新疆农业科学 ›› 2022, Vol. 59 ›› Issue (10): 2574-2584.DOI: 10.6048/j.issn.1001-4330.2022.10.027
• 植物保护·微生物·农业生态环境·畜牧兽医 • 上一篇 下一篇
收稿日期:
2021-12-13
出版日期:
2022-10-20
发布日期:
2022-12-21
通信作者:
吕光辉(1963- ),男,山东青岛人,教授,博士生导师,研究方向为生物多样性,植物生理生态,(E-mail) ler@xju.edu.cn作者简介:
陈昱东(1994- ),男,吉林长春人,硕士研究生,研究方向为生物多样性,(E-mail) 1105535344@qq.com
基金资助:
CHEN Yudong(), LV Guanghui(
), ZHANG Lei, JIANG Lamei, WANG Hengfang
Received:
2021-12-13
Published:
2022-10-20
Online:
2022-12-21
Supported by:
摘要:
【目的】研究荒漠植物功能性状与生物量之间的关系随土壤水盐梯度的变化规律,为荒漠地区植物恢复和土壤盐渍化治理提供科学依据。【方法】测定植物的叶片形态、生理特征、植物生物量以及土壤的水分和盐分含量,并将水盐分为3个梯度,分析不同水盐梯度下植物生物量对功能性状的响应。【结果】(1) 植物冠幅面积 (S) 在3种土壤水盐梯度下均有显著性差异 (P < 0.05) ;植物叶片磷含量 (LPC) 在低水盐群落中适应性高于中高水盐梯度。(2) 植物地下生物量 (AGB) 低水盐梯度显著低于高水盐梯度 (P < 0.05) ;地上生物量在土壤水盐梯度上没有表现出显著性差异 (P > 0.05) 。 (3)对植物功能性状和生物量的冗余分析 (RDA) 在3种梯度下,植物冠幅面积 (S) 、株高 (H) 与生物量相关性均较高,植物在生长发育过程中表型性状S、H、SLA会对生物量增长有促进作用。 (4) 荒漠植物功能性状对生物量的指示能力是随着土壤水盐梯度的升高而逐渐减弱。【结论】艾比湖干旱荒漠地区植物的生物量随土壤水盐的增高而减少。在低水低盐土壤区域,植物的适应性较强;在高水盐土壤区域,植物叶片表型性状比生理性状更明显;在中水盐土壤区域,植物功能性状与生物量差异及联系不明显。干旱荒漠区土壤盐含量的增高已经对植物生长产生了迫害,造成了严重的生态环境问题,在干旱荒漠生态系统中,植物的功能性状及生物量减少会使荒漠土地退化,导致生态系统功能的变化。
中图分类号:
陈昱东, 吕光辉, 张磊, 蒋腊梅, 王恒方. 荒漠植物功能性状和生物量对土壤水盐环境的响应[J]. 新疆农业科学, 2022, 59(10): 2574-2584.
CHEN Yudong, LV Guanghui, ZHANG Lei, JIANG Lamei, WANG Hengfang. Effects of Functional Traits of Desert Plants on Biomass in Arid Regions with Different Soil Water-Salt Gradients[J]. Xinjiang Agricultural Sciences, 2022, 59(10): 2574-2584.
序号 Id | 植物种类 Species | 科属 Family and genera | 生活型 Life form | 序号 Id | 植物种类 Species | 科属 Family and genera | 生活型 Life form |
---|---|---|---|---|---|---|---|
1 | 碱蓬 Suaeda glauca | 藜科 碱蓬属 | 草本 | 10 | 沙蓬 Agriophyllum squarrosum | 藜科 沙蓬属 | 草本 |
2 | 花花柴 Karelinia caspia | 菊科 花花柴属 | 草本 | 11 | 草甸羊茅 Festuca pratensis | 禾本科 羊茅属 | 草本 |
3 | 小獐毛 Aeluropus pungens | 禾本科 獐毛属 | 草本 | 12 | 罗布麻 Apocynum venetum | 夹竹桃科 罗布麻属 | 灌木 |
4 | 乳苣 Mulgedium tataricum | 菊科 乳苣属 | 草本 | 13 | 骆驼刺 Alhagi sparsifolia | 豆科 骆驼刺属 | 灌木 |
5 | 对节刺 Horaninowia ulicina | 藜科 对节刺属 | 草本 | 14 | 盐爪爪 Kalidium foliatum | 藜科 盐爪爪属 | 灌木 |
6 | 芦苇 Phragmites australis | 禾本科 芦苇属 | 草本 | 15 | 白刺 Nitraria tangutorum | 蒺藜科 白刺属 | 灌木 |
7 | 新疆绢蒿 Seriphidium santolinum | 菊科 绢蒿属 | 草本 | 16 | 琵琶柴 Reaumuria soongarica | 柽柳科 琵琶柴属 | 灌木 |
8 | 猪毛菜 Salsola collina | 藜科 猪毛菜属 | 草本 | 17 | 沙拐枣 Calligonum mongolicum | 蓼科 沙拐枣属 | 灌木 |
9 | 刺沙蓬 Salsola ruthenica | 藜科 猪毛菜属 | 草本 |
表1 样地植物名录
Table 1 List of plant samples
序号 Id | 植物种类 Species | 科属 Family and genera | 生活型 Life form | 序号 Id | 植物种类 Species | 科属 Family and genera | 生活型 Life form |
---|---|---|---|---|---|---|---|
1 | 碱蓬 Suaeda glauca | 藜科 碱蓬属 | 草本 | 10 | 沙蓬 Agriophyllum squarrosum | 藜科 沙蓬属 | 草本 |
2 | 花花柴 Karelinia caspia | 菊科 花花柴属 | 草本 | 11 | 草甸羊茅 Festuca pratensis | 禾本科 羊茅属 | 草本 |
3 | 小獐毛 Aeluropus pungens | 禾本科 獐毛属 | 草本 | 12 | 罗布麻 Apocynum venetum | 夹竹桃科 罗布麻属 | 灌木 |
4 | 乳苣 Mulgedium tataricum | 菊科 乳苣属 | 草本 | 13 | 骆驼刺 Alhagi sparsifolia | 豆科 骆驼刺属 | 灌木 |
5 | 对节刺 Horaninowia ulicina | 藜科 对节刺属 | 草本 | 14 | 盐爪爪 Kalidium foliatum | 藜科 盐爪爪属 | 灌木 |
6 | 芦苇 Phragmites australis | 禾本科 芦苇属 | 草本 | 15 | 白刺 Nitraria tangutorum | 蒺藜科 白刺属 | 灌木 |
7 | 新疆绢蒿 Seriphidium santolinum | 菊科 绢蒿属 | 草本 | 16 | 琵琶柴 Reaumuria soongarica | 柽柳科 琵琶柴属 | 灌木 |
8 | 猪毛菜 Salsola collina | 藜科 猪毛菜属 | 草本 | 17 | 沙拐枣 Calligonum mongolicum | 蓼科 沙拐枣属 | 灌木 |
9 | 刺沙蓬 Salsola ruthenica | 藜科 猪毛菜属 | 草本 |
植物功能性状指标Functional traits | 缩写Abbreviation | 计算公式及单位Formula and unit |
---|---|---|
植株高度Height | H | cm |
冠幅面积Crown area | S | S(cm2)=π×H×L÷4 |
比叶面积Specific leaf area | SLA | SLA(m2/kg)=叶面(m2)/叶片干重(kg) |
干物质含量Leaf dry matter content | LDMC | LDMC(g/kg)=叶片干(g)/叶鲜重(kg) |
叶片碳含量Leaf carbon content | LCC | LCC(g/kg)=叶片全氮(g)/叶片干重(kg) |
叶片氮含量Leaf nitrogen content | LNC | LNC(g/kg)=叶片全氮(g)/叶片干重(kg) |
叶片磷含量Leaf phosphorus content | LPC | LNC(g/kg)=叶片全氮(g)/叶片干重(kg) |
表2 植物功能性状指标选取及计算公式
Table 2 The selected plant functional traits and ecological meaning
植物功能性状指标Functional traits | 缩写Abbreviation | 计算公式及单位Formula and unit |
---|---|---|
植株高度Height | H | cm |
冠幅面积Crown area | S | S(cm2)=π×H×L÷4 |
比叶面积Specific leaf area | SLA | SLA(m2/kg)=叶面(m2)/叶片干重(kg) |
干物质含量Leaf dry matter content | LDMC | LDMC(g/kg)=叶片干(g)/叶鲜重(kg) |
叶片碳含量Leaf carbon content | LCC | LCC(g/kg)=叶片全氮(g)/叶片干重(kg) |
叶片氮含量Leaf nitrogen content | LNC | LNC(g/kg)=叶片全氮(g)/叶片干重(kg) |
叶片磷含量Leaf phosphorus content | LPC | LNC(g/kg)=叶片全氮(g)/叶片干重(kg) |
样地 Plots | 样本数 Number | 样地编码 Plots Number | 土壤含水量 Soil moisture content(%) | 土壤含盐量 Soil salt content(%) |
---|---|---|---|---|
高水高盐 High water - salt gradient | 11 | H | 6.075 ± 1.243a | 3.659 ± 1.161a |
中水中盐 Water - salt gradient in medium | 28 | M | 2.788 ± 0.667b | 3.347 ± 0.942b |
低水低盐 Low water - salt gradient | 81 | L | 1.245 ± 0.452c | 2.026 ± 0.535c |
表3 样地土壤水分、盐分聚类
Table 3 Results of soil water-salt clustering in the sample
样地 Plots | 样本数 Number | 样地编码 Plots Number | 土壤含水量 Soil moisture content(%) | 土壤含盐量 Soil salt content(%) |
---|---|---|---|---|
高水高盐 High water - salt gradient | 11 | H | 6.075 ± 1.243a | 3.659 ± 1.161a |
中水中盐 Water - salt gradient in medium | 28 | M | 2.788 ± 0.667b | 3.347 ± 0.942b |
低水低盐 Low water - salt gradient | 81 | L | 1.245 ± 0.452c | 2.026 ± 0.535c |
图4 不同水盐梯度下荒漠植物功能性状与生物量的冗余 注:a:高水高盐梯度;b:中水中盐梯度;c:低水低盐梯度
Fig.4 Biplots of RDA between plant community leaf functional traits and soil water-salt gradient Note:A. High water - salt gradient; B. Water - salt gradient in medium; C. Low water - salt gradient
水盐梯度 Gradient of water-salt | 生物量 Biomass (g/m2) | 性状 Trait | 估计值 Estimated value | 误差平方和 Std.Error | t | P |
---|---|---|---|---|---|---|
高水高盐 High water - salt gradient | AGB | S | 0.118 | 0.016 | 7.306 | 0.000 |
常数项 | 31.267 | 8.495 | 3.680 | 0.006 | ||
模型 | AGB = 0.118S+31.267 P=0.000 R2=0.870 | |||||
BGB | S | 0.053 | 0.016 | 3.385 | 0.010 | |
常数项 | 15.754 | 8.155 | 1.932 | 0.089 | ||
模型 | BGB = 0.053S+15.754 P=0.010 R2=0.589 | |||||
中水中盐 Water - salt gradient in medium | AGB | S | 0.067 | 0.022 | 3.078 | 0.005 |
常数项 | 57.162 | 9.824 | 5.818 | 0.000 | ||
模型 | AGB = 0.067S+57.162 P=0.005 R2=0.267 | |||||
BGB | S | 0.142 | 0.044 | 3.227 | 0.003 | |
H | -5.073 | 2.377 | -2.134 | 0.043 | ||
常数项 | 82.937 | 30.089 | 2.756 | 0.011 | ||
模型 | BGB = 0.142S-5.073H+82.937 P=0.043 R2=0.447 | |||||
低水低盐 Low water - salt gradient | AGB | S | 0.114 | 0.013 | 9.151 | 0.000 |
LCC | -0.397 | 0.090 | -4.401 | 0.000 | ||
SLA | -0.921 | 0.314 | -2.930 | 0.004 | ||
常数项 | 178.264 | 22.519 | 7.916 | 0.000 | ||
模型 | AGB = 0.114S-0.397LCC-0.921SLA+178.264 P=0.000 R2=0.555 | |||||
BGB | S | 0.034 | 0.006 | 5.444 | 0.000 | |
SLA | -0.403 | 0.161 | -2.505 | 0.014 | ||
LDMC | -67.117 | 30.719 | -2.185 | 0.032 | ||
常数项 | 50.264 | 11.291 | 4.452 | 0.000 | ||
模型 | BGB = 0.034S-0.403SLA-67.117LDMC+50.264 P=0.032 R2=0.308 |
表4 水盐梯度下荒漠植物功能性状与生物量的多元回归
Table 4 Multiple regression model of functional traits and biomass of desert plants under soil water-salt gradient
水盐梯度 Gradient of water-salt | 生物量 Biomass (g/m2) | 性状 Trait | 估计值 Estimated value | 误差平方和 Std.Error | t | P |
---|---|---|---|---|---|---|
高水高盐 High water - salt gradient | AGB | S | 0.118 | 0.016 | 7.306 | 0.000 |
常数项 | 31.267 | 8.495 | 3.680 | 0.006 | ||
模型 | AGB = 0.118S+31.267 P=0.000 R2=0.870 | |||||
BGB | S | 0.053 | 0.016 | 3.385 | 0.010 | |
常数项 | 15.754 | 8.155 | 1.932 | 0.089 | ||
模型 | BGB = 0.053S+15.754 P=0.010 R2=0.589 | |||||
中水中盐 Water - salt gradient in medium | AGB | S | 0.067 | 0.022 | 3.078 | 0.005 |
常数项 | 57.162 | 9.824 | 5.818 | 0.000 | ||
模型 | AGB = 0.067S+57.162 P=0.005 R2=0.267 | |||||
BGB | S | 0.142 | 0.044 | 3.227 | 0.003 | |
H | -5.073 | 2.377 | -2.134 | 0.043 | ||
常数项 | 82.937 | 30.089 | 2.756 | 0.011 | ||
模型 | BGB = 0.142S-5.073H+82.937 P=0.043 R2=0.447 | |||||
低水低盐 Low water - salt gradient | AGB | S | 0.114 | 0.013 | 9.151 | 0.000 |
LCC | -0.397 | 0.090 | -4.401 | 0.000 | ||
SLA | -0.921 | 0.314 | -2.930 | 0.004 | ||
常数项 | 178.264 | 22.519 | 7.916 | 0.000 | ||
模型 | AGB = 0.114S-0.397LCC-0.921SLA+178.264 P=0.000 R2=0.555 | |||||
BGB | S | 0.034 | 0.006 | 5.444 | 0.000 | |
SLA | -0.403 | 0.161 | -2.505 | 0.014 | ||
LDMC | -67.117 | 30.719 | -2.185 | 0.032 | ||
常数项 | 50.264 | 11.291 | 4.452 | 0.000 | ||
模型 | BGB = 0.034S-0.403SLA-67.117LDMC+50.264 P=0.032 R2=0.308 |
[1] | 李永华, 卢琦, 吴波, 等. 干旱区叶片形态特征与植物响应和适应的关系[J]. 植物生态学报, 2012, 36(1): 94-104. |
LI Yonghua, LU Qing, WU Bo, et al. Relationship between leaf morphological characteristics and plant response and adaptation in arid regions[J]. Chinese Journal of Plant Ecology, 2012, 36(1): 94-104. | |
[2] | 谢立红, 曹宏杰, 黄庆阳, 等. 五大连池新期火山熔岩台地3种共有植物的叶功能性状及其相互关系[J]. 西北植物学报, 2018, 38(5):967-975. |
XIE Lihong, CAO Hongjie, HUANG Qingyang, et al. Leaf function characters and their correlation of three common plants in the new volcanic lava platform of Walianchi Basin[J]. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(5):967-975. | |
[3] | 陈婵, 张仕吉, 李雷达, 等. 中亚热带植被恢复阶段植物叶片、凋落物、土壤碳氮磷化学计量特征[J]. 植物生态学报, 2020, 43(8): 658-671. |
CHEN Chan, ZHANG Shiji, LI Leida, et al. Chemometric characteristics of plant leaves litters and soil carbon, Nitrogen and phosphorus in the recovery stage of vegetation in subtropical region[J]. Chinese Journal of Plant Ecology, 2020, 43(8): 658-671.
DOI URL |
|
[4] |
路兴慧, 丁易, 臧润国, 等. 海南岛热带低地雨林老龄林木本植物幼苗的功能性状分析[J]. 植物生态学报, 2011, 35(12) : 1300-1309.
DOI |
LU Xinghui, DING Yi, ZANG Runguo, et al. Analysis of the functional characteristics of this plant seedling in tropical lowland rain forest of Hainan Island[J]. Chinese Journal of Plant Ecology, 2011, 35(12): 1300-1309.
DOI |
|
[5] | 王立龙. 典型荒漠植物叶片养分回收特征及其对环境的响应机制[D]. 兰州: 兰州大学, 2018. |
WANG Lilong. Nutrient recovery characteristics of typical desert plant leaves and their response mechanism to environment[D]. Lanzhou: Lanzhou University, 2018. | |
[6] |
Kauane M,. Bordin S C. Müller. Drivers of subtropical forest dynamics: The role of functional traits, forest structure and soil variables[J]. Journal of Vegetation Science, 2019, 30(6): 1164-1174.
DOI |
[7] |
李丹, 康萨如拉, 赵梦颖, 等. 内蒙古羊草草原不同退化阶段土壤养分与植物功能性状的关系[J]. 植物生态学报, 2016, 40(10): 991-1002.
DOI |
LI Dan, KANGSarulla, ZHAO Mengying, et al. Relationship between soil nutrients and plant functional traits in different degradation stages of Leymuschinensis steppe in Inner Mongolia[J]. Chinese Journal of Plant Ecology, 2016, 40(10): 991-1002.
DOI |
|
[8] | 张雪妮, 李岩, 杨晓东, 等. 荒漠植物叶片化学性状及其经济谱对水盐变化的响应[J]. 生态学杂志, 2018, 37(5):1299-1306. |
ZHANG Xueni, LI Yan, YANG Xiaodong, et al. Response of chemical characters and economic spectrum of desert plant leaves to water and salt changes[J]. Chinese Journal of Ecology, 2018, 37(5):1299-1306. | |
[9] | 赵连春, 秦爱忠, 赵成章, 等. 嘉峪关草湖湿地植物功能群组成及其性状对不同生境的响应[J]. 生态学报, 2020, 40(3): 822-833. |
ZHAO Lianchun, QIN Aizhong, ZHAO Chengzhang, et al. Composition of plant functional groups and their characters in response to different habitats in The Jiayuguan Grass-lake Wetland[J]. Acta Ecologica Sinica, 2020, 40(3): 822-833. | |
[10] |
McDowell N, Pockman W T, Allen C D, et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought[J]. New Phytologist, 2008, 178(4): 719-757
DOI PMID |
[11] |
Du H, Peng W X, Song T Q, et al. Zhang H Spatial pattern of woody plants and their environmental interpretation in the karst forest of southwest China[J]. Plant Biosystems, 2015, 149 (1):121-130.
DOI URL |
[12] |
刘旻霞, 马建祖. 甘南高寒草甸植物功能性状和土壤因子对坡向的响应[J]. 应用生态学报, 2012, 23(12): 3295-3300.
PMID |
LIU Minxia, MA Jianzu. Response of plant functional characters and soil factors to slope direction in Gannan Alpine meadow[J]. Chinese Journal of Applied Ecology, 2012, 23(12): 3295-3300.
PMID |
|
[13] | 蒋成益, 马明东, 肖玖金. 川西北不同沙化程度草地植物功能性状及其驱动因子[J]. 西北植物学报, 2017, 37(5): 965-973. |
JIANG Chengyi, MA Mingdong, XIAO Jiujin. Functional characters and driving factors of grassland plants with different desertification degrees in northwest Sichuan[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(5): 965-973. | |
[14] | 郄亚栋, 蒋腊梅, 吕光辉, 等. 温带荒漠植物叶片功能性状对土壤水盐的响应[J]. 生态环境学报, 2018, 27(11): 2000-2010. |
QIE Yadong, JIANG Lalei, LV Guanghui, et al. Response of functional characters of temperate desert plants to soil water and salt[J]. Ecology and Environmental Sciences, 2018, 27(11): 2000-2010. | |
[15] | 王生海. 整形和水分胁迫对葡萄叶片光合生理过程响应机制的模型模拟研究[D]. 石河子: 石河子大学, 2019. |
WANG Shenghai. Model Simulation study on the response mechanism of reshaping and water stress to photosynthetic physiological process in grape leaves[D]. Shihezi: Shihezi University, 2019. | |
[16] | 邢恩德, 何京丽, 张铁钢, 等. 煤矿开采对矿坑周边植被覆盖度、生物量、土壤水分和地下水位的影响[J]. 草原与草坪, 2019(4): 53-57. |
XING Ende, HE Jingli, ZHANG Tieangang, et al. Effects of coal mining on vegetation coverage, biomass, soil moisture and groundwater level around mines[J]. Grassland and Turf, 2019(4): 53-57. | |
[17] | 赵生龙, 曾凡江, 张波, 等. 盐分胁迫对骆驼刺幼苗叶片性状的影响[J]. 草业科学, 2016, 33(9): 1770-1778. |
ZHAO Shenglong, ZENG Fanjiang, ZHANG Bo, et al. Effect of salt stress on leaf traits of Camel thorn seedlings[J]. Pratacultural Science, 2016, 33(9): 1770-1778. | |
[18] | 汪贵斌, 曹福亮. 土壤盐分和水分胁迫对落羽杉叶片中几种酶活性的影响[J]. 南京林业大学学报(自然科学版), 2006, (6): 32-36. |
WANG Guibin, CAO Fuliang. Effects of soil salinity and water stress on the activity of several enzymes in Chinese fir leaves[J]. Journal of Nanjing Forestry University (Natural Science Ed.), 2006,(6): 32-36. | |
[19] | 张蕊, 赵学勇, 王少昆, 等. 极端干旱对荒漠草原群落物种多样性和地上生物量碳氮的影响[J]. 生态环境学报, 2019, 28(4): 77-84. |
ZHANG Rui, ZHAO Xueyong, WANG Shaokun, et al. Effects of extreme drought on species diversity and aboveground biomass carbon and nitrogen in desert steppe communities[J]. Ecology and Environmental Sciences, 2019, 28(4): 77-84. | |
[20] | 应智霞. 植物繁殖方式、邻体作用和生境异质性对物种共存的影响[D]. 北京: 中国科学院大学, 2015. |
YING Zhixia. Effects of plant propagation mode, neighborhood function and habitat heterogeneity on species coexistence[D]. Beijing: University of Chinese Academy of Sciences, 2015. | |
[21] | 李丽鹤. 气候变化与人类活动对入侵植物潜在分布的影响及风险区识别[D]. 南京: 南京师范大学, 2017. |
LI Lihe. Influence of climate change and human activities on potential distribution of invasive plants and identification of risk areas[D]. Nanjing: Nanjing Normal University, 2017. | |
[22] | 程腊梅, 张旭, 葛继稳, 等. 湖北生物多样性保护优先区域生态系统五年(2010-2015)变化[J]. 植物科学学报, 2019, 37(2): 144-153. |
CHENG Lamei, ZHANG Xu, GE Jiwen, et al. Five-year (2010-2015) change of ecosystem in the priority area of Biodiversity protection in Hubei Province[J]. Journal of Plant Science, 2019, 37(2): 144-153. | |
[23] | 杨晓东, 傅德平, 袁月, 等. 新疆艾比湖湿地自然保护区主要植物的种间关系[J]. 干旱区研究, 2010, 27(2): 249-256. |
YANG Xiaodong, FU Deping, YUAN Yue, et al. Interspecific relationship of major plants in Aibi Lake Wetland Nature Reserve, Xinjiang[J]. Arid Zone Research, 2010, 27(2): 249-256.
DOI URL |
|
[24] | 鲍士旦. 土壤农化分析(第三版)[M]. 北京: 中国农业出版社, 2000. |
BAO Shidan. Soil Agrochemical Analysis (Third Edition)[M]. Beijing: China Agriculture Press, 2000. | |
[25] | 刘晓娟, 马克平. 植物功能性状研究进展[J]. 中国科学: 生命科学, 2015, 45(4): 325-339. |
LIU Xiaojuan, MA Keping. Progress in studies on plant functional traits[J]. Science of China: Life Sciences, 2015, 45(4): 325-339. | |
[26] |
Catford J A, Dwyer J M, Palma E, et al. Community diversity outweighs effect of warming on plant colonization[J]. Global Change Biology, 2020, 26(5): 3079-3090.
DOI PMID |
[27] | 张雪妮, 李岩, 何学敏, 等. 荒漠植物功能性状及其多样性对土壤水盐变化的响应[J]. 生态学报, 2019, 39(5): 1541-1550. |
ZHANGXueni, LI Yan, HE Xuemin, et al. Response of functional characters and diversity of desert plants to changes of soil water and salt[J]. Acta Ecologica Sinica, 2019, 39(5): 1541-1550. | |
[28] | 孟阳阳, 刘冰, 刘婵. 水盐梯度下湿地柽柳 (Tamarixramosissima) 光合响应特征和水分利用效率[J]. 中国沙漠, 2018, 38(3): 568-577. |
MENG Yangyang, LIU Bing, LIU Chan. Photosynthetic response characteristics and water use efficiency of Tamarix Ramosissima wetland under water-salt gradient[J]. Journal of Desert Research, 2018, 38(3): 568-577. | |
[29] | 任悦, 赵成章, 李雪萍, 等. 秦王川湿地滨藜叶脉性状与蒸腾速率关系对种群密度的响应[J]. 生态学报, 2018, 38(16): 5819-5827. |
REN Yue, ZHAO Cheng Zhang, LI Xueping, et al. Response of leaf vein characters and transpiration rate to population density in Quinoa littorata in Qinwangchuan Wetland[J]. Acta Ecologica Sinica, 2018, 38(16): 5819-5827. | |
[30] |
王世林, 曹文侠, 王小军, 等. 河西走廊荒漠盐碱地人工柽柳林土壤水盐分布[J]. 应用生态学报, 2019, 30(8): 2531-2540.
DOI |
WANG Shilin, CAO Wenxia, WANG Xiaojun, et al. Soil water and salt distribution of Tamarixtamarix in desert saline land in Hexi Corridor[J]. Chinese Journal of Applied Ecology, 2019, 30(8): 2531-2540.
DOI |
|
[31] | 包甜甜, 张鼎华. "近自然抚育"对南方山地幼林地土壤磷有效性的影响[J]. 福建师范大学学报(自然科学版), 2019, 35(2): 97-103. |
BAO Tiantian, ZHANG Dinghua. Phosphorus Availability of Red Soil and Its Relation with Tree Growth Mountainous Region of Southern China[J]. Journal of Fujian Normal University (Natural Science Ed.), 2019, 35(2): 97-103. | |
[32] | 王丹, 龚荣高, 荣毅. 干旱胁迫对枇杷生理特性及生长的影响[J]. 西北植物学报, 2016(7): 1399-1407. |
WANG Dan, GONG Ronggao, Rong Yi. Effects of drought stress on physiological characteristics and growth of loquat[J]. Acta Botanica Boreali-Occidentalia Sinica, 2016(7): 1399-1407. | |
[33] | 张雷, 孙鹏森, 刘世荣. 川西亚高山森林不同恢复阶段生长季蒸腾特征[J]. 林业科学, 2020, 56(1): 1-9. |
ZHANG Lei, SUN Pengsen, LIU Shirong. Transpiration characteristics in different recovery stages of subalpine forest in western Sichuan[J]. Scientia Silvae Sinicae, 2020, 56(1): 1-9. | |
[34] | 何季. 荒漠植物白刺对模拟增雨的生理生态响应及适应策略[D]. 北京: 中国林业科学研究院, 2015. |
HE Ji. Physiological and ecological response and adaptive strategies of desert plant Nitrariasinensis to simulated rainfall increase[D]. Beijing: Chinese Academy of Forestry Sciences, 2015. | |
[35] | 景馨. 地下净初级生产力及根系动态对不同草地恢复措施的响应[D]. 长春: 东北师范大学, 2018. |
JING Xin. Response of underground net primary productivity and root dynamics to different grassland restoration measures[D]. Changchun: Northeast Normal University, 2018. | |
[36] | 赵文霞, 邹斌, 郑景明, 等. 常绿阔叶林常见树种根茎叶功能性状的相关性[J]. 北京林业大学学报, 2016, 38(6): 35-41. |
ZHAO Wenxia, ZOU Bin, ZHENG Jingming, et al. Correlation of rhizome and leaf functional characters of common tree species in evergreen broad-leaved forest[J]. Journal of Beijing Forestry University, 2016, 38(6): 35-41. | |
[37] |
ZHU Jiyou, HUA Zhu, CAO Yujuan, et al. Effect of simulated warming on leaf functional traits of urban greening plants[J]. BMC Plant Biology, 2020, 20(1): 87-96.
DOI URL |
[38] | 周先容, 汪建华, 张红, 等. CO2浓度升高和模拟氮沉降对青川箭竹叶营养质量的影响[J]. 生态学报, 2012,(24): 7644-7653. |
ZHOU Xianrong, WANG Jianhua, ZHANG Hong, et al. Effects of increased CO2 concentration and simulated Nitrogen deposition on nutritional quality of Arbusculachinensis leaves in Qingchuan[J]. Acta Ecologica Sinica, 2012,(24): 7644-7653. | |
[39] | 解亚鑫, 许涵, 陈洁, 等. 不同氮磷添加浓度对豆科3种树木幼苗生长及生物量分配的影响[J]. 植物科学学报, 2019, 37(5): 662-671. |
XIE Yaxin, XU Han, CHEN Jie, et al. Effects of different nitrogen and phosphorus concentrations on growth and biomass allocation of seedlings of three species of leguminous trees[J]. Journal of Plant Science, 2019, 37(5): 662-671. | |
[40] | 叶小齐, 吴明, 邵学新, 等. 加拿大一枝黄花水提液对玉米幼苗生长的化感作用及其机理[J]. 草业学报, 2014,(6): 220-227. |
YE Xiaoqi, WU Ming, SHAO Xuexin, et al. Allelic effect of water extract of Solidago SPP.On maize seedling growth and its mechanism[J]. Acta Prataculturae Sinica, 2014,(6): 220-227. | |
[41] | 黄勇. 水分胁迫对鸟巢蕨生长及生理的影响[D]. 海口: 海南大学, 2012. |
HUANG Yong. Effects of water stress on the growth and physiology of Nest fern[D]. Haikou: Hainan University, 2012. | |
[42] | 高云晓, 庞元湘, 毛培利, 等. 黄腐酸有机肥对盐胁迫下刺槐幼苗生长的影响[J]. 西南林业大学学报(自然科学), 2019, 39(2): 36-43. |
GAO Yunxiao, PANG Yuxiang, MAO Peili, et al. Effect of organic fertilizer of fulvate on the growth of Locust seedlings under salt stress[J]. Journal of Southwest Forestry University (Natural Science Ed.), 2019, 39(2): 36-43. | |
[43] | 周娜娜, 冯素萍, 高新生, 等. 植物光合作用的光抑制研究进展[J]. 中国农学通报, 2019, 35(15): 116-123. |
ZHOU Nana, FENG Suping, GAO Xinsheng, et al. Progress in photoinhibition of plant photosynthesis[J]. Chinese Agricultural Science Bulletin, 2019, 35(15): 116-123. | |
[44] | 张兵. 盐胁迫下柽柳的生长变化和代谢分析[D]. 哈尔滨: 东北林业大学, 2016. |
ZhANG Bing. Growth change and metabolism analysis of Tamarixchinensis under salt stress[D]. Harbin: Northeast Forestry University, 2016. |
[1] | 曾万祺, 韩多红, 冯军仁. 干旱荒漠区9个杏品种的花器官冻害生理生化分析[J]. 新疆农业科学, 2024, 61(9): 2223-2229. |
[2] | 肖淑婷, 颜安, 王卫霞, 张青青, 侯正清, 马梦倩, 孙哲. 天山中部典型林区地上生物量时空变化及影响因素分析[J]. 新疆农业科学, 2024, 61(9): 2237-2244. |
[3] | 李汝勇, 任久明, 雷霆, 王克林, 刘鹏程, 李江涛. 基于光合法和生物量法分析塔里木沙漠公路防护林带碳汇估算差异性[J]. 新疆农业科学, 2024, 61(8): 2014-2022. |
[4] | 邵亚杰, 李珂, 丁文浩, 林涛, 崔建平, 郭仁松, 王亮, 吴凤全, 王心, 汤秋香. 基于无人机多光谱影像特征估算棉花生物量[J]. 新疆农业科学, 2024, 61(6): 1328-1335. |
[5] | 耿美菊, 王新绘, 刘晓颖, 吕佩. 封育对荒漠草原真菌群落的影响[J]. 新疆农业科学, 2024, 61(5): 1250-1258. |
[6] | 李亚莉, 哈丽哈什·依巴提, 唐亚莉, 段婧婧, 李青军. 氮磷减施与钾协同共效对加工番茄产量和养分吸收的影响[J]. 新疆农业科学, 2024, 61(12): 3014-3019. |
[7] | 侯正清, 颜安, 谢开云, 袁以琳, 夏雯秋, 肖淑婷, 张振飞, 孙哲. 基于植被指数融合天山假狼毒地上生物量的估测[J]. 新疆农业科学, 2024, 61(11): 2787-2796. |
[8] | 侯正清, 颜安, 谢开云, 袁以琳, 夏雯秋, 肖淑婷, 张振飞, 孙哲. 基于多特征融合的无人机天山假狼毒地上生物量估算[J]. 新疆农业科学, 2024, 61(10): 2527-2536. |
[9] | 李志强, 陈昱东, 吕光辉, 王金龙, 蒋腊梅, 王恒方, 李韩鹏, 张磊. 荒漠草本植物功能性状的土壤水盐响应特征及生态策略[J]. 新疆农业科学, 2023, 60(8): 2038-2045. |
[10] | 夏停停, 苏比努尔·吾麦尔江, 于昭文, 李宏, 吕文钧, 吐尔逊娜依·热依木. 不同利用方式对天山北坡中段山地草甸草地植物生物量分布的影响[J]. 新疆农业科学, 2023, 60(4): 974-981. |
[11] | 吕齐, 蒋宇, 赵丰云, 雷叶, 于坤, 姚东东, 李旭娇, 沙日叶, 王芳霞. 施加生物炭对盐胁迫下无花果生物量叶绿素荧光参数及离子分配的影响[J]. 新疆农业科学, 2023, 60(3): 574-581. |
[12] | 胡文聪, 潘存德, 赵善超, 宋梦真, 童海麦, 田晨阳. 天山北坡中部天山云杉1 a生天然更新幼苗存活数量与功能性状的微生境分析[J]. 新疆农业科学, 2023, 60(2): 454-463. |
[13] | 赵欣欣, 刘太杰, 韩迎春, 王国平, 陈焕轩, 熊世武, 雷亚平, 杨北方, 李亚兵, 冯璐. 种植密度对机采麦套棉产量形成及品质的影响[J]. 新疆农业科学, 2022, 59(9): 2081-2090. |
[14] | 杨金钰, 孙九胜, 乔小燕, 槐国龙. 不同光质配比对水培牧草大麦生长的影响[J]. 新疆农业科学, 2022, 59(8): 1871-1876. |
[15] | 潘金龙, 唐光木, 徐万里, 马雪琴, 张云舒, 马海刚, 贾宏涛. 棉秆炭对灰漠土活性有机碳氮的影响[J]. 新疆农业科学, 2022, 59(7): 1615-1624. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 43
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 191
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||