6.10±0.92 b | 8.13±0.55 a |
测定指标 Test indexes | 无核白 Thompson Seedless | 长粒无核白 Long-berry Thompson Seedless |
---|---|---|
总黄烷醇 Total flavanol (mg/kg) | 708.61±29.73 b | 1898.59±34.52 a |
总类黄酮 Total flavonoids(mg/kg) | 872.87±52.35 b | 2286.43±62.83 a |
总单宁 Total tannin(mg/g) | 32.96±3.04 b | 51.11±1.82 a |
总酚 Total phenol(mg/kg) | 281.07±6.32 b | 498.53±11.06 a |
表7 无核白和长粒无核白葡萄干酚类物质差异
Tab.7 Differences in raisin phenolic between Thompson seedless and long-berry Thompson seedless
测定指标 Test indexes | 无核白 Thompson Seedless | 长粒无核白 Long-berry Thompson Seedless |
---|---|---|
总黄烷醇 Total flavanol (mg/kg) | 708.61±29.73 b | 1898.59±34.52 a |
总类黄酮 Total flavonoids(mg/kg) | 872.87±52.35 b | 2286.43±62.83 a |
总单宁 Total tannin(mg/g) | 32.96±3.04 b | 51.11±1.82 a |
总酚 Total phenol(mg/kg) | 281.07±6.32 b | 498.53±11.06 a |
测定指标 Test indexes | 无核白 Thompson Seedless | 长粒无核白 Long-berry Thompson Seedless |
---|---|---|
DPPH/(mg/kg) | 137.33±1.08 b | 140.73±0.08 a |
FRAP/(mg/kg) | 2811.67±91.67 b | 4474.17±254.17 a |
ABTS(mg/kg) | 257.63±1.67 a | 256.17±0.63 a |
表8 无核白和长粒无核白葡萄干抗氧化活性差异
Tab.8 Differences in raisin antioxidant activity between Thompson seedless and long-berry Thompson seedless
测定指标 Test indexes | 无核白 Thompson Seedless | 长粒无核白 Long-berry Thompson Seedless |
---|---|---|
DPPH/(mg/kg) | 137.33±1.08 b | 140.73±0.08 a |
FRAP/(mg/kg) | 2811.67±91.67 b | 4474.17±254.17 a |
ABTS(mg/kg) | 257.63±1.67 a | 256.17±0.63 a |
[1] | 孔庆山. 中国葡萄志[M]. 北京: 中国农业科学技术出版社, 2004. |
KONG Qingshan. Grapevine of China[M]. China Agricultural Science and Technology Press, 2004. | |
[2] | 徐桂香, 廉苇佳, 刘萍, 等. 吐鲁番葡萄产业调研与分析[J]. 中外葡萄与葡萄酒, 2020,(3): 70-74. |
XU Guixiang, LIAN Weijia, LIU Ping, et al. Investigation and analysis of the Turpan grape industry[J]. Sino-Overseas Grapevine & Wine, 2020,(3): 70-74. | |
[3] | 王瑞华, 郭峰, 李海峰. 吐鲁番葡萄干产业发展分析及再升级策略[J]. 中外葡萄与葡萄酒, 2015,(6): 58-60. |
WANG Ruihua, GUO Feng, LI Haifeng. Turpan raisin industry development analysis and re-upgrading strategy[J]. Sino-Overseas Grapevine & Wine, 2015,(6): 58-60. | |
[4] | 卢诚. 浅谈葡萄的芽变选优[J]. 河北林业科技, 2009,(4): 92-93. |
LU Cheng. Discussion on grape bud mutation selection[J]. The Journal of Hebei Forestry Science and Technology, 2009,(4): 92-93. | |
[5] | 李志超, 赵诚. 长无核白葡萄的研究初报[J]. 果树科学, 1986, 3(2): 31-34, 49. |
LI Zhichao, ZHAO Cheng. Preliminary report on the study of long-berry Thompson Seedless grape[J]. Journal of Fruit Science, 1986, 3(2): 31-34, 49. | |
[6] | 李志超, 赵诚. 大无核白葡萄的研究初报[J]. 果树科学, 1986, 3(4): 36-41. |
LI Zhichao, ZHAO Cheng. Preliminary report on the study of large seedless white grape[J]. Journal of Fruit Science, 1986, 3(4): 36-41. | |
[7] | 闫鹏, 骆强伟, 廖康, 等. 无核白葡萄芽变系的植物学性状特征及RAPD标记研究[J]. 新疆农业科学, 2010, 47(1): 110-114. |
YAN Peng, LUO Qiangwei, LIAO Kang, et al. Research on botanical characteristers and RAPD marker of Thomson seedless bud variation[J]. Xinjiang Agricultural Sciences, 2010, 47(1): 110-114. | |
[8] |
张宗勤, 孙锋, 金强, 等. 欧洲葡萄品种‘无核白’不同营养系果实的酚类物质[J]. 中国农业科学, 2011, 44(17): 3594-3602.
DOI |
ZHANG Zongqin, SUN Feng, JIN Qiang, et al. Studies on the Phenolic Compounds in Berries of Vitis vinefera cv.Thompson Seedless Lines[J]. Scientia Agricultura Sinica, 2011, 44(17): 3594-3602.
DOI |
|
[9] | 别尔麦提布·依明, 廖康, 郝庆, 等. 无核白葡萄及其芽变品系的生长结实特性观察[J]. 新疆农业科学, 2013, 50(3): 440-446. |
Bieermaitibu Yiming, LIAO Kang, HAO Qing, et al. Observation characteristics of growth and fruiting of white seedless and bud-sport strains[J]. Xinjiang Agricultural Sciences, 2013, 50(3): 440-446. | |
[10] |
薛锋, 潘绪兵, 魏登攀, 等. 5个无核葡萄品种在吐鲁番地区的栽培性状及制干特性分析[J]. 新疆农业科学, 2023, 60(1): 105-115.
DOI |
XUE Feng, PAN Xubing, WEI Dengpan, et al. Analysis on cultivation characteristics and raisin characteristics of five seedless grape cultivars in Turpan Region[J]. Xinjiang Agricultural Sciences, 2023, 60(1): 105-115.
DOI |
|
[11] |
户金鸽, 白世践. 无核白葡萄营养系果实品质及葡萄干特性分析[J]. 新疆农业科学, 2023, 60(11): 2751-2763.
DOI |
HU Jinge, BAI Shijian. Study on the fruit quality and raisins character of Thompson seedless and Its lines[J]. Xinjiang Agricultural Sciences, 2023, 60(11): 2751-2763.
DOI |
|
[12] | NY/T 2563-2014.植物新品种特异性、一致性和稳定性测试指南葡萄[S]. |
NY/T 2563-2014.Guidelines for the conduct of tests for distinctness, uniformity and stability-grapevine (Vitis L.)[S]. | |
[13] | 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006. |
GAO Junfeng. Experimental guidance in plant physiology[M]. Beijing: Higher Education Press, 2006. | |
[14] | Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar[J]. Analytical Chemistry, 1959, 31(3): 426-428. |
[15] | 谢辉, 闫鹏, 张雯, 等. 新疆无核白与无核白鸡心葡萄干品质特性研究[J]. 食品科学技术学报, 2016, 34(1): 37-41. |
XIE Hui, YAN Peng, ZHANG Wen, et al. Study on quality characteristics of Xinjiang Thompson seedless and centennial seedless raisin[J]. Journal of Food Science and Technology, 2016, 34(1): 37-41. | |
[16] |
Mercurio M D, Dambergs R G, Herderich M J, et al. High throughput analysis of red wine and grape phenolics-adaptation and validation of methyl cellulose precipitable tannin assay and modified Somers color assay to a rapid 96 well plate format[J]. Journal of Agricultural and Food Chemistry, 2007, 55(12): 4651-4657.
PMID |
[17] | Tian S F, Wang Y, Du G, et al. Changes in contents and antioxidant activity of phenolic compounds during gibberellin-induced development in Vitis vinifera L. ‘Muscat’[J]. Acta Physiologiae Plantarum, 2011, 33(6): 2467-2475. |
[18] | Li Y G, Tanner G, Larkin P. The DMACA-HCl protocol and the threshold proanthocyanidin content for bloat safety in forage legumes[J]. Journal of the Science of Food and Agriculture, 1996, 70(1): 89-101. |
[19] |
Wolfe K, Wu X Z, Liu R H. Antioxidant activity of apple peels[J]. Journal of Agricultural and Food Chemistry, 2003, 51(3): 609-614.
DOI PMID |
[20] | 张妍, 孙娟, 包菲菲, 等. 大兴安岭地区蓝果忍冬果实多酚鉴定及生物活性分析[J]. 食品科学, 2023, 44(12): 225-234. |
ZHANG Yan, SUN Juan, BAO Feifei, et al. Identification and bioactivity analysis of polyphenols in blue honeysuckle fruit from different regions of the greater khingan mountains[J]. Food Science, 2023, 44(12): 225-234.
DOI |
|
[21] |
Benzie I F F, Strain J J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay[J]. Analytical Biochemistry, 1996, 239(1): 70-76.
DOI PMID |
[22] | 周晓旭, 张玉翠, 吴林, 等. 冬小麦光合特性对CO2浓度与土壤含水量的响应机制[J]. 中国生态农业学报, 2017, 25(7): 1034-1041. |
ZHOU Xiaoxu, ZHANG Yucui, WU Lin, et al. Response mechanism of photosynthetic characteristics of winter wheat to CO2 concentration and soil water content[J]. Chinese Journal of Eco-Agriculture, 2017, 25(7): 1034-1041. | |
[23] | 叶子飘, 于强. 一个光合作用光响应新模型与传统模型的比较[J]. 沈阳农业大学学报, 2007, 38(6): 771-775. |
YE Zipiao, YU Qiang. Comparison of A new model of light response of photosynthesis with traditional models[J]. Journal of Shenyang Agricultural University, 2007, 38(6): 771-775. | |
[24] |
叶子飘, 于强. 光合作用光响应模型的比较[J]. 植物生态学报, 2008, 32(6): 1356-1361.
DOI |
YE Zipiao, YU Qiang. Comparison of new and several classical models of photo-synthesis in response to irradiance[J]. Journal of Plant Ecology, 2008, 32(6): 1356-1361. | |
[25] | 叶子飘, 李进省. 光合作用对光响应的直角双曲线修正模型和非直角双曲线模型的对比研究[J]. 井冈山大学学报(自然科学版), 2010, 31(3): 38-44. |
YE Zipiao, LI Jinsheng. Comparative investigation light response of photosynthesis on non-rectangular Hyperbola model and modified model of rectangular Hyperbola[J]. Journal of Jinggangshan University (Natural Science), 2010, 31(3): 38-44. | |
[26] | Yu Q, Zhang Y Q, Liu Y F, et al. Simulation of the stomatal conductance of winter wheat in response to light, temperature and CO2 changes[J]. Annals of Botany, 2004, 93(4): 435-441. |
[27] | Long S P, Humphries S, Falkowski P G. Photoinhibition of photosynthesis in nature[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1994, 45: 633-662. |
[28] | 王忠. 植物生理学[J]. 北京中国农业出版社 2008. |
WANG Zhong. Plant physiology[M]. Beijing: China Agriculture Press, 2008. | |
[29] | 白云岗, 刘洪波, 张江辉, 等. 葡萄光合作用光响应曲线拟合模型比较研究[J]. 节水灌溉, 2016,(9): 8-11. |
BAI Yungang, LIU Hongbo, ZHANG Jianghui, et al. Comparison of light-response curve fitted models for grape[J]. Water Saving Irrigation, 2016,(9): 8-11. | |
[30] | 唐美玲, 宋来庆, 张超杰, 等. 烟台地区不同蛇龙珠营养系果实品质分析[J]. 中外葡萄与葡萄酒, 2011,(7): 9-13. |
TANG Meiling, SONG Laiqing, ZHANG Chaojie, et al. Analysis of the fruit quality of different Cabernet Gernischt clones in Yantai district[J]. Sino-Overseas Grapevine & Wine, 2011,(7): 9-13. | |
[31] | Guo R X, Guo X B, Li T, et al. Comparative assessment of phytochemical profiles, antioxidant and antiproliferative activities of Sea buckthorn (Hippopha? rhamnoides L.) berries[J]. Food Chemistry, 2017, 221: 997-1003. |
[32] | Swallah M S, Sun H, Affoh R, et al. Antioxidant potential overviews of secondary metabolites (polyphenols) in fruits[J]. International Journal of Food Science, 2020, 2020: 9081686. |
[33] |
Sharma A, Kim J W, Ku S K, et al. Anti-diabetic effects of blue honeyberry on high-fed-diet-induced type II diabetic mouse[J]. Nutrition Research and Practice, 2019, 13(5): 367-376.
DOI PMID |
[34] | Javanmardi J, Stushnoff C, Locke E, et al. Antioxidant activity and total phenolic content of Iranian Ocimum accessions[J]. Food Chemistry, 2003, 83(4): 547-550. |
[35] | Meng J F, Fang Y L, Zhang A, et al. Phenolic content and antioxidant capacity of Chinese raisins produced in Xinjiang Province[J]. Food Research International, 2011, 44(9): 2830-2836. |
[36] | Fabani M P, Baroni M V, Luna L, et al. Changes in the phenolic profile of Argentinean fresh grapes during production of Sun-dried raisins[J]. Journal of Food Composition and Analysis, 2017, 58: 23-32. |
[37] |
Kelebek H, Jourdes M, Selli S, et al. Comparative evaluation of the phenolic content and antioxidant capacity of Sun-dried raisins[J]. Journal of the Science of Food and Agriculture, 2013, 93(12): 2963-2972.
DOI PMID |
[38] | 卢登洋, 王鑫, 唐章虎, 等. 梨果实发育过程中酚类物质组成及抗氧化活性比较[J]. 中国农业科技导报, 2023, 25(9): 97-104. |
LU Dengyang, WANG Xin, TANG Zhanghu, et al. Phenolic composition and antioxidant activity of pear species during fruit development comparison[J]. Journal of Agricultural Science and Technology, 2023, 25(9): 97-104. | |
[39] | 蔡跃月, 麦尔哈巴·阿布拉, 高路, 等. 滇红玫瑰发酵过程中酚类物质含量及其抗氧化和抗炎活性分析[J]. 食品工业科技, 2024, 45(11): 213-221. |
CAI Yueyue, Maierhaba Abula, GAO Lu, et al. Analysis of phenolic content and its antioxidant and anti-inflammatory activities during the fermentation process of Rosa rugosa ‘Dianhong’[J]. Science and Technology of Food Industry, 2024, 45(11): 213-221. | |
[40] | 韩晓云, 陶雨婷, 战佳莹, 等. 桑葚发酵前后酚类组成变化及其抗氧化活性分析[J]. 食品工业科技, 2024, 45(2): 280-288. |
HAN Xiaoyun, TAO Yuting, ZHAN Jiaying, et al. Analysis of phenolic composition changes and antioxidant activity of mulberry before and after fermentation[J]. Science and Technology of Food Industry, 2024, 45(2): 280-288. | |
[41] | 李志荣, 邵起菊, 吴其妹, 等. 不同成熟度老鹰茶中酚类化合物含量及抗氧化活性研究[J]. 广西植物, 2024, 44(6): 1170-1181. |
LI Zhirong, SHAO Qiju, WU Qimei, et al. Study on the Content and Antioxidant Activity of Phenolic Compounds in Eagle Tea with Different Maturity[J]. Guangxi Botany, 2024, 44 (6): 1170-1181. |
[1] | 靳娟, 李丽莉, 杨磊, 樊丁宇, 郝庆. 新疆红枣产业发展现状分析[J]. 新疆农业科学, 2024, 61(S1): 106-110. |
[2] | 陈芳, 李字辉, 孙孝贵, 张庭军. 不同剂量的微生物菌剂对加工番茄产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2285-2289. |
[3] | 张福林, 李宁, 刘宇翔, 陈怡佳, 余庆辉, 闫会转. 外源2,4-表油菜素内酯及褪黑素对樱桃番茄果实品质和果皮形态结构的影响[J]. 新疆农业科学, 2024, 61(7): 1738-1747. |
[4] | 户金鸽, 白世践, 陈光, 蔡军社. 不同地面覆盖方式对酿酒葡萄品种马瑟兰果实品质的影响及综合评价[J]. 新疆农业科学, 2024, 61(5): 1131-1139. |
[5] | 马云龙, 谢辉, 张雯, 朱学慧, 王艳蒙, 麦斯乐, 张佳喜. 温度对绿色葡萄干色泽及干燥特性的影响[J]. 新疆农业科学, 2024, 61(2): 345-354. |
[6] | 王季姣, 潘越, 王世伟, 韩政伟, 马勇, 虎海防, 王宝庆. 土壤养分与北冰红山葡萄果实品质间的典型相关性分析[J]. 新疆农业科学, 2024, 61(2): 355-364. |
[7] | 崔宇同, 张翠芳, 王世伟. 库尔勒香梨芽变材料物候期及坐果特性观测[J]. 新疆农业科学, 2024, 61(2): 365-372. |
[8] | 张金荣, 卢士玲, 罗瑞峰, 马小宁, 王国栋. 叶面喷施硒肥对3种葡萄果实硒含量及品质的影响[J]. 新疆农业科学, 2024, 61(10): 2417-2426. |
[9] | 李新豫, 开乃斯·哈比江, 李长城, 赵蕾, 张志刚, 赵世荣. 不同成熟度杏果实常温贮藏条件下品质变化规律分析[J]. 新疆农业科学, 2024, 61(10): 2444-2457. |
[10] | 胡志伟, 杨娜, 汤智辉, 支金虎, 迟春明. 水肥耦合对主干型苹果树果实品质的影响[J]. 新疆农业科学, 2024, 61(10): 2458-2464. |
[11] | 白世践, 户金鸽, 李帅, 薛锋, 张雯, 潘绪兵, 魏登攀, 赵荣华, 蔡军社. 2种栽培模式对酿酒葡萄马瑟兰果际微域环境和果实发育的影响[J]. 新疆农业科学, 2024, 61(1): 79-91. |
[12] | 刘玉芳, 张志刚, 李长城, 李宏, 程平, 杨璐. 不同温度和成熟度对杏贮藏期腐烂率和品质的影响[J]. 新疆农业科学, 2023, 60(9): 2189-2197. |
[13] | 韩守安, 王敏, 麦合木提·图如普, 谢辉, 艾尔买克·才卡斯木, 刘佳乐, 张雯, 潘明启. 不同光质处理对赤霞珠葡萄叶片光合特性及果实品质的影响[J]. 新疆农业科学, 2023, 60(8): 1894-1903. |
[14] | 张超, 白云岗, 郑明, 肖军, 丁平. 极端干旱区葡萄水肥协同效应[J]. 新疆农业科学, 2023, 60(8): 1931-1939. |
[15] | 阿布来克·尼牙孜, 章世奎, 王绍鹏, 王亚铜, 樊国全. 根域限制栽培对库尔勒香梨光合、荧光特性及果实品质的影响[J]. 新疆农业科学, 2023, 60(2): 344-350. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 18
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 72
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||