新疆农业科学 ›› 2024, Vol. 61 ›› Issue (9): 2299-2306.DOI: 10.6048/j.issn.1001-4330.2024.09.026
• 植物保护·微生物·畜牧兽医·土壤肥料 • 上一篇 下一篇
帕孜丽耶·艾合麦提1(), 王新勇2, 周燕3, 宋彬4, 玉苏甫·阿不力提甫1(
)
收稿日期:
2024-02-13
出版日期:
2024-09-20
发布日期:
2024-10-09
通信作者:
玉苏甫·阿不力提甫(1969-),男,新疆人,副教授,博士,硕士生导师,研究方向为果树栽培与种质资源,(E-mail)yusufxj@163.com作者简介:
帕孜丽耶·艾合麦提(1997-),女,新疆人,硕士研究生,研究方向为果树栽培与生理,(E-mail)1779575836@qq.com
基金资助:
Paziliye Ahemati1(), WANG Xinyong2, ZHOU Yan3, SONG Bin4, Yusuf Abulitifu1(
)
Received:
2024-02-13
Published:
2024-09-20
Online:
2024-10-09
Supported by:
摘要:
【目的】研究微生物菌剂对核桃叶片生理及光合特性影响,为微生物菌剂在新疆阿克苏地区核桃上应用提供科学依据。【方法】以14年生疏散分层形温185核桃为材料,共设置6个处理,分别为枯草芽孢杆菌30 g/株(T1)、哈茨木霉菌30 g/株(T2)、枯草芽孢杆菌40 g/株(T3)、哈茨木霉菌40 g/株(T4)、枯草芽孢杆菌20 g/株+哈茨木霉菌20 g/株(T5)和清水对照(CK)。测定核桃叶片叶面积、叶长、叶宽、鲜重、干重、叶绿素(SPAD)、光合特征等指标,分析不同用量及种类的微生物菌剂对核桃叶片的影响。【结果】在T5处理下核桃叶片生长指标表现最优,T5处理下叶片养分含量氮、磷、钾出现最大值,较对照高出65.68%,61.14%和57.47%;该处理下叶片叶绿素含量与CK呈显著差异,较对照高29.38%,且提高了叶片净光合速率、气孔导度、蒸腾速率,较对照分别高22.57%、21.16%和65.58%。【结论】沟施枯草芽孢杆菌和哈茨木霉菌各20 g处理促进核桃叶片生长及养分含量和提高光合性能的效果最佳。
中图分类号:
帕孜丽耶·艾合麦提, 王新勇, 周燕, 宋彬, 玉苏甫·阿不力提甫. 微生物菌剂对核桃叶片生理及光合特性的影响[J]. 新疆农业科学, 2024, 61(9): 2299-2306.
Paziliye Ahemati, WANG Xinyong, ZHOU Yan, SONG Bin, Yusuf Abulitifu. Effects of microbial inoculants on physiological and photosynthetic characteristics of walnut leaves[J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2299-2306.
处理编号 Processing number | 枯草芽孢杆菌与 哈茨木霉菌质量比 Mass ratio of Bacillus subtilis to Trichoderma harzianum | 菌肥用量(g/株) Bacterial fertilizer dosage (g/ strain) |
---|---|---|
T1 | 1∶0 | 枯草芽孢杆菌30 |
T2 | 0∶1 | 哈茨木霉菌30 |
T3 | 1∶0 | 枯草芽孢杆菌40 |
T4 | 0∶1 | 哈茨木霉菌40 |
T5 | 1∶1 | 枯草芽孢杆菌20 +哈茨木霉菌20 |
CK | - | 清水对照 |
表1 试验各处理枯草芽孢杆菌和哈茨木霉菌用量
Tab.1 The amount of Bacillus subtilis and Trichoderma harzianum used for each treatment in the test
处理编号 Processing number | 枯草芽孢杆菌与 哈茨木霉菌质量比 Mass ratio of Bacillus subtilis to Trichoderma harzianum | 菌肥用量(g/株) Bacterial fertilizer dosage (g/ strain) |
---|---|---|
T1 | 1∶0 | 枯草芽孢杆菌30 |
T2 | 0∶1 | 哈茨木霉菌30 |
T3 | 1∶0 | 枯草芽孢杆菌40 |
T4 | 0∶1 | 哈茨木霉菌40 |
T5 | 1∶1 | 枯草芽孢杆菌20 +哈茨木霉菌20 |
CK | - | 清水对照 |
处理 Treatments | 叶面积 Leaf area (cm2) | 叶长 Leaf length (cm) | 叶宽 Blade width (cm) | 鲜重 Fresh weight (g) | 干重 Dry weight (g) |
---|---|---|---|---|---|
CK | 86.66±0.82d | 16.52±0.51ab | 7.84±0.35b | 1.20±0.03c | 0.24±0.04d |
T1 | 98.38±4.32bc | 17.46±0.55ab | 8.02±0.21b | 1.45±0.10bc | 0.33±0.03cd |
T2 | 92.63±4.01cd | 16.27±0.43b | 8.18±0.35b | 1.41±0.20bc | 0.44±0.06bc |
T3 | 105.6±2.92ab | 16.18±0.65b | 9.42±0.54a | 1.93±0.29ab | 0.56±0.05ab |
T4 | 99.28±3.76bc | 16.62±0.54ab | 8.48±0.24ab | 1.71±0.15bc | 0.39±0.05cd |
T5 | 114.18±2.29a | 18.05±0.58a | 8.86±0.30ab | 2.29±0.16a | 0.64±0.08a |
表2 施用微生物菌剂下核桃叶片性状的变化
Tab.2 Changes of microbial inoculants on leaf traits of walnut
处理 Treatments | 叶面积 Leaf area (cm2) | 叶长 Leaf length (cm) | 叶宽 Blade width (cm) | 鲜重 Fresh weight (g) | 干重 Dry weight (g) |
---|---|---|---|---|---|
CK | 86.66±0.82d | 16.52±0.51ab | 7.84±0.35b | 1.20±0.03c | 0.24±0.04d |
T1 | 98.38±4.32bc | 17.46±0.55ab | 8.02±0.21b | 1.45±0.10bc | 0.33±0.03cd |
T2 | 92.63±4.01cd | 16.27±0.43b | 8.18±0.35b | 1.41±0.20bc | 0.44±0.06bc |
T3 | 105.6±2.92ab | 16.18±0.65b | 9.42±0.54a | 1.93±0.29ab | 0.56±0.05ab |
T4 | 99.28±3.76bc | 16.62±0.54ab | 8.48±0.24ab | 1.71±0.15bc | 0.39±0.05cd |
T5 | 114.18±2.29a | 18.05±0.58a | 8.86±0.30ab | 2.29±0.16a | 0.64±0.08a |
处理 Treatments | 全氮 Total nitrogen (g/kg) | 全磷 Phosphorus (g/kg) | 全钾 Total potassium (g/kg) |
---|---|---|---|
CK | 12.53±0.15c | 1.57±0.12c | 10.44±0.06d |
T1 | 16.47±0.23b | 1.83±0.03b | 12.23±0.23c |
T2 | 17.27±0.27b | 1.73±0.03b | 12.59±0.24c |
T3 | 17.50±0.23b | 2.12±0.03ab | 15.21±0.03ab |
T4 | 19.77±2.14a | 2.11±0.06ab | 14.63±0.10b |
T5 | 20.76±0.15a | 2.53±0.03a | 16.44±0.06a |
表3 施用微生物菌剂下核桃叶片氮磷钾含量的变化
Tab.3 Changes of microbial fertilizer on nitrogen,phosphorus and potassium content of walnut leaves
处理 Treatments | 全氮 Total nitrogen (g/kg) | 全磷 Phosphorus (g/kg) | 全钾 Total potassium (g/kg) |
---|---|---|---|
CK | 12.53±0.15c | 1.57±0.12c | 10.44±0.06d |
T1 | 16.47±0.23b | 1.83±0.03b | 12.23±0.23c |
T2 | 17.27±0.27b | 1.73±0.03b | 12.59±0.24c |
T3 | 17.50±0.23b | 2.12±0.03ab | 15.21±0.03ab |
T4 | 19.77±2.14a | 2.11±0.06ab | 14.63±0.10b |
T5 | 20.76±0.15a | 2.53±0.03a | 16.44±0.06a |
[1] | 郗荣庭, 张毅萍. 中国果树志-核桃卷[M]. 北京: 中国林业出版社, 1996: 1-158. |
XI Rongting, ZHANG Yipin. China fruit Zhi-Walnut Roll[M]. Beijing: China Forestry Publishing House, 1996: 1-158. | |
[2] | 席婧, 蒋志辉. 新疆地区核桃产业发展现状分析[J]. 现代园艺, 2023, 46(2): 38-40. |
XI Jing, JIANG Zhihui. Analysis on the development status of walnut industry in Xinjiang[J]. Contemporary Horticulture, 2023, 46(2): 38-40. | |
[3] | Gond S K, Bergen M S, Torres M S, et al. Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize[J]. Microbiological Research, 2015, 172: 79-87. |
[4] | Gagné-Bourque F, Bertrand A, Claessens A, et al. Alleviation of drought stress and metabolic changes in timothy (Phleum pratense L.) colonized with Bacillus subtilis B26[J]. Frontiers in Plant Science, 2016, 7: 584. |
[5] | Zhang F G, Yuan J, Yang X M, et al. Putative Trichoderma harzianum mutant promotes cucumber growth by enhanced production of indole acetic acid and plant colonization[J]. Plant and Soil, 2013, 368(1): 433-444. |
[6] | 辛磊, 安慧, 钱丰, 等. 枯草芽孢杆菌ML-11对核桃根腐病的防治效果研究[J]. 农业技术与装备, 2022, (7): 5-6,8. |
XIN Lei, AN Hui, QIAN Feng, et al. Study on the control effect of Bacillus subtilis ML-11 on walnut root rot[J]. Agricultural Technology and Equipment, 2022, (7): 5-6,8. | |
[7] | 周晓馥, 张欣玥, 蔡汶妤, 等. 哈茨木霉对黄瓜幼苗促生作用的影响[J]. 吉林师范大学学报(自然科学版), 2020, 41(3): 93-99. |
ZHOU Xiaofu, ZHANG Xinyue, CAI Wenyu, et al. Study on effects of Trichoderma Harzianum on growth-promotion of cucumber seedlings[J]. Journal of Jilin Normal University (Natural Science Edition), 2020, 41(3): 93-99. | |
[8] | 张祖衔, 邓薇, 李春, 等. 施加枯草芽孢杆菌和哈茨木霉对黄瓜幼苗生长的影响[J]. 北方园艺, 2021, (23): 11-20. |
ZHANG Zuxian, DENG Wei, LI Chun, et al. Effects of Bacillus subtilis and Trichoderma harzianum on the growth of cucumber seedlings[J]. Northern Horticulture, 2021, (23): 11-20. | |
[9] | 周进. 生物菌肥施用对温室辣椒光合特性、产量和品质的影响[J]. 北方园艺, 2021, (1): 42-47. |
ZHOU Jin. Effects of microbial fertilizer application on photosynthetic characteristics, yield and quality of greenhouse pepper[J]. Northern Horticulture, 2021, (1): 42-47. | |
[10] | 王爱玲, 段国琪, 田时敏, 等. 减氮配施微生物菌肥对 "富士" 苹果品质和光合特性的影响[J]. 北方园艺, 2022, (18): 16-22. |
WANG Ailing, DUAN Guoqi, TIAN Shimin, et al. Effects of combined application of microbial fertilizer on quality and photosynthetic characteristics of'Fuji'Apple[J]. Northern Horticulture, 2022, (18): 16-22. | |
[11] | 杨皓, 庄家尧, 郑康, 等. 不同载体菌肥对刺槐光合特性及土壤养分、细菌群落的影响[J]. 核农学报, 2023, 37(4):844-853. |
YANG Hao, ZHUANG Jiayao, ZHENG Kang, et al. Effects of different carrier bacterial fertilizers on the photosynthetic characteristics, soil nutrients and bacterial communities of black locust[J]. Journal of Nuclear Agricultural Sciences, 2023, 37(4): 844-853. | |
[12] | 侯彦林, 任军. 生态平衡施肥技术产业化模式和机制研究[J]. 土壤通报, 2003, 34(3): 191-194. |
HOU Yanlin, REN Jun. Studies on industrialization mode and mechanism of ecological balanced fertilization technique[J]. Chinese Journal of Soil Science, 2003, 34(3): 191-194. | |
[13] | 贺志斌. 微生物肥料在苹果种植中的应用效果研究[D]. 临汾: 山西师范大学, 2018. |
HE Zhibin. Application Effect of Microbial Fertilizer on Apple Planting[D]. Linfen: Shanxi Normal University, 2018. | |
[14] | 段淇斌, 赵冬青, 姚拓, 等. 施用生物菌肥对饲用玉米生长和土壤微生物数量的影响[J]. 草原与草坪, 2015, 35(2): 54-58. |
DUAN Qibin, ZHAO Dongqing, YAO Tuo, et al. Effects of usingbiofertilizer on forage maize growth and soil microbial number[J]. Grassland and Turf, 2015, 35(2): 54-58. | |
[15] | 穆凯代斯罕·伊萨克. HPS微生物菌肥对库尔勒香梨园土壤、叶片和果实品质的影响研究[D]. 塔里木大学, 2023. |
Mukaidaisihan Yisake. Research on the effects of HPS microbial fertilizer on soil, leaves and fruit quality of Korla fragrant pear orchards[D]. Aral: Tarim University, 2023. | |
[16] | 冯大兰, 魏立本, 黄小辉, 等. 梁平柚果实膨大期叶片矿质营养诊断研究[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 111-116. |
FENG Dalan, WEI Liben, HUANG Xiaohui, et al. Diagnostic study on mineral nutrition in leaves of Liangping pomelo during fruit expansion period[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(2): 111-116. | |
[17] | 付燕, 杨芩. 不同浓度食用醋对蓝莓生长势及叶片N·P·K含量的影响[J]. 安徽农业科学, 2017, 45(18): 24-26. |
FU Yan, YANG Qin. Effect of different concentrations of vinegar on growth potential and nitrogen, phosphorus and potassium content in leaves of blueberry[J]. Journal of Anhui Agricultural Sciences, 2017, 45(18): 24-26. | |
[18] | 钟全林, 程栋梁, 胡松竹, 等. 刨花楠和华东润楠叶绿素含量分异特征及与净光合速率的关系[J]. 应用生态学报, 2009, 20(2): 271-276. |
ZHONG Quanlin, CHENG Dongliang, HU Songzhu, et al. Chlorophyll content and net photosynthetic rate of Machilus pauhoi and M.leptophylla[J]. Chinese Journal of Applied Ecology, 2009, 20(2): 271-276. | |
[19] | 王玫, 尹承苗, 孙萌萌, 等. 黄腐酸微生物菌剂对连作平邑甜茶光合特性的影响[J]. 植物生理学报, 2019, 55(1): 99-106. |
WANG Mei, YIN Chengmiao, SUN Mengmeng, et al. Effect of fulvic acid on leaf photosynthesis fluorescent parameters of apple(Malus hupehensis) under replant condition[J]. Plant Physiology Journal, 2019, 55(1): 99-106. | |
[20] | 陈芬, 余高, 陈容, 等. 减磷配施有机肥对辣椒生长及光合荧光特性的影响[J]. 西北农林科技大学学报(自然科学版), 2021, 49(7): 114-125. |
CHEN Fen, YU Gao, CHEN Rong, et al. Effects of reduced application of chemical phosphorus combined with organic fertilizer on growth and photosynthetic fluorescence characteristics of Capsicums annuum L[J]. Journal of Northwest A & F University (Natural Science Edition), 2021, 49(7): 114-125. | |
[21] | 朱迎春, 安国林, 李卫华, 等. 不同生物有机肥对西瓜光合特性、产量和品质的影响[J]. 中国瓜菜, 2020, 33(10): 29-32. |
ZHU Yingchun, AN Guolin, LI Weihua, et al. Effects of different bio-organic fertilizers on photosynthetic character-istics, yield and quality of watermelon[J]. China Cucurbits and Vegetables, 2020, 33(10): 29-32. | |
[22] | 王亚雄, 常少刚, 王锐. 不同有机肥对宁夏枸杞生长、产量及品质的影响[J]. 中国土壤与肥料, 2019, (5):91-95. |
WANG Yaxiong, CHANG Shaogang, WANG Rui, et al. Effects of different organic fertilizers on the growth, yield and quality of Ningxia wolfberry[J]. Soil and Fertilizer Sciences in China, 2019, (5):91-95. | |
[23] | 王晓娟, 贾志宽, 梁连友, 等. 不同有机肥量对旱地玉米光合特性和产量的影响[J]. 应用生态学报, 2012, 23(2): 419-425. |
WANG Xiaojuan, JIA Zhikuan, LIANG Lianyou, et al. Effects of organic fertilizer application rate on leaf photosynthetic characteristics and grain yield of dryland maize[J]. Chinese Journal of Applied Ecology, 2012, 23(2): 419-425. |
[1] | 李永泰, 高阿香, 李艳军, 张新宇. 脱叶剂对不同敏感性棉花品种生理特性的影响[J]. 新疆农业科学, 2024, 61(9): 2094-2102. |
[2] | 张庭军, 李字辉, 崔豫疆, 孙孝贵, 陈芳. 微生物菌剂对棉花生长及土壤理化性质的影响[J]. 新疆农业科学, 2024, 61(9): 2269-2276. |
[3] | 陈芳, 李字辉, 孙孝贵, 张庭军. 不同剂量的微生物菌剂对加工番茄产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2285-2289. |
[4] | 陈芳, 李字辉, 王兵跃, 孙孝贵, 张庭军. 微生物菌剂对冬小麦生长发育及产量的影响[J]. 新疆农业科学, 2024, 61(8): 1853-1860. |
[5] | 李锁丞, 柳延涛, 董红业, 孙振博, 李紫薇, 张春媛, 王开勇, 李强, 杨明凤. 不同施钾量对滴灌花生光合特性及产量的影响[J]. 新疆农业科学, 2024, 61(8): 1926-1936. |
[6] | 姚诗雨, 王杰, 黄文娟, 焦培培, 彭承志, 熊丹, 陈月, 王鑫. 不同盐渍环境对胡杨叶解剖结构及离子含量的影响[J]. 新疆农业科学, 2024, 61(8): 2004-2013. |
[7] | 亚森·吐尔迪, 马天宇, 图尔迪麦麦提·努尔麦麦提, 阿地力·沙塔尔. 苹果蠹蛾和梨小食心虫迷向丝在核桃园中的使用模式[J]. 新疆农业科学, 2024, 61(7): 1757-1765. |
[8] | 施俊杰, 侯献飞, 于月华, 李强, 苗昊翠, 贾东海, 顾元国, 汪天玲. 不同覆盖模式与补充灌溉对花生光合特性及干物质积累速率的影响[J]. 新疆农业科学, 2024, 61(5): 1122-1130. |
[9] | 张艺加, 程平, 王磊, 武胜利. 不同灌溉量对矮化密植苹果树生理特性和苹果产量及品质的影响[J]. 新疆农业科学, 2024, 61(5): 1140-1150. |
[10] | 周光辉, 陈凤, 孙守霞, 吕威, 朴涵琪, 郝金莲, 张述斌, 陈虹. 水肥耦合对核桃光合特性及产量和品质的效应[J]. 新疆农业科学, 2024, 61(5): 1151-1159. |
[11] | 刘钧庆, 梁国成, 张欣, 王庆勇, 赵经华. 调亏灌溉对滴灌核桃树根系空间分布特征的影响[J]. 新疆农业科学, 2024, 61(5): 1160-1171. |
[12] | 马合木提·阿不来提, 木合塔尔·扎热, 米热古力·外力, 哈地尔·依沙克. 核桃叶缘焦枯病与其养分含量的相关性回归分析[J]. 新疆农业科学, 2024, 61(4): 945-953. |
[13] | 王文窈, 施万斌, 芦屹, 图尔荪托合提·阿卜杜拉, 叶尔胜·哈尔肯, 马荣. 两种助剂在核桃腐烂病化学防控中的减药增效分析[J]. 新疆农业科学, 2024, 61(3): 672-680. |
[14] | 吴刚, 田阳青, 赵强, 李欣欣, 穆妮热·阿卜杜艾尼, 张家豪, 王文庆, 占东霞, 马春梅. 缩节胺复配不同促进剂对棉花棉铃时空分布和光合特性的影响[J]. 新疆农业科学, 2024, 61(2): 279-287. |
[15] | 毛廷勇, 刘婵, 杨北方, 李亚兵, 周均, 王栋, 陈国栋, 万素梅. 滴灌棉花源库器官对化学打顶的响应特征[J]. 新疆农业科学, 2024, 61(2): 288-299. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 35
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 106
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||