

新疆农业科学 ›› 2025, Vol. 62 ›› Issue (7): 1755-1764.DOI: 10.6048/j.issn.1001-4330.2025.07.020
李贤国1,2(
), 王泽鹏1,2, 陈兆龙1,2, 余庆辉2, 李宁2(
), 闫会转1(
)
收稿日期:2024-12-07
出版日期:2025-07-20
发布日期:2025-09-05
通信作者:
闫会转(1985-),女,河南人,副教授,博士,博士生导师,研究方向为蔬菜逆境生理与遗传育种,(E-mail)hzhyan1118@163.com;作者简介:李贤国(1998-),男,甘肃人,硕士研究生,研究方向为蔬菜栽培生理与逆境胁迫,(E-mail)15099198840@163.com
基金资助:
LI Xianguo1,2(
), WANG Zepeng1,2, CHEN Zhaolong1,2, YU Qinghui2, LI Ning2(
), YAN Huizhuan1(
)
Received:2024-12-07
Published:2025-07-20
Online:2025-09-05
Supported by:摘要:
【目的】探讨β-氨基丁酸对加工番茄种植中在不同盐胁迫下的应用效果,筛选β-氨基丁酸的最佳浓度。【方法】采用灌根方式分别对不同盐胁迫下加工番茄幼苗期施用不同浓度的β-氨基丁酸,研究β-氨基丁酸对两种加工番茄新红49号和屯河5501号在不同盐胁迫下的农艺性状和生理指标的影响。【结果】不同盐胁迫下施用β-氨基丁酸能显著增加两种加工番茄的株高、叶面积、相对叶绿素含量、MDA含量以及三种保护酶含量,不同β-氨基丁酸浓度之间的指标变化存在明显差异。【结论】施加0.5 mmol/L的β-氨基丁酸能有效缓解NaCl对番茄的盐害,增强番茄体内抗氧化系统的活性。1.0 mmol/L 的BABA能有效缓解NaHCO3对番茄的盐害,促进番茄生长发育,提高番茄耐盐性。
中图分类号:
李贤国, 王泽鹏, 陈兆龙, 余庆辉, 李宁, 闫会转. β-氨基丁酸增强加工番茄幼苗耐盐性分析[J]. 新疆农业科学, 2025, 62(7): 1755-1764.
LI Xianguo, WANG Zepeng, CHEN Zhaolong, YU Qinghui, LI Ning, YAN Huizhuan. A preliminary study on the enhanced salt tolerance of β-aminobutyric acid (BABA) in processed tomato seedlings[J]. Xinjiang Agricultural Sciences, 2025, 62(7): 1755-1764.
| 处理 Treatments | 浓度 Concentration | 处理 Treatments | 浓度 Concentration |
|---|---|---|---|
| CK | 蒸馏水 | ||
| T1 | 150 mmol/L NaCl | T6 | 50 mmol/LNaHCO3 |
| T2 | 150 mmol/LNaCl+0.25 mmol/L BABA | T7 | 50 mmol/LNaHCO3+0.25 mmol/LBABA |
| T3 | 150 mmol/LNaCl+0.50 mmol/L BABA | T8 | 50 mmol/LNaHCO3+0.50 mmol/L BABA |
| T4 | 150 mmol/LNaCl+1.00 mmol/L BABA | T9 | 50 mmol/LNaHCO3+1.00 mmol/L BABA |
| T5 | 150 mmol/LNaCl+2.00 mmol/L BABA | T10 | 50 mmol/LNaHCO3+2.00 mmol/L BABA |
表1 两种加工番茄的11个处理
Tab.1 11 treatments for two processed tomatoes
| 处理 Treatments | 浓度 Concentration | 处理 Treatments | 浓度 Concentration |
|---|---|---|---|
| CK | 蒸馏水 | ||
| T1 | 150 mmol/L NaCl | T6 | 50 mmol/LNaHCO3 |
| T2 | 150 mmol/LNaCl+0.25 mmol/L BABA | T7 | 50 mmol/LNaHCO3+0.25 mmol/LBABA |
| T3 | 150 mmol/LNaCl+0.50 mmol/L BABA | T8 | 50 mmol/LNaHCO3+0.50 mmol/L BABA |
| T4 | 150 mmol/LNaCl+1.00 mmol/L BABA | T9 | 50 mmol/LNaHCO3+1.00 mmol/L BABA |
| T5 | 150 mmol/LNaCl+2.00 mmol/L BABA | T10 | 50 mmol/LNaHCO3+2.00 mmol/L BABA |
| 品种 Varieties | 处理 Treat- ments | 株高 Plant height (cm) | 根长 Root length (cm) | 叶面积 Leaf area (cm2) |
|---|---|---|---|---|
| 新红49号 Xinhong 49 | CK | 39.03±1.51a | 18.25±2.00a | 12.46±0.77a |
| T1 | 25.33±0.32bc | 17.73±2.30a | 7.71±0.26d | |
| T2 | 25.93±0.79bc | 18.30±1.14a | 8.99±0.11bc | |
| T3 | 28.03±0.64b | 20.40±2.40a | 10.18±0.21b | |
| T4 | 25.37±1.62bc | 21.07±1.91a | 9.46±0.32bc | |
| T5 | 24.23±0.23c | 18.53±1.73a | 8.45±0.23cd | |
| 屯河5501号 Tunhe 5501 | CK | 35.10±0.36a | 12.87±1.52b | 17.29±0.86a |
| T1 | 25.63±0.47d | 17.70±1.78ab | 8.21±0.63d | |
| T2 | 27.74±0.22c | 13.83±0.66ab | 12.65±0.05bc | |
| T3 | 33.53±0.088b | 18.35±1.66a | 15.35±0.92ab | |
| T4 | 26.20±0.81d | 13.17±1.74b | 13.17±1.84bc | |
| T5 | 26.27±0.52d | 16.70±1.40ab | 10.06±1.04cd |
表2 β-氨基丁酸对NaCl胁迫下两种加工番茄幼苗株高、根长、叶面积的影响
Tab.2 Effects of β-aminobutyric acid on plant height, root length and leaf area of two processed tomato seedlings under NaCl stress
| 品种 Varieties | 处理 Treat- ments | 株高 Plant height (cm) | 根长 Root length (cm) | 叶面积 Leaf area (cm2) |
|---|---|---|---|---|
| 新红49号 Xinhong 49 | CK | 39.03±1.51a | 18.25±2.00a | 12.46±0.77a |
| T1 | 25.33±0.32bc | 17.73±2.30a | 7.71±0.26d | |
| T2 | 25.93±0.79bc | 18.30±1.14a | 8.99±0.11bc | |
| T3 | 28.03±0.64b | 20.40±2.40a | 10.18±0.21b | |
| T4 | 25.37±1.62bc | 21.07±1.91a | 9.46±0.32bc | |
| T5 | 24.23±0.23c | 18.53±1.73a | 8.45±0.23cd | |
| 屯河5501号 Tunhe 5501 | CK | 35.10±0.36a | 12.87±1.52b | 17.29±0.86a |
| T1 | 25.63±0.47d | 17.70±1.78ab | 8.21±0.63d | |
| T2 | 27.74±0.22c | 13.83±0.66ab | 12.65±0.05bc | |
| T3 | 33.53±0.088b | 18.35±1.66a | 15.35±0.92ab | |
| T4 | 26.20±0.81d | 13.17±1.74b | 13.17±1.84bc | |
| T5 | 26.27±0.52d | 16.70±1.40ab | 10.06±1.04cd |
| 品种 Varieties | 处理 Treat- ments | 株高 Plant height (cm) | 根长 Root length (cm) | 叶面积 Leaf area (cm2) |
|---|---|---|---|---|
| 新红49号 Xinhong 49 | CK | 39.03±1.51a | 18.25±2.00a | 12.46±0.77a |
| T6 | 24.43±0.87e | 19.50±1.59a | 9.02±0.12cd | |
| T7 | 31.80±1.021bc | 21.17±2.02a | 10.52±0.17b | |
| T8 | 33.57±0.581b | 20.13±1.93a | 12.03±0.21a | |
| T9 | 30.27±0.52cd | 18.67±3.54a | 10.05±0.59bc | |
| T10 | 28.87±0.22d | 15.50±2.04a | 9.71±0.35bc | |
| 屯河5501号 Tunhe 5501 | CK | 35.10±0.36a | 12.87±1.52a | 17.29±0.86a |
| T6 | 29.13±2.21bc | 12.63±2.05a | 11.25±0.59c | |
| T7 | 31.93±0.33abc | 12.23±1.04a | 13.04±1.12c | |
| T8 | 33.50±1.097a | 14.33±1.12a | 13.35±1.33bc | |
| T9 | 32.97±1.25ab | 12.00±0.29a | 15.85±0.54ab | |
| T10 | 28.89±0.940c | 14.72±0.62a | 12.92±0.24c |
表3 β-氨基丁酸对NaHCO3胁迫下两种加工番茄幼苗株高、根长、叶面积的影响
Tab.3 Effects of β-aminobutyric acid on plant height, root length and leaf area of two processed tomato seedlings under NaHCO3 stress
| 品种 Varieties | 处理 Treat- ments | 株高 Plant height (cm) | 根长 Root length (cm) | 叶面积 Leaf area (cm2) |
|---|---|---|---|---|
| 新红49号 Xinhong 49 | CK | 39.03±1.51a | 18.25±2.00a | 12.46±0.77a |
| T6 | 24.43±0.87e | 19.50±1.59a | 9.02±0.12cd | |
| T7 | 31.80±1.021bc | 21.17±2.02a | 10.52±0.17b | |
| T8 | 33.57±0.581b | 20.13±1.93a | 12.03±0.21a | |
| T9 | 30.27±0.52cd | 18.67±3.54a | 10.05±0.59bc | |
| T10 | 28.87±0.22d | 15.50±2.04a | 9.71±0.35bc | |
| 屯河5501号 Tunhe 5501 | CK | 35.10±0.36a | 12.87±1.52a | 17.29±0.86a |
| T6 | 29.13±2.21bc | 12.63±2.05a | 11.25±0.59c | |
| T7 | 31.93±0.33abc | 12.23±1.04a | 13.04±1.12c | |
| T8 | 33.50±1.097a | 14.33±1.12a | 13.35±1.33bc | |
| T9 | 32.97±1.25ab | 12.00±0.29a | 15.85±0.54ab | |
| T10 | 28.89±0.940c | 14.72±0.62a | 12.92±0.24c |
| 品种 Varieties | 处理 Treat- ments | 鲜重 Fresh weight(g) | 干重 Dry weight(g) | 根冠比 Root-crown ratio | 干鲜比 Dryness ratio | ||||
|---|---|---|---|---|---|---|---|---|---|
| 地上部 Above- ground part | 地下部 Underground | 全株 All Shares | 地上部 Above- ground part | 地下部 Underground | 全株 All Shares | ||||
| 新红49号 Xinhong 49 | CK | 10.67±0.93a | 2.73±0.52a | 13.39±1.41a | 1.63±0.20a | 0.84±0.04a | 2.47±0.24a | 0.25±0.03bc | 0.18±0.01d |
| T1 | 3.89±0.08c | 1.43±0.33b | 5.32±0.36d | 1.02±0.09b | 0.73±0.03b | 1.76±0.12b | 0.36±0.08ab | 0.33±0.001a | |
| T2 | 4.70±0.16bc | 2.1±0.02ab | 6.81±0.14cd | 1.01±0.01b | 0.78±0.01ab | 1.78±0.02b | 0.45±0.02a | 0.26±0.003c | |
| T3 | 9.55±0.13a | 1.81±0.05ab | 11.37±0.17b | 1.05±0.02b | 0.74±0.01b | 1.79±0.02b | 0.19±0.01c | 0.16±0.001e | |
| T4 | 5.44±0.16b | 2.02±0.08ab | 7.46±0.07c | 1.11±0.03b | 0.76±0.01ab | 1.87±0.02b | 0.37±0.03a | 0.25±0.004c | |
| T5 | 4.73±0.15bc | 1.52±0.30b | 6.25±0.42cd | 1.07±0.09b | 0.73±0.03b | 1.8±0.12b | 0.32±0.06abc | 0.28±0.011b | |
| 屯河5501号 Tunhe 5501 | CK | 6.9±0.39a | 1.22±0.12b | 8.12±0.51a | 1.12±0.03b | 0.71±0.009b | 1.83±0.038b | 0.18±0.008c | 0.23±0.009c |
| T1 | 3.56±0.16d | 1.80±0.02ab | 5.36±0.15b | 1.09±0.02b | 0.76±0.003b | 1.85±0.015b | 0.51±0.026a | 0.35±0.007a | |
| T2 | 4.37±0.15c | 1.43±0.22b | 5.80±0.21b | 1.13±0.08b | 0.73±0.014b | 1.86±0.089b | 0.33±0.056bc | 0.32±0.010ab | |
| T3 | 6.09±0.24b | 2.49±0.45a | 8.59±0.69a | 1.36±0.04a | 0.83±0.036a | 2.19±0.076a | 0.40±0.060ab | 0.26±0.013c | |
| T4 | 3.70±0.07cd | 1.35±0.25b | 5.05±0.30b | 0.99±0.06b | 0.72±0.012b | 1.71±0.071b | 0.36±0.064ab | 0.34±0.015ab | |
| T5 | 4.42±0.19c | 1.29±0.30b | 5.70±0.40b | 1±0.07b | 0.73±0.025b | 1.73±0.095b | 0.29±0.062bc | 0.30±0.014b | |
表4 β-氨基丁酸对NaCl胁迫下两种加工番茄幼苗干鲜重的影响
Tab.4 Effects of β-aminobutyric acid on the dry and fresh weight of two processed tomato seedlings under NaCl stress
| 品种 Varieties | 处理 Treat- ments | 鲜重 Fresh weight(g) | 干重 Dry weight(g) | 根冠比 Root-crown ratio | 干鲜比 Dryness ratio | ||||
|---|---|---|---|---|---|---|---|---|---|
| 地上部 Above- ground part | 地下部 Underground | 全株 All Shares | 地上部 Above- ground part | 地下部 Underground | 全株 All Shares | ||||
| 新红49号 Xinhong 49 | CK | 10.67±0.93a | 2.73±0.52a | 13.39±1.41a | 1.63±0.20a | 0.84±0.04a | 2.47±0.24a | 0.25±0.03bc | 0.18±0.01d |
| T1 | 3.89±0.08c | 1.43±0.33b | 5.32±0.36d | 1.02±0.09b | 0.73±0.03b | 1.76±0.12b | 0.36±0.08ab | 0.33±0.001a | |
| T2 | 4.70±0.16bc | 2.1±0.02ab | 6.81±0.14cd | 1.01±0.01b | 0.78±0.01ab | 1.78±0.02b | 0.45±0.02a | 0.26±0.003c | |
| T3 | 9.55±0.13a | 1.81±0.05ab | 11.37±0.17b | 1.05±0.02b | 0.74±0.01b | 1.79±0.02b | 0.19±0.01c | 0.16±0.001e | |
| T4 | 5.44±0.16b | 2.02±0.08ab | 7.46±0.07c | 1.11±0.03b | 0.76±0.01ab | 1.87±0.02b | 0.37±0.03a | 0.25±0.004c | |
| T5 | 4.73±0.15bc | 1.52±0.30b | 6.25±0.42cd | 1.07±0.09b | 0.73±0.03b | 1.8±0.12b | 0.32±0.06abc | 0.28±0.011b | |
| 屯河5501号 Tunhe 5501 | CK | 6.9±0.39a | 1.22±0.12b | 8.12±0.51a | 1.12±0.03b | 0.71±0.009b | 1.83±0.038b | 0.18±0.008c | 0.23±0.009c |
| T1 | 3.56±0.16d | 1.80±0.02ab | 5.36±0.15b | 1.09±0.02b | 0.76±0.003b | 1.85±0.015b | 0.51±0.026a | 0.35±0.007a | |
| T2 | 4.37±0.15c | 1.43±0.22b | 5.80±0.21b | 1.13±0.08b | 0.73±0.014b | 1.86±0.089b | 0.33±0.056bc | 0.32±0.010ab | |
| T3 | 6.09±0.24b | 2.49±0.45a | 8.59±0.69a | 1.36±0.04a | 0.83±0.036a | 2.19±0.076a | 0.40±0.060ab | 0.26±0.013c | |
| T4 | 3.70±0.07cd | 1.35±0.25b | 5.05±0.30b | 0.99±0.06b | 0.72±0.012b | 1.71±0.071b | 0.36±0.064ab | 0.34±0.015ab | |
| T5 | 4.42±0.19c | 1.29±0.30b | 5.70±0.40b | 1±0.07b | 0.73±0.025b | 1.73±0.095b | 0.29±0.062bc | 0.30±0.014b | |
| 品种 Varieties | 处理 Treat- ments | 鲜重 Fresh weight(g) | 干重 Dry weight(g) | 根冠比 Root-crown ratio | 干鲜比 Dryness ratio | ||||
|---|---|---|---|---|---|---|---|---|---|
| 地上部 Above- ground part | 地下部 Underground | 全株 All Shares | 地上部 Above- ground part | 地下部 Underground | 全株 All Shares | ||||
| 新红49号 Xinhong 49 | CK | 10.67±0.93a | 2.72±0.52a | 13.39±1.41a | 1.63±0.20a | 0.84±0.04ab | 2.47±0.24a | 0.25±0.03c | 0.18±0.01d |
| T6 | 4.37±0.17c | 1.79±0.13bc | 6.16±0.16cd | 1.04±0.05c | 0.76±0.02c | 1.80±0.06c | 0.41±0.04ab | 0.29±0.006b | |
| T7 | 5.2±0.13c | 2.55±0.26ab | 7.76±0.36c | 1.24±0.09bc | 0.81±0.02abc | 2.06±0.11bc | 0.49±0.04a | 0.27±0.002c | |
| T8 | 8.58±0.17b | 2.86±0.19a | 11.45±0.33b | 1.41±0.04ab | 0.86±0.02a | 2.27±0.06ab | 0.33±0.02bc | 0.2±0.003d | |
| T9 | 4.89±0.04c | 2.03±0.20bc | 6.93±0.16cd | 1.17±0.02bc | 0.79±0.01bc | 1.96±0.03bc | 0.41±0.04ab | 0.28±0.003bc | |
| T10 | 3.97±0.11c | 1.6±0.20c | 5.57±0.15d | 1.05±0.07c | 0.75±0.02c | 1.79±0.09c | 0.4±0.06ab | 0.32±0.011a | |
| 屯河5501号 Tunhe 5501 | CK | 6.9±0.39a | 1.22±0.12b | 8.12±0.51ab | 1.12±0.03ab | 0.71±0.009b | 1.83±0.038b | 0.18±0.008c | 0.23±0.009c |
| T6 | 3.16±0.13c | 1.79±0.18ab | 4.95±0.30d | 1.04±0.02b | 0.75±0.007ab | 1.79±0.02b | 0.56±0.032a | 0.36±0.025a | |
| T7 | 4.62±0.37b | 1.63±0.42ab | 6.25±0.78cd | 1.05±0.11b | 0.74±0.035ab | 1.78±0.145b | 0.34±0.060b | 0.29±0.015b | |
| T8 | 5.48±0.22b | 1.65±0.22ab | 7.13±0.43bc | 1.12±0.08ab | 0.74±0.017ab | 1.86±0.095ab | 0.30±0.030b | 0.26±0.003bc | |
| T9 | 6.76±0.46a | 2.16±0.18a | 8.92±0.56a | 1.34±0.08a | 0.80±0.020a | 2.14±0.100a | 0.32±0.026b | 0.24±0.004c | |
| T10 | 4.66±0.26b | 1.72±0.23ab | 6.39±0.38cd | 1.17±0.06ab | 0.75±0.012ab | 1.93±0.073ab | 0.37±0.050b | 0.30±0.018b | |
表5 β-氨基丁酸对NaHCO3胁迫下番茄幼苗干鲜重的影响
Table.5 Effects of β-aminobutyric acid on the dry and fresh weight of tomato seedlings under NaHCO3 stress
| 品种 Varieties | 处理 Treat- ments | 鲜重 Fresh weight(g) | 干重 Dry weight(g) | 根冠比 Root-crown ratio | 干鲜比 Dryness ratio | ||||
|---|---|---|---|---|---|---|---|---|---|
| 地上部 Above- ground part | 地下部 Underground | 全株 All Shares | 地上部 Above- ground part | 地下部 Underground | 全株 All Shares | ||||
| 新红49号 Xinhong 49 | CK | 10.67±0.93a | 2.72±0.52a | 13.39±1.41a | 1.63±0.20a | 0.84±0.04ab | 2.47±0.24a | 0.25±0.03c | 0.18±0.01d |
| T6 | 4.37±0.17c | 1.79±0.13bc | 6.16±0.16cd | 1.04±0.05c | 0.76±0.02c | 1.80±0.06c | 0.41±0.04ab | 0.29±0.006b | |
| T7 | 5.2±0.13c | 2.55±0.26ab | 7.76±0.36c | 1.24±0.09bc | 0.81±0.02abc | 2.06±0.11bc | 0.49±0.04a | 0.27±0.002c | |
| T8 | 8.58±0.17b | 2.86±0.19a | 11.45±0.33b | 1.41±0.04ab | 0.86±0.02a | 2.27±0.06ab | 0.33±0.02bc | 0.2±0.003d | |
| T9 | 4.89±0.04c | 2.03±0.20bc | 6.93±0.16cd | 1.17±0.02bc | 0.79±0.01bc | 1.96±0.03bc | 0.41±0.04ab | 0.28±0.003bc | |
| T10 | 3.97±0.11c | 1.6±0.20c | 5.57±0.15d | 1.05±0.07c | 0.75±0.02c | 1.79±0.09c | 0.4±0.06ab | 0.32±0.011a | |
| 屯河5501号 Tunhe 5501 | CK | 6.9±0.39a | 1.22±0.12b | 8.12±0.51ab | 1.12±0.03ab | 0.71±0.009b | 1.83±0.038b | 0.18±0.008c | 0.23±0.009c |
| T6 | 3.16±0.13c | 1.79±0.18ab | 4.95±0.30d | 1.04±0.02b | 0.75±0.007ab | 1.79±0.02b | 0.56±0.032a | 0.36±0.025a | |
| T7 | 4.62±0.37b | 1.63±0.42ab | 6.25±0.78cd | 1.05±0.11b | 0.74±0.035ab | 1.78±0.145b | 0.34±0.060b | 0.29±0.015b | |
| T8 | 5.48±0.22b | 1.65±0.22ab | 7.13±0.43bc | 1.12±0.08ab | 0.74±0.017ab | 1.86±0.095ab | 0.30±0.030b | 0.26±0.003bc | |
| T9 | 6.76±0.46a | 2.16±0.18a | 8.92±0.56a | 1.34±0.08a | 0.80±0.020a | 2.14±0.100a | 0.32±0.026b | 0.24±0.004c | |
| T10 | 4.66±0.26b | 1.72±0.23ab | 6.39±0.38cd | 1.17±0.06ab | 0.75±0.012ab | 1.93±0.073ab | 0.37±0.050b | 0.30±0.018b | |
| [15] | 陈嵘峰, 屠静韵, 许学文, 等. 蔬菜作物盐胁迫响应及耐盐机制研究进展[J]. 中国蔬菜, 2024(4): 23-33. |
| CHEN Rongfeng, TU Jingyun, XU Xuewen, et al. Research progress on salt stress response and salt tolerance mechanism of vegetable crops[J]. China Vegetables, 2024(4): 23-33. | |
| [16] |
于婵, 张依琳, 李秋莹, 等. 盐碱胁迫对牛至种子萌发和幼苗生理生化特性的影响[J]. 草地学报, 2024, 32(6): 1882-1892.
DOI |
|
YU Chan, ZHANG Yilin, LI Qiuying, et al. Effects of saline-alkali stresses on seed germination and seedling physiological and biochemical characteristics of Origanum vulgare[J]. Acta Agrestia Sinica, 2024, 32(6): 1882-1892.
DOI |
|
| [17] | 柳国强, 谢爱方, 林多, 等. 盐胁迫对叶用莴苣生长与品质的影响[J]. 北方园艺, 2016,(21): 20-23. |
| LIU Guoqiang, XIE Aifang, LIN Duo, et al. Effects of salt stress on growth and quality of lettuce[J]. Northern Horticulture, 2016,(21): 20-23. | |
| [18] | Jisha K C, Vijayakumari K, Puthur J T. Seed priming for abiotic stress tolerance: an overview[J]. Acta Physiologiae Plantarum, 2013, 35(5): 1381-1396. |
| [19] | 徐倩, 郭尚敬, 魏慧恬, 等. 外源BABA对NaCl胁迫下二月兰幼苗生长和生理特性的影响[J]. 北方园艺, 2020,(12): 75-81. |
| XU Qian, GUO Shangjing, WEI Huitian, et al. Effects of exogenous BABA on growth and physiological characteristics of wheat seedlings in Orychophragmus violaceus under NaCl stress[J]. Northern Horticulture, 2020,(12): 75-81. | |
| [20] | 张清莉, 刘再强, 钟玉德, 等. BABA诱导烟草抵御高盐胁迫的初步研究[J]. 中国烟草学报, 2015, 21(3): 72-81. |
| ZHANG Qingli, LIU Zaiqiang, ZHONG Yude, et al. A preliminary study on BABA-induced resistance to high salt stress in tobacco[J]. Acta Tabacaria Sinica, 2015, 21(3): 72-81. | |
| [21] | 苏小东, 李梅. 绿色植物光系统Ⅰ及其光合作用调控的结构基础[J]. 生物化学与生物物理进展, 2024, 51(10): 2298-2310. |
| SU Xiaodong, LI Mei. Structural basis of photosystem Ⅰ and its photosynthesis regulation in green plants[J]. Progress in Biochemistry and Biophysics, 2024, 51(10): 2298-2310. | |
| [22] | 郭春爱, 刘芳, 许晓明. 叶绿素b缺失与植物的光合作用[J]. 植物生理学通讯, 2006, 42(5): 967-973. |
| GUO Chunai, LIU Fang, XU Xiaoming. Chlorophyll-b deficient and photosynthesis in plants[J]. Plant Physiology Communications, 2006, 42(5): 967-973. | |
| [23] | Moghimi S M, Ghavami S H. Effect of Zeolite and salinity on growth indices of marigold (Calendula officinalis L.)[J]. Science Journal, 2015, 36: 641-644. |
| [24] | Mbadi S H, Alipour Z T, Asghari H, et al. Effect of the salinity stress and arbuscular mycorhizal fungi (AMF) on the growth and nutrition of the Marigold (Calendula officinalis)[J]. Journal of Biodiversity and Environmental Sciences, 2015, 6: 215-219. |
| [25] |
Jisha K C, Puthur J T. Seed priming with beta-amino butyric acid improves abiotic stress tolerance in rice seedlings[J]. Rice Science, 2016, 23(5): 242-254.
DOI |
| [26] | Ali E F, Hassan F A S. β-aminobutyric acid raises salt tolerance and reorganises some physiological characters in Calendula officinalis L. plant[J]. Annual Research & Review in Biology, 2019: 1-16. |
| [27] | Ella E S, Dionisio-Sese M L, Ismail A M. Seed pre-treatment in rice reduces damage, enhances carbohydrate mobilization and improves emergence and seedling establishment under flooded conditions[J]. AoB PLANTS, 2011, 2011: plr007. |
| [28] | Goswami A, Banerjee R, Raha S. Drought resistance in rice seedlings conferred by seed priming: role of the anti-oxidant defense mechanisms[J]. Protoplasma, 2013, 250(5): 1115-1129. |
| [29] | 何永明, 谢建春, 李春晓. β-氨基丁酸增强水稻幼苗耐盐性的初步研究[J]. 安徽农业科学, 2010, 38(2): 641-642, 645. |
| [1] | 刘庚炜, 高雅琪, 邵泽璇, 等. 土壤盐渍化修复技术研究进展[J]. 黑龙江农业科学, 2024,(1): 99-107. |
| LIU Gengwei, GAO Yaqi, SHAO Zexuan, et al. Research progress of soil salinization-alkalization remediation technology[J]. Heilongjiang Agricultural Sciences, 2024,(1): 99-107. | |
| [2] | 马凯, 饶良懿. 我国土壤盐碱化问题研究脉络和热点分析[J]. 中国农业大学学报, 2023, 28(11): 90-102. |
| MA Kai, RAO Liangyi. Research lineage and hot spot analysis of soil salinization in China[J]. Journal of China Agricultural University, 2023, 28(11): 90-102. | |
| [3] | 宋炫钰, 汪晶晶. 全球番茄制品贸易网络特征及其动态演化分析[J]. 中国蔬菜, 2024,(7): 16-25. |
| SONG Xuanyu, WANG Jingjing. Network characteristics of global tomato products trade and its dynamic evolution analysis[J]. China Vegetables, 2024,(7): 16-25. | |
| [4] | 梁爽, 谭占明, 程云霞, 等. 加工番茄遗传多样性分析研究进展及展望[J]. 农业工程技术, 2024, 44(3): 18-21. |
| LIANG Shuang, TAN Zhanming, CHENG Yunxia, et al. Research progress and prospect of genetic diversity analysis of processed tomatoes[J]. Agricultural Engineering Technology, 2024, 44(3): 18-21. | |
| [5] | 李云霞, 王国栋, 刘瑜, 等. 新疆典型绿洲灌区土壤理化性状与盐分离子分布特征[J]. 农业机械学报, 2024, 55(7): 357-364, 414. |
| LI Yunxia, WANG Guodong, LIU Yu, et al. Distribution characteristics of soil physicochemical properties and salt ions in typical oasis irrigation areas of Xinjiang[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(7): 357-364, 414. | |
| [6] | 邵华伟, 孙九胜, 胡伟, 等. 新疆盐碱地分布特点和成因及改良利用技术研究进展[J]. 黑龙江农业科学, 2014,(11): 160-164. |
| [29] | HE Yongming, XIE Jianchun, LI Chunxiao. Preliminary study on the enhancement of salt tolerance of rice seedlings by β-aminobutyric acid[J]. Journal of Anhui Agricultural Sciences, 2010, 38(2): 641-642, 645. |
| [30] | Al Mahmud J, Hasanuzzaman M, Khan M I R, et al. β-aminobutyric acid pretreatment confers salt stress tolerance in Brassica napus L. by modulating reactive oxygen species metabolism and methylglyoxal detoxification[J]. Plants, 2020, 9(2): 241. |
| [31] |
Mostek A, B?rner A, Weidner S. Comparative proteomic analysis of β-aminobutyric acid-mediated alleviation of salt stress in barley[J]. Plant Physiology and Biochemistry, 2016, 99: 150-161.
DOI PMID |
| [32] |
Wu C C, Singh P, Chen M C, et al. L-Glutamine inhibits beta-aminobutyric acid-induced stress resistance and priming in Arabidopsis[J]. Journal of Experimental Botany, 2010, 61(4): 995-1002.
DOI PMID |
| [6] | SHAO Huawei, SUN Jiusheng, HU Wei, et al. Research progress on distribution characteristics, causes and improved utilization technology of saline-alkali land in Xinjiang[J]. Heilongjiang Agricultural Sciences, 2014,(11): 160-164. |
| [7] | 周程爱, 杨宇红, 梁俊峰, 等. β-氨基丁酸诱导植物抗病作用的研究[J]. 湖南农业大学学报(自然科学版), 2007, 33(1): 68-71. |
| ZHOU Chengai, YANG Yuhong, LIANG Junfeng, et al. On the induced disease-resistance by β-aminonbutyric acid[J]. Journal of Hunan Agricultural University (Natural Sciences), 2007, 33(1): 68-71. | |
| [8] | Devaiah S P, Mahadevappa G H, Shetty H S. Induction of systemic resistance in pearl millet (Pennisetum glaucum) against downy mildew (Sclerospora graminicola) by Datura metel extract[J]. Crop Protection, 2009, 28(9): 783-791. |
| [9] | Olivieri F P, Lobato M C, et al.González Altamiranda E, BABA effects on the behaviour of potato cultivars infected by Phytophthora infestans and Fusarium solani[J]. European Journal of Plant Pathology, 2009, 123(1): 47-56. |
| [10] | Nandeeshkumar P, Sarosh B R, Kini K R, et al. Elicitation of resistance and defense related proteins by β-amino butyric acid in sunflower against downy mildew pathogen Plasmopara halstedii[J]. Archives of Phytopathology and Plant Protection, 2009, 42(11): 1020-1032. |
| [11] | Šašek V, Nováková M, Dobrev P I, et al. β-aminobutyric acid protects Brassica napus plants from infection by Leptosphaeria maculans. Resistance induction or a direct antifungal effect[J]. European Journal of Plant Pathology, 2012, 133(1): 279-289. |
| [12] | Ji H L, Kyndt T, He W, et al. β-aminobutyric acid-induced resistance against root-knot nematodes in rice is based on increased basal defense[J]. Molecular Plant-Microbe Interactions, 2015, 28(5): 519-533. |
| [13] |
张维, 周会玲, 温晓红, 等. β-氨基丁酸结合壳聚糖处理对苹果采后青霉病及贮藏品质的影响[J]. 食品科学, 2013, 34(12): 312-316.
DOI |
|
ZHANG Wei, ZHOU Huiling, WEN Xiaohong, et al. Effect of β-aminobutyric acid combined with chitosan treatment on postharvest blue mold and storage quality of red fuji apple[J]. Food Science, 2013, 34(12): 312-316.
DOI |
|
| [14] | Cohen Y R. β-aminobutyric acid-induced resistance against plant pathogens[J]. Plant Disease, 2002, 86(5): 448-457. |
| [1] | 王亚玲, 江应红, 孙慧, 刘易. 不同马铃薯耐盐性转录组比较及耐盐基因的挖掘[J]. 新疆农业科学, 2025, 62(5): 1121-1130. |
| [2] | 古丽娜尔·巴合提别克, 刘文静, 麻井彪, 张国胜, 郭启平, 袁杰, 张燕红, 安万刚, 萨吉代木·玉苏甫, 潘建明, 任磊. 盐胁迫下水稻种子萌发特性及其耐盐性评价[J]. 新疆农业科学, 2025, 62(4): 858-868. |
| [3] | 弓兆星, 韩鹏程, 李泽森, 李桂真, 王玉祥, 张博. 盐胁迫下接种AM真菌对野生无芒雀麦生理的影响[J]. 新疆农业科学, 2025, 62(1): 129-136. |
| [4] | 孙彩琴, 吴佳, 黄海, 郭家鑫, 闵伟, 郭慧娟. 不同盐碱胁迫对棉花根系蛋白质组的影响[J]. 新疆农业科学, 2025, 62(1): 146-160. |
| [5] | 田海燕, 张占琴, 颉建辉, 王建江, 杨相昆. 加工番茄果实番茄红素与主要品质性状的关系[J]. 新疆农业科学, 2024, 61(9): 2197-2202. |
| [6] | 陈芳, 李字辉, 孙孝贵, 张庭军. 不同剂量的微生物菌剂对加工番茄产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2285-2289. |
| [7] | 董志多, 徐菲, 付秋萍, 黄建, 祁通, 孟阿静, 付彦博, 开赛尔·库尔班. 不同类型盐碱胁迫对棉花种子萌发的影响[J]. 新疆农业科学, 2024, 61(8): 1831-1844. |
| [8] | 奚瑞, 陈怡佳, 李宁, 余庆辉, 王强, 秦勇. 外源2, 4-表芸苔素内酯对盐胁迫下不同盐敏感型番茄种子萌发的影响[J]. 新疆农业科学, 2024, 61(8): 1983-1992. |
| [9] | 阮向阳, 蒲敏, 肖乐乐, 罗林毅, 陈瑞杰, 李然, 陈国永, 冶军. 镁肥施用策略对加工番茄产量和品质的影响[J]. 新疆农业科学, 2024, 61(4): 916-925. |
| [10] | 欧源, 罗莎莎, 王如月, 孙雅丽, 虎海防. 盐胁迫对美国黑核桃幼苗生长和生理特性的影响[J]. 新疆农业科学, 2024, 61(2): 393-401. |
| [11] | 李亚莉, 哈丽哈什·依巴提, 唐亚莉, 段婧婧, 李青军. 氮磷减施与钾协同共效对加工番茄产量和养分吸收的影响[J]. 新疆农业科学, 2024, 61(12): 3014-3019. |
| [12] | 刘会芳, 王强, 韩宏伟, 庄红梅, 王浩, 常亚南. 盐、碱及复合盐碱胁迫对番茄幼苗光合特性及抗氧化酶活性的影响[J]. 新疆农业科学, 2024, 61(11): 2658-2666. |
| [13] | 赵文轩, 程云霞, 谭占明, 李春雨, 束胜, 阿依买木·沙吾提, 杨历雨, 苗献军. 基于主成分分析比较不同加工番茄品种叶绿素的荧光参数及光合特性[J]. 新疆农业科学, 2024, 61(11): 2667-2675. |
| [14] | 李春雨, 谭占明, 程云霞, 束胜, 马全会, 何淼, 段轶帆, 吴慧. 不同加工番茄品种的农艺性状比较分析[J]. 新疆农业科学, 2024, 61(11): 2676-2683. |
| [15] | 蒲敏, 阮向阳, 肖乐乐, 索常凯, 陈国永, 冶军, 高波. 枸溶性钙镁肥对加工番茄钙、镁吸收及品质的影响[J]. 新疆农业科学, 2023, 60(8): 1987-1995. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||