新疆农业科学 ›› 2024, Vol. 61 ›› Issue (1): 199-208.DOI: 10.6048/j.issn.1001-4330.2024.01.022
• 农产品分析检测·林业·农业信息·植物保护 • 上一篇 下一篇
孔晓双1(), 魏然2, 董应宏3, 侯敏3(
), 买尔哈巴·艾合买提3, 侯新强3, 杨文琦3, 崔卫东3(
)
收稿日期:
2023-04-11
出版日期:
2024-01-20
发布日期:
2024-02-21
通信作者:
侯敏(1983-),女,新疆乌鲁木齐人,研究员,硕士,研究方向为饲用微生物开发与应用,(E-mail)hmde_092@163.com;作者简介:
孔晓双(1998-),女,河南周口人,硕士研究生,研究方向为食品工程,(E-mail)1940693886@qq.com
基金资助:
KONG Xiaoshuang1(), WEI Ran2, DONG Yinghong3, HOU Min3(
), Maierhaba Aihemaiti3, HOU Xinqiang3, YANG Wenqi3, CUI Weidong3(
)
Received:
2023-04-11
Published:
2024-01-20
Online:
2024-02-21
Supported by:
摘要:
【目的】研究新疆阿勒泰地区乌拉尔甘草不同组织可培养内生菌的资源状况以及选育高产β-葡萄糖苷酶菌株。【方法】以乌拉尔甘草为材料,运用组织匀浆法与16S rDNA 和 ITS-rDNA分子生物学方法相结合方式,对其主根、须根、茎、叶中的内生菌进行分离、纯化和鉴定;采用七叶苷培养基和β-葡萄糖苷酶酶活力测定筛选产β-葡萄糖苷酶菌株。【结果】从甘草中分离获得内生菌共48株,其中内生细菌33株,内生真菌15株。在主根和茎部位分离内生细菌数量最多,内生真菌在主根中定殖的数量最多。33株甘草内生细菌隶属于8个属,芽孢杆菌属菌株分离获得最多,且甘草主根部位的内生细菌分离种类最多,在甘草不同组织中多样性表现为主根>须根=茎=叶。15株甘草内生真菌隶属于7个属,枝孢属是甘草内生真菌的优势属,内生真菌在不同组织中多样性表现为主根>茎>叶>须根。共有12株具有产β-葡萄糖苷酶的能力,其中分离自主根部位的菌株最多,占比41.7%。【结论】甘草主根组织的可培养内生菌的多样性相较其他组织丰富,且主根部位产β-葡萄糖苷酶菌株较多,是选育产酶菌株的优势部位。
中图分类号:
孔晓双, 魏然, 董应宏, 侯敏, 买尔哈巴·艾合买提, 侯新强, 杨文琦, 崔卫东. 乌拉尔甘草不同组织可培养内生菌分离筛选及产β-葡萄糖苷酶菌株初筛[J]. 新疆农业科学, 2024, 61(1): 199-208.
KONG Xiaoshuang, WEI Ran, DONG Yinghong, HOU Min, Maierhaba Aihemaiti, HOU Xinqiang, YANG Wenqi, CUI Weidong. Isolation and screening of cultivable endophytes in sifferent organs of Glycyrrhiza uralensis Fisch and preliminary screening of β-glucosidase producing strains[J]. Xinjiang Agricultural Sciences, 2024, 61(1): 199-208.
部位 Part | 内生细菌 Endophytic bacteria | 内生真菌 Endophytic fungi | ||
---|---|---|---|---|
菌株数 Strain No.(个) | 百分率 Percentage(%) | 菌株数 Strain No.(个) | 百分率 Percentage(%) | |
主根 Taproot | 9 | 27.3 | 8 | 53.3 |
须根 Fibrous root | 8 | 24.2 | 1 | 6.7 |
茎 Stem | 9 | 27.3 | 4 | 26.7 |
叶 Leaf | 7 | 21.2 | 2 | 13.3 |
表1 甘草不同部位内生菌分离结果
Tab.1 Results of endophyte isolation from different parts of Glycyrrhiza uralensis Fisch
部位 Part | 内生细菌 Endophytic bacteria | 内生真菌 Endophytic fungi | ||
---|---|---|---|---|
菌株数 Strain No.(个) | 百分率 Percentage(%) | 菌株数 Strain No.(个) | 百分率 Percentage(%) | |
主根 Taproot | 9 | 27.3 | 8 | 53.3 |
须根 Fibrous root | 8 | 24.2 | 1 | 6.7 |
茎 Stem | 9 | 27.3 | 4 | 26.7 |
叶 Leaf | 7 | 21.2 | 2 | 13.3 |
菌株 Strains | 部位 Part | 同源性最高的菌株 Closest species | 同源性 Samilarity(%) | GenBank登录号 GenBank accession No. |
---|---|---|---|---|
A12 | 主根 | Bacillus velezensis CR-502 | 99.43 | OP435752 |
A14 | 茎 | Fictibacillus nanhaiensis JSM 082006 | 99.16 | OP435753 |
A15 | 茎 | Bacillus amyloliquefaciens DSM 7 | 99.79 | OP435754 |
A17 | 叶 | Bacillus rugosus SPB7 | 99.52 | ON366397 |
A22 | 叶 | Bacillus velezensis CR-502 | 99.71 | OP435755 |
A23 | 须根 | Bacillus rugosus SPB7 | 97.38 | OP435756 |
A28 | 主根 | Bacillus velezensis CR-502 | 99.50 | OP435757 |
A29 | 主根 | Bacillus velezensis CR-502 | 99.43 | OP435758 |
A30 | 主根 | Bacillus subtilis 3610 | 99.20 | OP435759 |
A31 | 茎 | Bacillus cabrialesii TE3 | 99.11 | OP435760 |
A33 | 茎 | Bacillus tequilensis KCTC 13622 | 97.06 | OP435761 |
A34 | 茎 | Bacillus velezensis CR-502 | 99.29 | OP435762 |
A36 | 叶 | Janthinobacterium svalbardensis JA-1 | 99.36 | OP435763 |
A37 | 叶 | Bacillus tequilensis KCTC 13622 | 99.59 | OP435764 |
A41 | 须根 | Pseudomonas piscicoa dhj-6 | 99.92 | OP435765 |
A44 | 须根 | Bacillus tequilensis KCTC 13622 | 99.45 | OP435766 |
A45 | 须根 | Agrobacterium radiobacter ATCC19358 | 99.04 | OP435767 |
A62 | 主根 | Fictibacillus nanhaiensis JSM 082006 | 95.37 | OP435768 |
A63 | 主根 | Acinetobacter oryzae B23 | 98.95 | OP435769 |
A65 | 主根 | Bacillus subtilis 3610 | 99.14 | ON366398 |
A71 | 茎 | Fictibacillus nanhaiensisJSM 082006 | 99.16 | OP435770 |
A72 | 茎 | Bacillus cabrialesii TE3 | 99.31 | OP435771 |
A73 | 茎 | Metabacillus litoralis SW-211 | 94.55 | OP435772 |
A75 | 叶 | Niallia circulans ATCC 4513 | 99.24 | OP435773 |
A78 | 须根 | Bacillus rugosus SPB7 | 99.38 | ON366399 |
A79 | 主根 | Janthinobacterium svalbardensis JA-1 | 94.96 | OP435774 |
A80 | 主根 | Bacillus tequilensis KCTC 13622 | 99.66 | OP435775 |
A81 | 茎 | Bacillus tequilensis KCTC 13622 | 96.96 | OP435776 |
A82 | 叶 | Bacillus cabrialesii TE3 | 99.31 | OP435777 |
A83 | 叶 | Bacillus rugosus SPB7 | 99.31 | OP435778 |
A84 | 须根 | Bacillus mobilis 0711P9-1 | 99.52 | OP435779 |
A85 | 须根 | Bacillus tequilensis KCTC 13622 | 99.18 | OP435780 |
A86 | 须根 | Bacillus rugosus SPB7 | 96.83 | OP435781 |
表2 甘草内生细菌的基因序列
Tab.2 Gene sequence analysis of endophytic bacteria from Glycyrrhiza uralensis Fisch
菌株 Strains | 部位 Part | 同源性最高的菌株 Closest species | 同源性 Samilarity(%) | GenBank登录号 GenBank accession No. |
---|---|---|---|---|
A12 | 主根 | Bacillus velezensis CR-502 | 99.43 | OP435752 |
A14 | 茎 | Fictibacillus nanhaiensis JSM 082006 | 99.16 | OP435753 |
A15 | 茎 | Bacillus amyloliquefaciens DSM 7 | 99.79 | OP435754 |
A17 | 叶 | Bacillus rugosus SPB7 | 99.52 | ON366397 |
A22 | 叶 | Bacillus velezensis CR-502 | 99.71 | OP435755 |
A23 | 须根 | Bacillus rugosus SPB7 | 97.38 | OP435756 |
A28 | 主根 | Bacillus velezensis CR-502 | 99.50 | OP435757 |
A29 | 主根 | Bacillus velezensis CR-502 | 99.43 | OP435758 |
A30 | 主根 | Bacillus subtilis 3610 | 99.20 | OP435759 |
A31 | 茎 | Bacillus cabrialesii TE3 | 99.11 | OP435760 |
A33 | 茎 | Bacillus tequilensis KCTC 13622 | 97.06 | OP435761 |
A34 | 茎 | Bacillus velezensis CR-502 | 99.29 | OP435762 |
A36 | 叶 | Janthinobacterium svalbardensis JA-1 | 99.36 | OP435763 |
A37 | 叶 | Bacillus tequilensis KCTC 13622 | 99.59 | OP435764 |
A41 | 须根 | Pseudomonas piscicoa dhj-6 | 99.92 | OP435765 |
A44 | 须根 | Bacillus tequilensis KCTC 13622 | 99.45 | OP435766 |
A45 | 须根 | Agrobacterium radiobacter ATCC19358 | 99.04 | OP435767 |
A62 | 主根 | Fictibacillus nanhaiensis JSM 082006 | 95.37 | OP435768 |
A63 | 主根 | Acinetobacter oryzae B23 | 98.95 | OP435769 |
A65 | 主根 | Bacillus subtilis 3610 | 99.14 | ON366398 |
A71 | 茎 | Fictibacillus nanhaiensisJSM 082006 | 99.16 | OP435770 |
A72 | 茎 | Bacillus cabrialesii TE3 | 99.31 | OP435771 |
A73 | 茎 | Metabacillus litoralis SW-211 | 94.55 | OP435772 |
A75 | 叶 | Niallia circulans ATCC 4513 | 99.24 | OP435773 |
A78 | 须根 | Bacillus rugosus SPB7 | 99.38 | ON366399 |
A79 | 主根 | Janthinobacterium svalbardensis JA-1 | 94.96 | OP435774 |
A80 | 主根 | Bacillus tequilensis KCTC 13622 | 99.66 | OP435775 |
A81 | 茎 | Bacillus tequilensis KCTC 13622 | 96.96 | OP435776 |
A82 | 叶 | Bacillus cabrialesii TE3 | 99.31 | OP435777 |
A83 | 叶 | Bacillus rugosus SPB7 | 99.31 | OP435778 |
A84 | 须根 | Bacillus mobilis 0711P9-1 | 99.52 | OP435779 |
A85 | 须根 | Bacillus tequilensis KCTC 13622 | 99.18 | OP435780 |
A86 | 须根 | Bacillus rugosus SPB7 | 96.83 | OP435781 |
菌株 Strains | 部位 Part | 同源性最高的菌株 Closest species | 同源性 Samilarity(%) | GenBank登录号 GenBank accession No. |
---|---|---|---|---|
p2 | 主根 | Penicillium sp. ST-PSB-J1 | 99.83 | OP681416 |
p3 | 主根 | Aspergillus fumigatus C1946 | 99.83 | OP681417 |
p4 | 主根 | Cladosporium cladosporioides 08SK030 | 92.03 | OP681418 |
p6 | 主根 | Alternaria alternata JN10 | 99.81 | OP681419 |
p9 | 茎 | Candolleomyces candolleanus NW550 | 99.42 | ON529501 |
p10 | 茎 | Penicillium cyclopium CICC 4026 | 99.15 | OP681420 |
p11 | 茎 | Cladosporium fusiforme a2 | 100.00 | OP681421 |
p12 | 茎 | Aspergillus fumigatus MUST | 99.15 | OP681422 |
p13 | 主根 | Cladosporium cladosporioides 08SK030 | 99.51 | OP681423 |
p15 | 须根 | Fusarium oxysporum NDJ2 | 99.65 | OP681424 |
p16 | 主根 | Aspergillus fumigatus MUST | 100.00 | OP681425 |
p17 | 叶 | Cladosporium perangustum IA39 | 97.42 | OP681426 |
p36 | 主根 | Trichothecium sp. 10731 | 99.42 | OP681427 |
p38 | 主根 | Alternaria alstroemeriae | 96.85 | OP681428 |
p44 | 叶 | Penicillium glabrum PM2 | 99.64 | OP681429 |
表3 甘草内生真菌的基因序列
Tab.3 Gene sequence analysis of endophytic fungi in Glycyrrhiza uralensis Fisch
菌株 Strains | 部位 Part | 同源性最高的菌株 Closest species | 同源性 Samilarity(%) | GenBank登录号 GenBank accession No. |
---|---|---|---|---|
p2 | 主根 | Penicillium sp. ST-PSB-J1 | 99.83 | OP681416 |
p3 | 主根 | Aspergillus fumigatus C1946 | 99.83 | OP681417 |
p4 | 主根 | Cladosporium cladosporioides 08SK030 | 92.03 | OP681418 |
p6 | 主根 | Alternaria alternata JN10 | 99.81 | OP681419 |
p9 | 茎 | Candolleomyces candolleanus NW550 | 99.42 | ON529501 |
p10 | 茎 | Penicillium cyclopium CICC 4026 | 99.15 | OP681420 |
p11 | 茎 | Cladosporium fusiforme a2 | 100.00 | OP681421 |
p12 | 茎 | Aspergillus fumigatus MUST | 99.15 | OP681422 |
p13 | 主根 | Cladosporium cladosporioides 08SK030 | 99.51 | OP681423 |
p15 | 须根 | Fusarium oxysporum NDJ2 | 99.65 | OP681424 |
p16 | 主根 | Aspergillus fumigatus MUST | 100.00 | OP681425 |
p17 | 叶 | Cladosporium perangustum IA39 | 97.42 | OP681426 |
p36 | 主根 | Trichothecium sp. 10731 | 99.42 | OP681427 |
p38 | 主根 | Alternaria alstroemeriae | 96.85 | OP681428 |
p44 | 叶 | Penicillium glabrum PM2 | 99.64 | OP681429 |
图 4 菌株发酵液的β-葡萄糖苷酶活 注:不同小写字母表示内生细菌或内生真菌的酶活有差异性显著(P<0.05)
Fig.4 The activity of β-glucosidase in fermentation broth of strains Note:Different lowercase letters indicate that the enzyme activities of endophytic bacteria or endophytic fungi are significantly different(P<0.05)
[1] |
Arora P, Wani Z A, Ahmad T, et al. Community structure,spatial distribution,diversity and functional characterization of culturable endophytic fungi associated with Glycyrrhiza glabra L.[J]. Fungal Biology, 2019, 123(5):373-383.
DOI URL |
[2] | 任群利, 王苗, 李小兰, 等. 黄芪内生菌多样性及其次生代谢产物研究进展[J]. 中国饲料, 2022,(15):13-18. |
REN Qun li, WANG Miao, LI Xiaolan, et al. Research progress on diversity and secondary metabolites of endophytic bacteria in Astragalus membranaceus[J]. China Feed, 2022,(15):13-18. | |
[3] |
张昊, 刘苗苗, 刘晓娜, 等. 内生菌影响药用植物产生药理活性化合物的研究进展[J]. 生物技术通报, 2022, 38(8):41-51.
DOI |
ZHANG Hao, LIU Miaomiao, LIU Xiaona, et al. Impact of Endophytic Microorganisms on the Pharmaco-active Compounds Production in Medicinal Plants:A Review[J]. Biotechnology Bulletin, 2022, 38(8):41-51.
DOI |
|
[4] |
Kusari P, Kusari S, Lamshöft M, et al. Quorum quenching is an antivirulence strategy employed by endophytic bacteria[J]. Applied Microbiology and Biotechnology, 2014, 98(16):7173-7183.
DOI PMID |
[5] | 马宗敏, 段绪红, 秦梦, 等. 微生物发酵技术在中药苷类生物转化中的应用进展[J]. 世界科学技术-中医药现代化, 2017, 13(5):858-864. |
MA Zongmin, DUAN Xuhong, QIN Meng, et al. Microbial fermentation technology in traditional Chinese medicine glycosides application progress in biotransformation[J]. World Science and Technology/Modernization of Traditional Chinese Medicine and Materia Medica, 2017, 13(5):858-864. | |
[6] |
梁金凤, 汪涯, 肖依文, 等. 内生真菌Eupenicillium javanicum R57水解京尼平苷β-葡萄糖苷酶的分离纯化及其酶学性质[J]. 菌物学报, 2017, 36(11):1543-1555.
DOI |
LIANG Jinfeng, WANG Ya, XIAO Yiwen, et al. Purification and characterization of geniposide- hydrolyzing β-glucosidase from endophytic Eupenicillium javanicum R57 harboring in Dongxiang wild rice[J]. Mycosystema, 2017, 36(11):1543-1555.
DOI |
|
[7] | 覃玲灵, 何钢, 陈介南. 里氏木霉及其纤维素酶高产菌株的研究进展[J]. 生物技术通报, 2011,(5):43-49. |
QIN Lingling, HE Gang, CHEN Jienan, et al. Research development of trichoderma reesei and its cellulase hyperproduction strains[J]. Biotechnology Bulletin, 2011,(5):43-49. | |
[8] |
Meysam M, Song G J, SunF B, et al. Positive role of non-catalytic proteins on mitigating inhibitory effects of lignin and enhancing cellulase activity in enzymatic hydrolysis:Application,mechanism and prospective[J]. Environmental Research, 2022, 215:114291.
DOI URL |
[9] | Ahmed A, Aslam M, Ashraf M, et al. Microbial β-Glucosidases:Screening,Characterization,Cloning and Applications[J]. Science and Education Publishing, 2017, 5(2):57-73. |
[10] |
刘宏丽, 郭晓军, 狄聪颖, 等. 产β-葡萄糖苷酶芽孢杆菌的筛选及水解大豆异黄酮糖苷研究[J]. 河北大学学报(自然科学版), 2017, 37(6):621-629.
DOI |
LIU Hongli, GUO Xiaojun, DI Congying, et al. Screening of bacillus strains producing β-Glucosidase and study on hydrolysis of soybean isoflavone glycosides[J]. Journal of Hebei University(Natural Science Ed.), 2017, 37(6):621-629. | |
[11] | 于洁. 虎杖内生真菌的分离筛选及其转化虎杖苷的研究[D]. 桂林: 桂林理工大学, 2020. |
YU Jie. Isolation and identification of endophytic fungi from Polygonum Cuspidatum and studies on the transformation of polydatin[D]. Guilin:Guilin University of Technology, 2020. | |
[12] |
Xie J C., Xu H., Jiang J C, et al. Characterization of a novel thermostable glucose-tolerant GH1 β-glucosidase from the hyperthermophile Ignisphaera aggregans and its application in the efficient production of baohuoside I from icariin and total epimedium flavonoids[J]. Bioorganic Chemistry, 2020, 104:104296.
DOI URL |
[13] |
Emran K C, Junhyun J, Soon O R, et al. Composition, diversity and bioactivity of culturable bacterial endophytes in mountain-cultivated ginseng in Korea[J]. Scientific Reports, 2017, 7(1):10098.
DOI |
[14] | Ahmed A, Nasim F, Batool K, et al. Microbial β-Glucosidase:Sources,Production and Applications[J]. Science and Education Publishing, 2017, 5(1):31-46. |
[30] | 刘姜华. 微生物转化槐角苷制备染料木素的研究[D]. 杭州: 浙江工业大学, 2017. |
LIU Jianghua. Production of genistein from sophoricoside by microbial transformation[D]. Hangzhou: Zhejiang University of Technology, 2017. | |
[31] | Tam N T, Tam N P, Nguyen V, et al. Isolation and screening of endophytic bacteria from Ngoc Linh ginseng(Panax vietnamensis Ha et Grushv) for biosynthesis β-glucosidase[J]. Vietnam Academy of Science and Technology, 2018, 40(2):153-161. |
[32] | Liu Y H, Guo J W, Salam N, et al. Culturable endophytic bacteria associated with medicinal plant Ferula songorica:molecular phylogeny,distribution and screening for industrially important traits[J]. 3 Biotech, 2016, 6(2):209. |
[33] | 张敏, 沈德龙, 饶小莉, 等. 甘草内生细菌多样性研究[J]. 微生物学通报, 2008, 35(4):524-528. |
ZHANG Min, SHEN Delong, RAO Xiaoli, et al. Diversity of Endophytic Bacteria isolated from Glycyrrhiza[J]. Microbiology China, 2008, 35(4):524-528. | |
[15] | 张媛媛, 苏敏, 朴春红, 等. 微生物来源的β-葡萄糖苷酶在食品工业中应用进展[J]. 食品工业科技, 2019, 40(16):329-335. |
ZHANG Yuanyuan, SU Min, PIAO Chunhong, et al. Progress on the β-Glucosidase from Microganisms and Its Applications in Food Industry[J]. Science and Technology of Food Industry, 2019, 40(16):329-335. | |
[16] | 杜晓宁. 宁夏枸杞可培养内生菌的多样性及其生物活性研究[D]. 银川: 宁夏大学, 2016. |
DU Xiaoning. Diversity and biological activity of endophytes isolated from Lycium barbarum of Ning xia[D]. Yinchuan: Ningxia University, 2016. | |
[17] |
Zhang J, Liu YX, Guo X, et al. High-throughput cultivation and identification of bacteria from the plant root microbiota[J]. Nature Protocols, 2021, 16(2):988-1012.
DOI PMID |
[18] | 刘文静, 程晗, 陈崇艺, 等. 产β-葡萄糖苷酶菌株的筛选及产酶条件优化[J]. 食品与发酵工业, 2019, 45(23):43-49. |
LIU Wenjing, CHENG Han, CHEN Chongyi, et al. Screening of β-glucosidase producing strains and optimization of enzyme production conditions[J]. Food and Fermentation Industries, 2019, 45(23):43-49. | |
[19] |
尤梦瑶, 万璐, 闫佳佳, 等. 甘草内生菌研究概况[J]. 中国农学通报, 2022, 38(26):20-26.
DOI |
YOU Mengyao, WAN Lu, YAN Jiajia, et al. Research Progress on Endophytes from Glycyrrhiza uralensis[J]. Chinese Agricultural Science Bulletin, 2022, 38(26):20-26.
DOI |
|
[20] | 曼琼, 杨志军, 邓毅, 等. 甘草内生菌的鉴定与药理作用和活性成分研究进展[J]. 中国临床药理学杂志, 2018, 34(9):1125-1128. |
MAN Qiong, YANG Zhijun, DENG Yi, et al. Research progress of identification,pharmacological action and active ingredients of endophytes isolated from Glycyrrhiza uralensis[J]. The Chinese Journal of Clinical Pharmacology, 2018, 34(9):1125-1128. | |
[21] | 陈静, 许贞, 张雪, 等. 不同产地甘草内生真菌多样性及分离条件研究[J]. 药学学报, 2019, 54(2):373-379. |
CHEN Jing, XU Zhen, ZHANG Xue, et al. Diversity and isolation parameters of endophytes from Glycyrrhiza uralensis of different habitats[J]. Acta Pharmaceutica Sinica, 2019, 54(2):373-379. | |
[22] | 张燃, 李佳. 宁夏野生甘草和种植甘草内生菌的分离和初鉴定[J]. 安徽农业科学, 2022, 50(13):169-171,178. |
ZHANG Ran, LI Jia. Isolation and preliminary identification of endophyte of wild and cultivated Glycyrrhiza uralensis in Ningxia[J]. Journal of Anhui Agricultural Sciences, 2022, 50(13):169-171,178. | |
[23] |
Li L, Mohamad O A A, Ma J, et al. Synergistic plant-microbe interactions between endophytic bacterial communities and the medicinal plant Glycyrrhiza uralensis F.[J]. Antonie Van Leeuwenhoek, 2018, 111(10):1735-1748.
DOI |
[24] | 陈昕, 李琪, 曹倩倩, 等. 麻花秦艽不同组织部位可培养内生菌群结构及其与龙胆苦苷含量的相关性[J]. 食品与生物技术学报, 2019, 38(4):21-29. |
CHEN Xin, LI Qi, CAO Qianqian, et al. Community Structure of Cultivable Endophytes in Different Organs of Gentiana straminea Maxim and Its Correlation with the Content of Gentiopicrin[J]. Journal of Food Science and Biotechnology, 2019, 38(4):21-29. | |
[25] |
Kaneko R, Kaneko S. The Effect of Bagging Branches on Levels of Endophytic Fungal Infection in Japanese Beech Leaves[J]. Forest Pathology, 2004, 34(2):65-78.
DOI URL |
[26] | Liu Z, Chen Y, Lian B, et al. Comparative Study on Population Ecological Distribution and Extracellular Enzyme Activities of Endophytic Fungi in Artemisia annua[J]. Journal of Bioscience and Medicine, 2019, 7(8):94-105. |
[27] | 张臣. 西洋参内生菌和根际微生物菌群结构分析及皂苷生物转化研究[D]. 郑州: 郑州大学, 2021. |
ZHANG Chen. Analysis of Structure Characteristics of Endogenous and soil microbial in Panax quinquefolius L. and Biotransformation Ginsenoside[D]. Zhengzhou: Zhengzhou University, 2021. | |
[28] | 张琴, 李艳宾, 李华. 产β-葡萄糖苷酶甘草内生菌的筛选及对甘草黄酮转化的研究[J]. 食品科学, 2013, 34(1):194-198. |
ZHANG Qin, LI Yanbin, LI Hua. Isolation of β-Glucosidase-Producing Endophytes from Glycyrrhiza inflate and Their Effects on Flavonoid Transformation[J]. Food Science, 2013, 34(1):194-198. | |
[29] |
Huang C, Feng Y, Patel G, et al. Production,immobilization and characterization of beta-glucosidase for application in cellulose degradation from a novel Aspergillus versicolor[J]. International Journal of Biological Macromolecules, 2021, 177:437-446.
DOI URL |
[1] | 王浩中, 林青, 曾军, 高雁, 赵燕慧, 时红玲, 马贵军, 马正海, 娄恺, 霍向东. 产植酸酶益生乳酸菌的筛选[J]. 新疆农业科学, 2024, 61(9): 2290-2298. |
[2] | 孙建, 李雪, 楚敏, 顾美英, 艾尼江·尔斯满, 朱静, 何齐, 谭慧林, 张志东. 原驼乳中乳酸菌的分离筛选及特性分析[J]. 新疆农业科学, 2024, 61(4): 1021-1028. |
[3] | 康民泰, 杜孝敬, 张燕红, 陈玉环, 文孝荣, 唐福森, 赵志强, 袁杰, 王奉斌. 新疆盐渍区水稻品种生育表现与耐盐性筛选[J]. 新疆农业科学, 2024, 61(3): 591-598. |
[4] | 张梦圆, 朱晓庆, 谷新利, 王燕, 杨慧莹, 刘雨然, 王蒙蒙, 孙国结, 连科迅, 李效振. 硒化甘草多糖、甘草多糖及其联合抗生素对无乳链球菌体外抗菌活性及机制分析[J]. 新疆农业科学, 2024, 61(2): 469-478. |
[5] | 齐平, 索银·图娅, 魏杨, 张硕, 阿地力·沙塔尔, 阿地里·艾合买提. 10种药剂防治梅下毛瘿螨的田间防效评价[J]. 新疆农业科学, 2024, 61(11): 2761-2768. |
[6] | 何齐, 冯倩, 李雪, 易鸳鸯, 顾美英, 朱静, 孙建, 张志东. 赛里木酸奶中乳酸菌的分离鉴定及特性分析[J]. 新疆农业科学, 2023, 60(9): 2323-2330. |
[7] | 哈力旦·依克热木, 刘娜, 刘联正, 周安定, 姜奇彦, 达买力江·合孜尔, 曹俊梅, 张新忠. 小麦近缘种芽期和苗期的耐盐性鉴定与评价[J]. 新疆农业科学, 2023, 60(5): 1118-1126. |
[8] | 窦子微, 杨璐, 程平, 张志刚, 李宏. 不同品种桑葚营养品质分析及综合评价[J]. 新疆农业科学, 2023, 60(1): 127-139. |
[9] | 郑瑞明, 王莉, 张军高, 鄢蓉, 李进, 梁晶, 雷斌, 周小云. 16种植物甲醇提取物对小麦萌发及幼苗生长活性筛选与评价[J]. 新疆农业科学, 2023, 60(1): 32-42. |
[10] | 赛静忆, 温玥, 郝志超, 田嘉. 梨幼果FWL1膜系统酵母双杂交三框cDNA文库构建及互作蛋白的筛选[J]. 新疆农业科学, 2022, 59(8): 1877-1888. |
[11] | 张建强, Abdramane salah zene, 王江来, 李佳佳, 张晓梦, 吴康莉, 田永强. 芹菜叶斑病病原菌细极链格孢药剂筛选[J]. 新疆农业科学, 2022, 59(7): 1748-1757. |
[12] | 李枭, 郭栋良, 李恭泽, 薛敏, 江海霞, 叶佳丽, 谢丽琼. 亚麻萌发期耐盐鉴定体系优化及150份种质耐盐性综合评价[J]. 新疆农业科学, 2022, 59(6): 1438-1449. |
[13] | 李俊茹, 秦宁, 李文龙, 杜汇, 李喜焕, 张彩英. 大豆籽粒低聚糖及其组分含量鉴定与特异种质筛选[J]. 新疆农业科学, 2022, 59(2): 353-360. |
[14] | 张莉, 杨晓龙, 王海亮, 南珊珊, 马雪儿, 聂存喜, 张文举, 陈程. 一株棉酚降解菌株的筛选鉴定及对棉粕的脱毒效果[J]. 新疆农业科学, 2022, 59(12): 3057-3065. |
[15] | 初占宇, 贾培松, 罗影, 努尔孜亚·亚力买买提, 付永平, 李玉. 白灵菇褐腐病防治药剂药效评价[J]. 新疆农业科学, 2022, 59(11): 2682-2687. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 54
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 189
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||