新疆农业科学 ›› 2024, Vol. 61 ›› Issue (5): 1250-1258.DOI: 10.6048/j.issn.1001-4330.2024.05.023
耿美菊1,2(), 王新绘1,2(
), 刘晓颖1,2, 吕佩1,2
收稿日期:
2023-10-11
出版日期:
2024-05-20
发布日期:
2024-07-09
通信作者:
王新绘(1979-),男,副研究员,博士,硕士生导师,研究方向为微生物生态,(E-mail)wangxh@xju.edu.cn作者简介:
耿美菊(1998-),女,硕士研究生,研究方向为土壤微生物,(E-mail)1743270502@qq.com
基金资助:
GENG Meiju1,2(), WANG Xinhui1,2(
), LIU Xiaoying1,2, LYU Pei1,2
Received:
2023-10-11
Published:
2024-05-20
Online:
2024-07-09
Correspondence author:
WANG Xinhui (1979-), male, Ph.D., associate researcher, research direction: microbial ecology, (E-mail)wangxh@xju.edu.cn
Supported by:
摘要:
【目的】评估封育对荒漠草原真菌群落的影响,并阐述真菌群落在土壤中的作用。【方法】采用野外调查取样的方法,以封育14年的荒漠草原和相邻自由放牧荒漠草原为研究对象,基于内转录间隔区(ITS)技术与液质联用(LC-MS)技术研究封育对荒漠草原真菌群落的影响。【结果】封育增加了荒漠草原子囊菌门(Ascomycota)的相对丰度,降低了担子菌门(Basidiomycota)、被孢霉门(Mortierellomycota)和unclassified_k__Fungi的相对丰度,显著改变了真菌群落的β多样性。此外,封育处理下土壤养分含量和植物生物量高于放牧处理。封育处理下真菌群落的内部联系更加紧密,主要关系为相互竞争,而放牧处理下真菌群落内部关系主要是互利共生。真菌群落与土壤总钾及植物生物量之间相关性较强。土壤差异真菌群落多与代谢物显著正相关。【结论】封育改变了荒漠草原真菌群落丰富度,增加了植物地上与地下部分生物量。
中图分类号:
耿美菊, 王新绘, 刘晓颖, 吕佩. 封育对荒漠草原真菌群落的影响[J]. 新疆农业科学, 2024, 61(5): 1250-1258.
GENG Meiju, WANG Xinhui, LIU Xiaoying, LYU Pei. Effects of sealing on fungal communities in desert grasslands[J]. Xinjiang Agricultural Sciences, 2024, 61(5): 1250-1258.
图1 封育过程中土壤理化性质及植物生物量的变化 注:P < 0.001为***,P < 0.01 为**,P < 0.05 为*,ns为差异不显著
Fig.1 Changes in soil physicochemical properties and plant biomass during the sealing process Note:where P < 0.001 is marked as ***, P < 0.01 is marked as **, P < 0.05 is marked as *, and ns marked as insignificant
指标 Indexes | 封育均值 Mean enclosed population | 封育标准差 Sealing standard deviation | 放牧均值 Grazing average | 放牧标准差 Grazing standard deviation | P值 P value |
---|---|---|---|---|---|
Ace | 561.26 | 119.34 | 359.65 | 61.03 | 0.010 |
Sobs | 538.80 | 107.93 | 353.80 | 61.64 | 0.010 |
Chao | 567.20 | 117.75 | 361.40 | 60.46 | 0.008 |
Simpson | 0.0760 | 0.0271 | 0.0604 | 0.059 | 0.606 |
Shannon | 3.8882 | 0.3389 | 4.1200 | 0.570 | 0.457 |
Coverage | 0.9994 | 0.0003 | 0.9998 | 0.000 | 0.011 |
表1 封育过程中真菌α多样性指数的变化
Tab.1 Changes in the fungal alpha diversity index during the sealing process
指标 Indexes | 封育均值 Mean enclosed population | 封育标准差 Sealing standard deviation | 放牧均值 Grazing average | 放牧标准差 Grazing standard deviation | P值 P value |
---|---|---|---|---|---|
Ace | 561.26 | 119.34 | 359.65 | 61.03 | 0.010 |
Sobs | 538.80 | 107.93 | 353.80 | 61.64 | 0.010 |
Chao | 567.20 | 117.75 | 361.40 | 60.46 | 0.008 |
Simpson | 0.0760 | 0.0271 | 0.0604 | 0.059 | 0.606 |
Shannon | 3.8882 | 0.3389 | 4.1200 | 0.570 | 0.457 |
Coverage | 0.9994 | 0.0003 | 0.9998 | 0.000 | 0.011 |
图2 封育真菌OTU分布 注:研究区(A)、门(B)和属(C)的组成、差异真菌对比(D)、真菌β多样性(E)
Fig.2 Distribution of OTUs of sequestered fungi Note:Study area(A), the composition of phyla (B) and genera (C), comparison of differential fungi (D), and fungal β diversity (E)
图3 封育过程中门水平真菌群落与理化因子的冗余 注:总磷(TP)、总钾(TK)、有机碳(SOC)、植被地上生物量(Aboveground biomass)、灌木根生物量(Shrub root biomass)、草根生物量(herbal root biomass);图(A)、土壤理化性质(B)、差异代谢物(C)与差异真菌之间的相关关系(P < 0.001标记为***, P < 0.01 标记为**, P < 0.05 标记为*)
Fig.3 Redundancy analysis of the correlation between phylum level fungal communities and physicochemical factors Note: Total phosphorus (TP), total potassium (TK), organic carbon (SOC), aboveground biomass, shrub root biomass, herbal root biomass;(A), soil physicochemical properties (B), differential metabolites (C), and differential fungi during sealing(where P < 0.001 is marked as ***, P < 0.01 is marked as **, and P < 0.05 is marked as *)
图4 封育(A)与放牧(B)真菌群落的内部联系网络 注:红色代表正相关,绿色代表负相关
Fig.4 Network diagram of the internal linkage between the fungal communities of sequestration (A) and grazing (B) Note:red represents positive correlation, green represents negative correlation
[1] | Dlamini P, Chivenge P, Chaplot V. Overgrazing decreases soil organic carbon stocks the most under dry climates and low soil pH: a meta-analysis shows[J]. Agriculture, Ecosystems & Environment, 2016, 221: 258-269. |
[2] | Kang B, Bowatte S, Hou F. Soil microbial communities and their relationships to soil properties at different depths in an alpine meadow and desert grassland in the Qilian mountain range of China[J]. Journal of Arid Environments, 2021, 184: 104316. |
[3] | Liu S B, Zamanian K, Schleuss P M, et al. Degradation of Tibetan grasslands: consequences for carbon and nutrient cycles[J]. Agriculture, Ecosystems & Environment, 2018, 252: 93-104. |
[4] | Gao X X, Dong S K, Xu Y D, et al. Resilience of revegetated grassland for restoring severely degraded alpine meadows is driven by plant and soil quality along recovery time: a case study from the Three-river Headwater Area of Qinghai-Tibetan Plateau[J]. Agriculture, Ecosystems & Environment, 2019, 279: 169-177. |
[5] |
Huhe, Chen X J, Hou F J, et al. Bacterial and fungal community structures in Loess Plateau grasslands with different grazing intensities[J]. Frontiers in Microbiology, 2017, 8: 606.
DOI PMID |
[6] | Cheng J M, Jing G H, Wei L, et al. Long-term grazing exclusion effects on vegetation characteristics, soil properties and bacterial communities in the semi-arid grasslands of China[J]. Ecological Engineering, 2016, 97: 170-178. |
[7] | Zhang C, Liu G B, Song Z L, et al. Interactions of soil bacteria and fungi with plants during long-term grazing exclusion in semiarid grasslands[J]. Soil Biology and Biochemistry, 2018, 124: 47-58. |
[8] | Yin Y L, Wang Y Q, Li S X, et al. Soil microbial character response to plant community variation after grazing prohibition for 10years in a Qinghai-Tibetan alpine meadow[J]. Plant and Soil, 2021, 458(1): 175-189. |
[9] |
单贵莲, 陈功, 宁发, 等. 典型草原恢复演替过程中土壤微生物及酶活性动态变化研究[J]. 草地学报, 2012, 20(2): 292-297.
DOI |
SHAN Guilian, CHEN Gong, NING Fa, et al. Dynamics of soil microorganism and enzyme activity in typical steppe of restoration succession process[J]. Acta Agrestia Sinica, 2012, 20(2): 292-297.
DOI |
|
[10] | Sun S, Li S, Avera B N, et al. Soil bacterial and fungal communities show distinct recovery patterns during forest ecosystem restoration[J]. Applied and Environmental Microbiology, 2017, 83(14): e00966-e00917. |
[11] |
Li H L, Ostermann A, Karunarathna S C, et al. The importance of plot size and the number of sampling seasons on capturing macrofungal species richness[J]. Fungal Biology, 2018, 122(7): 692-700.
DOI PMID |
[12] | Ladwig L M, Bell-Dereske L P, Bell K C, et al. Soil fungal composition changes with shrub encroachment in the northern Chihuahuan Desert[J]. Fungal Ecology, 2021, 53: 101096. |
[13] |
Wu D, Zhang M M, Peng M, et al. Variations in soil functional fungal community structure associated with pure and mixed plantations in typical temperate forests of China[J]. Frontiers in Microbiology, 2019, 10: 1636.
DOI PMID |
[14] | Schulz S, Brankatschk R, Dümig A, et al. The role of microorganisms at different stages of ecosystem development for soil formation[J]. Biogeosciences, 2013, 10(6): 3983-3996. |
[15] |
Buyer J S, Vinyard B, Maul J, et al. Combined extraction method for metabolomic and PLFA analysis of soil[J]. Applied Soil Ecology, 2019, 135: 129-136.
DOI |
[16] | Bi B Y, Wang K Y, Zhang H, et al. Plants use rhizosphere metabolites to regulate soil microbial diversity[J]. Land Degradation & Development, 2021, 32(18): 5267-5280. |
[17] |
Jones O A H, Sdepanian S, Lofts S, et al. Metabolomic analysis of soil communities can be used for pollution assessment[J]. Environmental Toxicology and Chemistry, 2014, 33(1): 61-64.
DOI PMID |
[18] | Li Y X, Laborda P, Xie X L, et al. Spartina alterniflora invasion alters soil microbial metabolism in coastal wetland of China[J]. Estuarine, Coastal and Shelf Science, 2020, 245: 106982. |
[19] | Xu M P, Li W J, Wang J Y, et al. Soil ecoenzymatic stoichiometry reveals microbial phosphorus limitation after vegetation restoration on the Loess Plateau, China[J]. The Science of the Total Environment, 2022, 815: 152918. |
[20] | Wang X, Cui Y X, Zhang X C, et al. A novel extracellular enzyme stoichiometry method to evaluate soil heavy metal contamination: evidence derived from microbial metabolic limitation[J]. Science of the Total Environment, 2020, 738: 139709. |
[21] | Coince A, Caël O, Bach C, et al. Below-ground fine-scale distribution and soil versus fine root detection of fungal and soil oomycete communities in a French beech forest[J]. Fungal Ecology, 2013, 6(3): 223-235. |
[22] | Liu J J, Sui Y Y, Yu Z H, et al. Soil carbon content drives the biogeographical distribution of fungal communities in the black soil zone of Northeast China[J]. Soil Biology and Biochemistry, 2015, 83: 29-39. |
[23] |
Lladó S, López-Mondéjar R, Baldrian P. Drivers of microbial community structure in forest soils[J]. Applied Microbiology and Biotechnology, 2018, 102(10): 4331-4338.
DOI PMID |
[24] |
Chen L, Xiang W H, Wu H L, et al. Contrasting patterns and drivers of soil fungal communities in subtropical deciduous and evergreen broadleaved forests[J]. Applied Microbiology and Biotechnology, 2019, 103(13): 5421-5433.
DOI PMID |
[25] | Schappe T, Albornoz F E, Turner B L, et al. The role of soil chemistry and plant neighbourhoods in structuring fungal communities in three Panamanian rainforests[J]. Journal of Ecology, 2017, 105(3): 569-579. |
[26] | 向雪梅, 德科加, 张琳, 等. 氮素添加下短期内高寒草甸生物量与养分间的关系[J]. 中国草地学报, 2023, 45(1): 53-61. |
XIANG Xuemei, DE Kejia, ZHANG Lin, et al. Relationship between biomass and nutrients of alpine meadows in the short term under nitrogen addition[J]. Chinese Journal of Grassland, 2023, 45(1): 53-61. | |
[27] |
刘文兰, 师尚礼, 田福平, 等. 紫花苜蓿生物量空间层次分布与叶片C、N、P化学计量特征对P添加的响应[J]. 草地学报, 2017, 25(2): 322-329.
DOI |
LIU Wenlan, SHI Shangli, TIAN Fuping, et al. Spatial distribution of alfalfa biomass and response of leaf C, N, P ecological stoichiometry to P addition[J]. Acta Agrestia Sinica, 2017, 25(2): 322-329.
DOI |
|
[28] | Toju H, Kishida O, Katayama N, et al. Networks depicting the fine-scale co-occurrences of fungi in soil horizons[J]. PLoS One, 2016, 11(11): e0165987. |
[29] |
张彬, 李邵宇, 古琛, 等. 内蒙古荒漠草原4种优势植物生物量分配对不同放牧强度的响应[J]. 草地学报, 2022, 30(12): 3355-3363.
DOI |
ZHANG Bin, LI Shaoyu, GU Chen, et al. Biomass allocation of four dominant plant species in Inner Mongolia Desert grasslands in response to different grazing intensities[J]. Acta Agrestia Sinica, 2022, 30(12): 3355-3363.
DOI |
|
[30] | Qiu L P, Wei X R, Zhang X C, et al. Ecosystem carbon and nitrogen accumulation after grazing exclusion in semiarid grassland[J]. PLoS One, 2013, 8(1): e55433. |
[31] | Wang Z, Ding Y, Jin K, et al. Soil bacterial and fungal communities are linked with plant functional types and soil properties under different grazing intensities[J]. European Journal of Soil Science, 2022, 73(1): e13195. |
[32] |
Cassman N A, Leite M F A, Pan Y, et al. Plant and soil fungal but not soil bacterial communities are linked in long-term fertilized grassland[J]. Scientific Reports, 2016, 6: 23680.
DOI PMID |
[33] |
Xiao C C, Ran S J, Huang Z W, et al. Bacterial diversity and community structure of supragingival plaques in adults with dental health or caries revealed by 16S pyrosequencing[J]. Frontiers in Microbiology, 2016, 7: 1145.
DOI PMID |
[34] | Chao Y Q, Liu W S, Chen Y M, et al. Structure, variation, and co-occurrence of soil microbial communities in abandoned sites of a rare earth elements mine[J]. Environmental Science & Technology, 2016, 50(21): 11481-11490. |
[35] | Wang J X, Gao J, Zhang H Q, et al. Changes in rhizosphere soil fungal communities ofPinus tabuliformisplantations at different development stages on the Loess Plateau[J]. International Journal of Molecular Sciences, 2022, 23(12): 6753. |
[36] |
Hartmann M, Brunner I, Hagedorn F, et al. A decade of irrigation transforms the soil microbiome of a semi-arid pine forest[J]. Molecular Ecology, 2017, 26(4): 1190-1206.
DOI PMID |
[37] |
Wang Z, Zhang Q, Staley C, et al. Impact of long-term grazing exclusion on soil microbial community composition and nutrient availability[J]. Biology and Fertility of Soils, 2019, 55(2): 121-134.
DOI |
[38] | 程红岩. 旱作农田土壤微生物群落及代谢产物对磷肥管理的响应[D]. 杨凌: 西北农林科技大学, 2022. |
CHENG Hongyan. Response of Soil Microbial Communities and Metabolites to Phosphorus Fertilizer Management in Dryland Farmland[D]. Yangling: Northwest A & F University, 2022. | |
[39] | Cui J L, Gong Y, Vijayakumar V, et al. Correlation in chemical metabolome and endophytic mycobiome in Cynomorium songaricum from different desert locations in China[J]. Journal of Agricultural and Food Chemistry, 2019, 67(13): 3554-3564. |
[40] | Yang X, Lai J L, Zhang Y, et al. Microbial community structure and metabolome profiling characteristics of soil contaminated by TNT, RDX, and HMX[J]. Environmental Pollution, 2021, 285: 117478. |
[41] | Csorba C, RodiĈ N, Zhao Y Y, et al. Metabolite production inAlkanna tinctoria links plant development with the recruitment of individual members of microbiome thriving at the root-soil interface[J]. mSystems, 2022, 7(5): e0045122. |
[42] | Cheng H Y, Yuan M S, Tang L, et al. Integrated microbiology and metabolomics analysis reveal responses of soil microorganisms and metabolic functions to phosphorus fertilizer on semiarid farm[J]. The Science of the Total Environment, 2022, 817: 152878. |
[1] | 林青, 时红玲, 秦新政, 李月, 王子涵, 高雁, 曾军, 王浩中, 娄恺, 霍向东. 基于非靶向代谢组学分析两种酵母培养物的成分差异[J]. 新疆农业科学, 2024, 61(5): 1218-1226. |
[2] | 郭晓雯, 杜思垚, 王芳霞, 叶扬, 杨茂琪, 闵伟. 长期咸水滴灌对棉田土壤细菌和真菌群落结构的影响[J]. 新疆农业科学, 2022, 59(12): 2909-2923. |
[3] | 顾美英, 徐万里, 张志东, 唐光木, 刘洪亮, 李志强, 刘晓伟, 蒲胜海, 冯雷, 张计峰. 施用棉秆炭连作棉花根际土壤真菌多样性与土壤理化性质及黄萎病的相关性[J]. 新疆农业科学, 2018, 55(9): 1698-1709. |
[4] | 段魏魏;娄恺;曾军;胡蓉;史应武;何清;刘新春;孙建;晁群芳. 新疆沙尘暴源区塔克拉玛干空气真菌群落的T-RFLP分析[J]. , 2011, 48(4): 769-775. |
[5] | 郭永盛;李俊华;李鲁华;危常州;褚贵新;王飞;董鹏. 施氮肥对荒漠草原土壤微生物种群及微生物量的影响[J]. , 2011, 48(1): 79-85. |
[6] | 沙吾列·沙比汗;安沙舟;杨刚;努尔加列力;张荟荟;付爱良;郑晓红. 伊犁心叶驼绒藜植物生物学及生态学特性研究[J]. , 2010, 47(9): 1842-1846. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 23
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 116
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||