新疆农业科学 ›› 2024, Vol. 61 ›› Issue (9): 2290-2298.DOI: 10.6048/j.issn.1001-4330.2024.09.025
• 植物保护·微生物·畜牧兽医·土壤肥料 • 上一篇 下一篇
王浩中1,2(), 林青2, 曾军2, 高雁2, 赵燕慧3, 时红玲2, 马贵军3, 马正海1, 娄恺2(
), 霍向东2(
)
收稿日期:
2024-02-14
出版日期:
2024-09-20
发布日期:
2024-10-09
通信作者:
娄恺(1968-),男,河南人,研究员,博士,研究方向为微生物学,(E-mail)loukai02@mail.tsinghua.edu.cn;作者简介:
王浩中(1997-),男,甘肃人,硕士研究生,研究方向为微生物学,(E-mail)490335311@qq.com
基金资助:
WANG Haozhong1,2(), LIN Qing2, ZENG Jun2, GAO Yan2, ZHAO Yanhui3, SHI Hongling2, MA Guijun3, MA Zhenghai1, LOU Kai2(
), HUO Xiangdong2(
)
Received:
2024-02-14
Published:
2024-09-20
Online:
2024-10-09
Supported by:
摘要:
【目的】分离筛选产植酸酶益生乳酸菌菌株。【方法】以发酵饲料、博扎、浆水为代表的发酵样品中,分离筛选出形态差异菌株,通过产酶筛选及16S rDNA分子鉴定,获得产植酸酶乳酸菌菌株,并通过耐酸、耐胆盐、耐肠胃液、自聚集力及抑菌分析对其进行评价。【结果】筛选出4株产植酸酶乳酸菌,其中菌株JS5植酸酶酶活高达0.83 U/mL,与植物乳杆菌菌株 DSM 20174相似性为100%,确定该菌株为植物乳杆菌(Lactiplantibacillus plantarum)。菌株JS5在pH值3条件下存活率高达100%,在胆盐浓度0.1%时JS5存活率为0.55%,在模拟肠液和胃液中,存活率分别为8.56%和0.38%,其活菌数均在1×106CFU/mL以上,达到发挥益生作用的最小活菌数要求。菌株JS5自聚集力为(9.69%±0.44%),可促进菌株在肠道定殖。菌株JS5发酵液对大肠杆菌、沙门氏菌、金黄色葡萄球菌、白色念珠菌、铜绿假单胞菌均有抑制作用。【结论】植保乳杆菌JS5产植酸酶较高,可在模拟肠胃液中存活,具有良好的细胞黏附能力和抑制病原菌生长,可用于益生的畜禽微生态制剂。
中图分类号:
王浩中, 林青, 曾军, 高雁, 赵燕慧, 时红玲, 马贵军, 马正海, 娄恺, 霍向东. 产植酸酶益生乳酸菌的筛选[J]. 新疆农业科学, 2024, 61(9): 2290-2298.
WANG Haozhong, LIN Qing, ZENG Jun, GAO Yan, ZHAO Yanhui, SHI Hongling, MA Guijun, MA Zhenghai, LOU Kai, HUO Xiangdong. Screening of phytase producing probiotic lactic acid bacteria[J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2290-2298.
菌株 Strain | 透明圆直径 D (mm) | 菌落直径 d (mm) | 直径比 D (d) |
---|---|---|---|
F9 | 35.00±6.67 | 14.85±2.96 | 2.21±0.72 |
F10 | 35.15±3.40 | 17.00±0.77 | 1.87±0.48 |
T7 | 32.58±2.10 | 15.18±0.25 | 1.88±0.49 |
S1 | 12.05±0.69 | 7.38±0.13 | 1.50±0.27 |
J1 | 15.93±2.01 | 8.30±0.25 | 1.73±0.42 |
F4 | 27.85±1.82 | 16.28±0.15 | 1.58±0.31 |
JS2 | 16.13±0.62 | 9.53±0.34 | 1.54±0.30 |
JS5 | 11.45±0.15 | 7.23±0.11 | 1.44±0.23 |
J6 | 7.40±0.16 | 6.15±0.11 | 1.16±0.07 |
F1 | 21.55±2.06 | 14.13±0.36 | 1.44±0.27 |
F2 | 16.05±2.79 | 12.33±0.33 | 1.30±0.20 |
T8 | 11.28±0.69 | 8.05±0.72 | 1.36±0.09 |
F11 | 18.45±1.56 | 15.63±1.24 | 1.18±0.02 |
S2 | 9.10±0.07 | 6.95±0.11 | 1.27±0.08 |
F8 | 20.05±1.25 | 15.55±0.35 | 1.23±0.09 |
T4 | 9.30±0.16 | 7.30±0.12 | 1.22±0.08 |
SC1 | 14.00±0.14 | 12.43±0.37 | 1.10±0.04 |
T1 | 10.95±0.57 | 7.33±0.78 | 1.42±0.28 |
T3 | 7.73±0.80 | 6.75±0.27 | 1.12±0.09 |
F7 | 38.08±0.68 | 18.55±0.67 | 1.77±0.43 |
F6 | 22.43±2.46 | 14.23±0.73 | 1.48±0.30 |
T2 | 9.18±0.08 | 7.28±0.15 | 1.19±0.10 |
表1 菌株的透明圈与菌落直径比
Tab.1 The ratio of clear zone diameter to colony diameter of strains
菌株 Strain | 透明圆直径 D (mm) | 菌落直径 d (mm) | 直径比 D (d) |
---|---|---|---|
F9 | 35.00±6.67 | 14.85±2.96 | 2.21±0.72 |
F10 | 35.15±3.40 | 17.00±0.77 | 1.87±0.48 |
T7 | 32.58±2.10 | 15.18±0.25 | 1.88±0.49 |
S1 | 12.05±0.69 | 7.38±0.13 | 1.50±0.27 |
J1 | 15.93±2.01 | 8.30±0.25 | 1.73±0.42 |
F4 | 27.85±1.82 | 16.28±0.15 | 1.58±0.31 |
JS2 | 16.13±0.62 | 9.53±0.34 | 1.54±0.30 |
JS5 | 11.45±0.15 | 7.23±0.11 | 1.44±0.23 |
J6 | 7.40±0.16 | 6.15±0.11 | 1.16±0.07 |
F1 | 21.55±2.06 | 14.13±0.36 | 1.44±0.27 |
F2 | 16.05±2.79 | 12.33±0.33 | 1.30±0.20 |
T8 | 11.28±0.69 | 8.05±0.72 | 1.36±0.09 |
F11 | 18.45±1.56 | 15.63±1.24 | 1.18±0.02 |
S2 | 9.10±0.07 | 6.95±0.11 | 1.27±0.08 |
F8 | 20.05±1.25 | 15.55±0.35 | 1.23±0.09 |
T4 | 9.30±0.16 | 7.30±0.12 | 1.22±0.08 |
SC1 | 14.00±0.14 | 12.43±0.37 | 1.10±0.04 |
T1 | 10.95±0.57 | 7.33±0.78 | 1.42±0.28 |
T3 | 7.73±0.80 | 6.75±0.27 | 1.12±0.09 |
F7 | 38.08±0.68 | 18.55±0.67 | 1.77±0.43 |
F6 | 22.43±2.46 | 14.23±0.73 | 1.48±0.30 |
T2 | 9.18±0.08 | 7.28±0.15 | 1.19±0.10 |
Strain | Bile salt (0%) viable count(CFU/mL) | Bile salt (0.1%) viable count(CFU/mL) | Survival rate (%) | Bile salt (0.2%) viable count(CFU/mL) | Survival rate (%) |
---|---|---|---|---|---|
J6 | (2.85±0.05)×108 | (2.45±0.55)×106 | 0.86 | - | - |
S1 | (5.75±0.65)×108 | - | 0 | - | - |
JS5 | (8.25±0.35)×108 | (4.56±0.36)×106 | 0.55 | - | - |
JS2 | (4.31±0.41)×108 | - | 0 | - | - |
表2 乳酸菌菌株的耐胆盐性能
Tab.2 Bile salt tolerance of LAB
Strain | Bile salt (0%) viable count(CFU/mL) | Bile salt (0.1%) viable count(CFU/mL) | Survival rate (%) | Bile salt (0.2%) viable count(CFU/mL) | Survival rate (%) |
---|---|---|---|---|---|
J6 | (2.85±0.05)×108 | (2.45±0.55)×106 | 0.86 | - | - |
S1 | (5.75±0.65)×108 | - | 0 | - | - |
JS5 | (8.25±0.35)×108 | (4.56±0.36)×106 | 0.55 | - | - |
JS2 | (4.31±0.41)×108 | - | 0 | - | - |
Strain | 0 h viable count (CFU/mL) | 6 h viable count (CFU/mL) | Survival rate (%) |
---|---|---|---|
J6 | (0.53±0.15)×108 | (4.90±0.85)×107 | 92.45 |
S1 | (7.57±0.47)×108 | (3.93±0.13)×108 | 51.92 |
JS5 | (1.32±0.07)×109 | (1.13±0.06)×108 | 8.56 |
JS2 | (1.10±0.12)×109 | (0.80±0.14)×107 | 0.73 |
表3 乳酸菌菌株的耐肠液性能
Tab.3 Artificial intestinal juice tolerance of LAB
Strain | 0 h viable count (CFU/mL) | 6 h viable count (CFU/mL) | Survival rate (%) |
---|---|---|---|
J6 | (0.53±0.15)×108 | (4.90±0.85)×107 | 92.45 |
S1 | (7.57±0.47)×108 | (3.93±0.13)×108 | 51.92 |
JS5 | (1.32±0.07)×109 | (1.13±0.06)×108 | 8.56 |
JS2 | (1.10±0.12)×109 | (0.80±0.14)×107 | 0.73 |
Strain | 0 h viable count (CFU/mL) | 3 h viable count (CFU/mL) | Survival rate (%) |
---|---|---|---|
J6 | (7.05±0.35)×108 | (1.95±0.21)×108 | 27.66 |
S1 | (7.95±1.06)×108 | (1.40±0.28)×107 | 1.76 |
JS5 | (1.68±0.22)×109 | (6.33±1.15)×106 | 0.38 |
JS2 | (0.35±0.07)×108 | (1.85±0.35)×107 | 52.86 |
表4 乳酸菌菌株的耐胃液性能
Tab.4 Artificial gastric juice tolerance of LAB
Strain | 0 h viable count (CFU/mL) | 3 h viable count (CFU/mL) | Survival rate (%) |
---|---|---|---|
J6 | (7.05±0.35)×108 | (1.95±0.21)×108 | 27.66 |
S1 | (7.95±1.06)×108 | (1.40±0.28)×107 | 1.76 |
JS5 | (1.68±0.22)×109 | (6.33±1.15)×106 | 0.38 |
JS2 | (0.35±0.07)×108 | (1.85±0.35)×107 | 52.86 |
菌株 Strains | Diameter of Bacteriostatic circle(mm) | ||||
---|---|---|---|---|---|
大肠杆菌 Escherichia coli | 沙门氏菌 Salmonella | 金黄色葡萄球菌 Staphylococcus aureus | 白色念珠菌 Candida albicans | 铜绿假单胞菌 Pseudomonas aeruginosa | |
JS5-1 | 14.57±0.12c | 19.43±0.55a | 14.30±0.44b | 18.07±0.15c | 14.87±0.32b |
JS5-2 | 15.80±0.26b | 16.73±0.12d | 13.73±0.32b | 17.33±0.21d | 14.23±0.21cd |
JS2-1 | 15.83±0.30b | 17.23±0.12c | 12.87±0.32c | 17.63±0.12d | 13.67±0.21e |
JS2-2 | 14.43±0.20c | 17.80±0.26b | 16.30±0.20a | 16.73±0.32e | 14.97±0.06b |
S1-1 | 15.97±0.42b | 17.97±0.15b | 14.03±0.21b | 19.30±0.36a | 13.97±0.15de |
S1-2 | 16.77±0.38a | 18.13±0.35b | 13.73±0.64b | 18.83±0.12b | 14.60±0.26bc |
J6-1 | 11.50±0.17e | 16.00±0.10e | - | 13.33±0.21f | 12.59±0.40f |
J6-2 | 12.57±0.12d | 13.57±0.12f | 11.30±0.26d | 13.43±0.11f | 20.90±0.36a |
表5 乳酸菌菌株的抑菌性能
Tab.5 Antimicrobial activity of LAB
菌株 Strains | Diameter of Bacteriostatic circle(mm) | ||||
---|---|---|---|---|---|
大肠杆菌 Escherichia coli | 沙门氏菌 Salmonella | 金黄色葡萄球菌 Staphylococcus aureus | 白色念珠菌 Candida albicans | 铜绿假单胞菌 Pseudomonas aeruginosa | |
JS5-1 | 14.57±0.12c | 19.43±0.55a | 14.30±0.44b | 18.07±0.15c | 14.87±0.32b |
JS5-2 | 15.80±0.26b | 16.73±0.12d | 13.73±0.32b | 17.33±0.21d | 14.23±0.21cd |
JS2-1 | 15.83±0.30b | 17.23±0.12c | 12.87±0.32c | 17.63±0.12d | 13.67±0.21e |
JS2-2 | 14.43±0.20c | 17.80±0.26b | 16.30±0.20a | 16.73±0.32e | 14.97±0.06b |
S1-1 | 15.97±0.42b | 17.97±0.15b | 14.03±0.21b | 19.30±0.36a | 13.97±0.15de |
S1-2 | 16.77±0.38a | 18.13±0.35b | 13.73±0.64b | 18.83±0.12b | 14.60±0.26bc |
J6-1 | 11.50±0.17e | 16.00±0.10e | - | 13.33±0.21f | 12.59±0.40f |
J6-2 | 12.57±0.12d | 13.57±0.12f | 11.30±0.26d | 13.43±0.11f | 20.90±0.36a |
[15] | Ahire J J, Jakkamsetty C, Kashikar M S, et al. In vitro evaluation of probiotic properties of Lactobacillus plantarum UBLP40 isolated from traditional indigenous fermented food[J]. Probiotics and Antimicrobial Proteins, 2021, 13(5): 1413-1424. |
[16] | 袁丽红, 柳成东, 肖明霞, 等. 三株饲用枯草芽孢杆菌抑菌性能的比较研究[J]. 饲料工业, 2023, 44(1): 87-95. |
YUAN Lihong, LIU Chengdong, XIAO Mingxia, et al. Comparation on the antibacterial properties of three Bacillus subtilis strains[J]. Feed Industry, 2023, 44(1): 87-95. | |
[17] | 王笋, 吕嘉枥, 辛博, 等. 西北地区泡菜中乳酸杆菌的生物学特性[J]. 中国调味品, 2014, 39(3): 15-18. |
WANG Sun, LYU Jiali, XIN Bo, et al. Biological characteristics of lactic acid bacteria from pickles in northwest of China[J]. China Condiment, 2014, 39(3): 15-18. | |
[18] | 赵小茜, 魏旭丹, 陈戴玲, 等. 产多糖植物乳杆菌的耐酸耐胆盐能力[J]. 乳业科学与技术, 2016, 39(3): 1-3. |
ZHAO Xiaoxi, WEI Xudan, CHEN Dailing, et al. Acid and bile salt tolerance of exopolysaccharide-producing strains of Lactobacillus plantarum[J]. Journal of Dairy Science and Technology, 2016, 39(3): 1-3. | |
[19] | 王祎然, 韦明明, 张涵, 等. 酸汤中乳酸菌的鉴定及其耐酸、耐胆盐和抗氧化活性[J]. 食品工业科技, 2020, 41(16): 121-126, 139. |
WANG Yiran, WEI Mingming, ZHANG Han, et al. Identification, acid and bile salt tolerance, and antioxidant ability of lactic acid bacteria isolated from sour soup[J]. Science and Technology of Food Industry, 2020, 41(16): 121-126, 139. | |
[20] | 冯秀娟, 左芳雷, 陈丽丽, 等. 乳酸菌耐酸耐胆盐分析与胆盐水解酶研究[J]. 中国食品学报, 2013, 13(11): 139-147. |
FENG Xiujuan, ZUO Fanglei, CHEN Lili, et al. Analysis of acid and bile salt tolerance and study on bile salt hydrolase in lactic acid bacteria[J]. Journal of Chinese Institute of Food Science and Technology, 2013, 13(11): 139-147. | |
[21] | Merritt M E, Donaldson J R. Effect of bile salts on the DNA and membrane integrity of enteric bacteria[J]. Journal of Medical Microbiology, 2009, 58(Pt 12): 1533-1541. |
[22] | 向双云, 周珍辉, 关文怡, 等. 来源于鸡肠道的乳酸菌的筛选及其饲用性的评价[J]. 中国畜牧杂志, 2017, 53(2): 97-101, 168. |
XIANG Shuangyun, ZHOU Zhenhui, GUAN Wenyi, et al. Screening lactic acid bacteria derived from adult chicken intestinal gut and evaluation for their implications in chicken feeding[J]. Chinese Journal of Animal Science, 2017, 53(2): 97-101, 168. | |
[23] | Sakandar H A, Kubow S, Sadiq F A. Isolation and in-vitro probiotic characterization of fructophilic lactic acid bacteria from Chinese fruits and flowers[J]. LWT, 2019, (104): 70-75. |
[24] | 杨晓宇, 张七斤, 于晨龙, 等. 不同来源乳酸菌的耐酸耐胆盐试验[J]. 动物医学进展, 2014, 35(2): 73-77. |
YANG Xiaoyu, ZHANG Qijin, YU Chenlong, et al. Tolerance assays to acid and bile salt of Lactobacillus from different sources[J]. Progress in Veterinary Medicine, 2014, 35(2): 73-77. | |
[25] | Chou L S, Weimer B. Isolation and characterization of acid- and bile-tolerant isolates from strains of Lactobacillus acidophilus[J]. Journal of Dairy Science, 1999, 82(1): 23-31. |
[26] | 覃志成, 周笑犁, 吴承木, 等. 番茄发酵液中乳酸杆菌的分离鉴定及对模拟胃肠液耐受性研究[J]. 食品与生物技术学报, 2023, 42(8): 54-61. |
QIN Zhicheng, ZHOU Xiaoli, WU Chengmu, et al. Isolation and identification of Lactobacillus in tomato fermentation broth and investigation of its tolerance to simulated gastrointestinal environment[J]. Journal of Food Science and Biotechnology, 2023, 42(8): 54-61. | |
[27] | 程秀芳, 王丛丛, 谷巍. 乳酸菌在体外模拟胃肠环境中的抗性研究及其发酵特性[J]. 齐鲁药事, 2012, 31(1): 6-8. |
CHENG Xiufang, WANG Congcong, GU Wei. Study on the tolerance in vitro imitative gastroenteric environment and the fermentation properties of lactobacillus[J]. Journal of Pharmaceutical Research, 2012, 31(1): 6-8. | |
[1] | 王亚林, 严建芳, 李睿, 等. 植酸酶固体发酵工艺的研究[J]. 粮食与饲料工业, 2002, (4): 34-35. |
WANG Yalin, YAN Jianfang, LI Rui, et al. Study on the solid fermentation technology of phytase[J]. Cereal & Feed Industry, 2002, (4): 34-35. | |
[2] | Selle P H, Macelline S P, Chrystal P V, et al. The contribution of phytate-degrading enzymes to chicken-meat production[J]. Animals, 2023, 13(4): 603. |
[3] | Zhou J R, Jr Erdman J W. Phytic acid in health and disease[J]. Critical Reviews in Food Science and Nutrition, 1995, 35(6): 495-508. |
[4] | 何进, 徐思杨, 刘波, 等. 乳酸菌在农业和食品加工中的应用研究进展[J]. 微生物学杂志, 2022, 42(4): 1-11. |
HE Jin, XU Siyang, LIU Bo, et al. Advance on applied researches of lactic acid bacteria in AgricuLture and food industry[J]. Journal of Microbiology, 2022, 42(4): 1-11. | |
[5] | Borda-Molina D, Zuber T, Siegert W, et al. Effects of protease and phytase supplements on small intestinal microbiota and amino acid digestibility in broiler chickens[J]. Poultry Science, 2019, 98(7): 2906-2918. |
[6] | Pirgozliev V, Bedford M R. Energy utilisation and growth performance of chicken fed diets containing graded levels of supplementary bacterial phytase[J]. British Journal of Nutrition, 2013, 109(2): 248-253. |
[7] | Ajith S, Ghosh J, Shet D, et al. Partial purification and characterization of phytase from Aspergillus foetidus MTCC 11682[J]. AMB Express, 2019, 9(1): 3. |
[8] | Shah P C, Kumar V R, Dastager S G, et al. Phytase production by Aspergillus niger NCIM 563 for a novel application to degrade organophosphorus pesticides[J]. AMB Express, 2017, 7(1): 66. |
[9] | Trivedi S, Husain I, Sharma A. Purification and characterization of phytase from Bacillus subtilis P6: Evaluation for probiotic potential for possible application in animal feed[J]. Food Frontiers, 2022, 3(1): 194-205. |
[28] | Trunk T, Khalil H S, Leo J C. Bacterial autoaggregation[J]. AIMS Microbiology, 2018, 4(1): 140-164. |
[29] | Khan F, Tabassum N, Kim Y M. A strategy to control colonization of pathogens: embedding of lactic acid bacteria on the surface of urinary catheter[J]. Applied Microbiology and Biotechnology, 2020, 104(21): 9053-9066. |
[30] | Xin G, Porres Jm, Mullaney, et al. Phytase: source, structure and[J]. Industrial Enzymes: Structure, Function and Applications, 2007: 505-529. |
[31] | 曹伟超, 罗昆, 程新, 等. 高产植酸酶乳酸菌及其黑豆酸面团发酵低植酸营养面包研究[J]. 食品与机械, 2021, 37(2): 186-193. |
CAO Weichao, LUO Kun, CHENG Xin, et al. Studies on screening of high-yield phytase-producing lactic acid bacteria and its low-phytate nutritional breads through black bean sourdough fermentation[J]. Food & Machinery, 2021, 37(2): 186-193. | |
[32] | 麦日艳古·亚生,伊力米热·热夏提, 努尔古丽·热合曼. 北疆传统发酵生奶酪中乳酸菌的耐受性及益生特性测定[J]. 微生物学通报, 2023, 50(5): 2044-2062. |
Mairiyangu Yasheng, Yilimire rexiati, Nuermanguli Reheman. Tolerance and probiotic characteristics of lactic acid bacteria in traditional fermented raw cheese in northern Xinjiang[J]. Microbiology China, 2023, 50(5): 2044-2062. | |
[33] | Heo J, Shin D, Chang S Y, et al. Comparative genome analysis and evaluation of probiotic characteristics of Lactobacillus plantarum strain JDFM LP11[J]. Korean Journal for Food Science of Animal Resources, 2018, 38(5): 878-888. |
[34] | 吴雨甍, 孙羊羊, 尹亚格, 等. 酱香型白酒酒醅中乳酸菌的分离鉴定及其益生特性研究[J]. 中国酿造, 2023, 42(4): 76-82. |
WU Yumeng, SUN Yangyang, YIN Yage, et al. Isolation identification and probiotic characteristics of lactic acid bacteria in fermented grains of sauce-flavor Baijiu[J]. China Brewing, 2023, 42(4): 76-82. | |
[35] | 鲍国樱, 余行, 王孝义, 等. 散养云南地方猪源乳酸菌分离、鉴定及其益生特性的研究[J]. 动物营养学报, 2023, 35(8): 5418-5429. |
[10] | Danial E N, Alkhalf M I. Purification and characterization of phytase from novel slated Bacillus cereus EME 48 and study its kinetic properties[J]. Journal of Pure and Applied Microbiology, 2016, 10(4): 2521-2529. |
[11] | Çakır E, Arıcı M, Durak M Z. Biodiversity and techno-functional properties of lactic acid bacteria in fermented hull-less barley sourdough[J]. Journal of Bioscience and Bioengineering, 2020, 130(5): 450-456. |
[12] | 张洪. 产植酸酶乳酸杆菌的筛选及对肉鸡生长性能和粪磷排出量的影响[D]. 雅安: 四川农业大学, 2009. |
ZHANG Hong. Screening of Phytase-producing Lactobacilli and Their Effect on Growth Performance and Phosphrous Excretion of Broiler Chicken[D]. Yaan: Sichuan Agricultural University, 2009. | |
[13] | Sandez Penidez S H, Velasco Manini M A, Gerez C L, et al. Partial characterization and purification of phytase from Lactobacillus plantarum CRL1964 isolated from pseudocereals[J]. Journal of Basic Microbiology, 2020, 60(9): 787-798. |
[14] | Raghavendra P, Halami P M. Screening, selection and characterization of phytic acid degrading lactic acid bacteria from chicken intestine[J]. International Journal of Food Microbiology, 2009, 133(1/2): 129-134. |
[35] | BAO Guoying, YU Hang, WANG Xiaoyi, et al. Isolation, identification and probiotic characteristics of lactic acid bacteria derived from free range local pigs in Yunnan Province[J]. Chinese Journal of Animal Nutrition, 2023, 35(8): 5418-5429. |
[1] | 孙建, 李雪, 楚敏, 顾美英, 艾尼江·尔斯满, 朱静, 何齐, 谭慧林, 张志东. 原驼乳中乳酸菌的分离筛选及特性分析[J]. 新疆农业科学, 2024, 61(4): 1021-1028. |
[2] | 康民泰, 杜孝敬, 张燕红, 陈玉环, 文孝荣, 唐福森, 赵志强, 袁杰, 王奉斌. 新疆盐渍区水稻品种生育表现与耐盐性筛选[J]. 新疆农业科学, 2024, 61(3): 591-598. |
[3] | 李肖, 陈永成, 黄嵘峥, 许平珠, 张凡凡, 马春晖. 向日葵副产物中优势乳酸菌和纤维素分解菌的生理生化特征分析[J]. 新疆农业科学, 2024, 61(3): 607-614. |
[4] | 齐平, 索银·图娅, 魏杨, 张硕, 阿地力·沙塔尔, 阿地里·艾合买提. 10种药剂防治梅下毛瘿螨的田间防效评价[J]. 新疆农业科学, 2024, 61(11): 2761-2768. |
[5] | 孔晓双, 魏然, 董应宏, 侯敏, 买尔哈巴·艾合买提, 侯新强, 杨文琦, 崔卫东. 乌拉尔甘草不同组织可培养内生菌分离筛选及产β-葡萄糖苷酶菌株初筛[J]. 新疆农业科学, 2024, 61(1): 199-208. |
[6] | 何齐, 冯倩, 李雪, 易鸳鸯, 顾美英, 朱静, 孙建, 张志东. 赛里木酸奶中乳酸菌的分离鉴定及特性分析[J]. 新疆农业科学, 2023, 60(9): 2323-2330. |
[7] | 哈力旦·依克热木, 刘娜, 刘联正, 周安定, 姜奇彦, 达买力江·合孜尔, 曹俊梅, 张新忠. 小麦近缘种芽期和苗期的耐盐性鉴定与评价[J]. 新疆农业科学, 2023, 60(5): 1118-1126. |
[8] | 窦子微, 杨璐, 程平, 张志刚, 李宏. 不同品种桑葚营养品质分析及综合评价[J]. 新疆农业科学, 2023, 60(1): 127-139. |
[9] | 郑瑞明, 王莉, 张军高, 鄢蓉, 李进, 梁晶, 雷斌, 周小云. 16种植物甲醇提取物对小麦萌发及幼苗生长活性筛选与评价[J]. 新疆农业科学, 2023, 60(1): 32-42. |
[10] | 赛静忆, 温玥, 郝志超, 田嘉. 梨幼果FWL1膜系统酵母双杂交三框cDNA文库构建及互作蛋白的筛选[J]. 新疆农业科学, 2022, 59(8): 1877-1888. |
[11] | 张建强, Abdramane salah zene, 王江来, 李佳佳, 张晓梦, 吴康莉, 田永强. 芹菜叶斑病病原菌细极链格孢药剂筛选[J]. 新疆农业科学, 2022, 59(7): 1748-1757. |
[12] | 贺婷婷, 王旭哲, 宋磊, 马春晖. 不同添加剂对油莎豆青贮品质及有氧稳定性的影响[J]. 新疆农业科学, 2022, 59(7): 1767-1775. |
[13] | 李枭, 郭栋良, 李恭泽, 薛敏, 江海霞, 叶佳丽, 谢丽琼. 亚麻萌发期耐盐鉴定体系优化及150份种质耐盐性综合评价[J]. 新疆农业科学, 2022, 59(6): 1438-1449. |
[14] | 伊力夏提·艾热提, 李伟, 徐杨林, 严宏孟, 戴志伟, 周建中. 传统发酵酸凝硬质奶酪中乳酸菌的分离鉴定及其体外益生特性[J]. 新疆农业科学, 2022, 59(6): 1491-1501. |
[15] | 李俊茹, 秦宁, 李文龙, 杜汇, 李喜焕, 张彩英. 大豆籽粒低聚糖及其组分含量鉴定与特异种质筛选[J]. 新疆农业科学, 2022, 59(2): 353-360. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 42
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 124
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||