新疆农业科学 ›› 2023, Vol. 60 ›› Issue (2): 454-463.DOI: 10.6048/j.issn.1001-4330.2023.02.024
胡文聪1(), 潘存德1(
), 赵善超2, 宋梦真1, 童海麦1, 田晨阳1
收稿日期:
2022-08-02
出版日期:
2023-02-20
发布日期:
2023-03-31
通信作者:
潘存德(1964―),男,新疆奇台人,教授,博士,博士生导师,研究方向为森林生态与经营,(E-mail)pancunde@163.com作者简介:
胡文聪(1997―),男,新疆昌吉人,硕士研究生,研究方向为天然林保护修复,(E-mail)718491308@qq.com
基金资助:
HU Wencong1(), PAN Cunde1(
), ZHAO Shanchao2, SONG Mengzhen1, TONG Haimai1, TIAN Chenyang1
Received:
2022-08-02
Published:
2023-02-20
Online:
2023-03-31
Correspondence author:
PAN Cunde (1964-), male, native place: Qitai, Xinjiang. Professor, research field: Forest ecology and management,(E-mail) pancunde@163.comSupported by:
摘要:
【目的】 分析天山云杉(Picea schrenkiana var.tianschanica)1 a生天然更新幼苗存活数量和功能性状与微生境因子的相互作用及关系,为环境筛(environmental filter)在天山云杉幼苗定居阶段筛选作用提供参考。【方法】 采用冗余分析(redundancy analysis,RDA)方法,分析天山云杉1 a生天然更新幼苗存活数量和功能性状与微生境因子的关系,并选用层次分割法定量分解微生境因子的解释率。【结果】 显著影响天山云杉1 a生天然更新幼苗存活数量和功能性状的微生境因子有苔藓厚度、枯落物厚度、草本盖度、根系盘结层厚度、大树邻体效应和海拔、坡位,可解释47.43%的天山云杉1 a生天然更新幼苗存活数量和功能性状变异。其中,由苔藓、草本、枯落物构成的林下地被物的解释率为26.16%,根系盘结层厚度和海拔高度的解释率分别为9.79%和5.95%。【结论】 天山云杉林下的枯落物、苔藓和土壤根系盘结层厚度,以及林地所处的海拔高度对天山云杉1 a生天然更新幼苗的存活具有较强的筛选作用。
中图分类号:
胡文聪, 潘存德, 赵善超, 宋梦真, 童海麦, 田晨阳. 天山北坡中部天山云杉1 a生天然更新幼苗存活数量与功能性状的微生境分析[J]. 新疆农业科学, 2023, 60(2): 454-463.
HU Wencong, PAN Cunde, ZHAO Shanchao, SONG Mengzhen, TONG Haimai, TIAN Chenyang. Microhabitat Interpretation of Survival Quantity and Functional Traits of One-year-old Natural Regeneration Seedlings of Picea schrenkiana var. tianschanica in the Central Part of the Northern Slope of Tianshan Mountains, Xinjiang[J]. Xinjiang Agricultural Sciences, 2023, 60(2): 454-463.
变量Variable | 最小值Min | 最大值Max | 平均值Mean | 标准差SD | 变异系数CV(%) |
---|---|---|---|---|---|
草本盖度 Herbaceous coverage,Hc(%) | 8.0 | 98.0 | 38.2 | 21.0 | 54.91 |
草本高度 Herbaceous height,Hh(cm) | 0.1 | 17.5 | 6.5 | 2.5 | 39.01 |
苔藓盖度 Moss coverage,Mc(%) | 0 | 100 | 48.0 | 37.3 | 77.57 |
苔藓厚度 Moss thickness,Mt(cm) | 0 | 6.7 | 2.8 | 1.9 | 67.29 |
枯落物盖度 Litter coverage,Lc(%) | 0 | 99.0 | 22.0 | 26.9 | 122.58 |
枯落物厚度 Litter thickness,Lt(cm) | 0 | 4.3 | 1.1 | 1.0 | 97.43 |
根系盘结层厚度 Root system twine layer thickness,Rt(cm) | 0 | 7.7 | 2.6 | 2.0 | 77.62 |
腐殖质厚度 Humus thickness,Ht(cm) | 6.6 | 28.9 | 15.6 | 5.1 | 32.53 |
大树邻体 Adult neighbor effect,Ane(m2) | 0 | 0.6 | 0.2 | 0.1 | 81.92 |
坡度Slope,Slo(°) | 7.5 | 44.9 | 23.5 | 8.0 | 34.11 |
海拔Elevation,Ele(m) | 1 859 | 2 365 | 2 128 | 121.1 | 5.70 |
根平均长度 Average length of root(cm) | 3.49 | 11.21 | 6.70 | 15.54 | 23.23 |
根平均直径 Average root dianefer(cm) | 0.20 | 0.30 | 0.30 | 0.02 | 8.30 |
根平均体积 Average root volume(cm3) | 0.02 | 0.10 | 0.04 | 0.01 | 35.80 |
根平均干重 Average dry weight of root(g) | 0.04 | 0.12 | 0.07 | 0.01 | 18.58 |
叶平均面积 Average leaf area(cm2) | 1.00 | 1.50 | 1.20 | 0.10 | 12.50 |
茎平均体积 Average stem volume(cm3) | 0.03 | 0.07 | 0.05 | 0.01 | 15.21 |
茎平均干重 Average dry weight of stem(g) | 0.02 | 0.08 | 0.03 | 0.01 | 36.18 |
表1 样方数据基本
Table 1 Basic situation of sample data
变量Variable | 最小值Min | 最大值Max | 平均值Mean | 标准差SD | 变异系数CV(%) |
---|---|---|---|---|---|
草本盖度 Herbaceous coverage,Hc(%) | 8.0 | 98.0 | 38.2 | 21.0 | 54.91 |
草本高度 Herbaceous height,Hh(cm) | 0.1 | 17.5 | 6.5 | 2.5 | 39.01 |
苔藓盖度 Moss coverage,Mc(%) | 0 | 100 | 48.0 | 37.3 | 77.57 |
苔藓厚度 Moss thickness,Mt(cm) | 0 | 6.7 | 2.8 | 1.9 | 67.29 |
枯落物盖度 Litter coverage,Lc(%) | 0 | 99.0 | 22.0 | 26.9 | 122.58 |
枯落物厚度 Litter thickness,Lt(cm) | 0 | 4.3 | 1.1 | 1.0 | 97.43 |
根系盘结层厚度 Root system twine layer thickness,Rt(cm) | 0 | 7.7 | 2.6 | 2.0 | 77.62 |
腐殖质厚度 Humus thickness,Ht(cm) | 6.6 | 28.9 | 15.6 | 5.1 | 32.53 |
大树邻体 Adult neighbor effect,Ane(m2) | 0 | 0.6 | 0.2 | 0.1 | 81.92 |
坡度Slope,Slo(°) | 7.5 | 44.9 | 23.5 | 8.0 | 34.11 |
海拔Elevation,Ele(m) | 1 859 | 2 365 | 2 128 | 121.1 | 5.70 |
根平均长度 Average length of root(cm) | 3.49 | 11.21 | 6.70 | 15.54 | 23.23 |
根平均直径 Average root dianefer(cm) | 0.20 | 0.30 | 0.30 | 0.02 | 8.30 |
根平均体积 Average root volume(cm3) | 0.02 | 0.10 | 0.04 | 0.01 | 35.80 |
根平均干重 Average dry weight of root(g) | 0.04 | 0.12 | 0.07 | 0.01 | 18.58 |
叶平均面积 Average leaf area(cm2) | 1.00 | 1.50 | 1.20 | 0.10 | 12.50 |
茎平均体积 Average stem volume(cm3) | 0.03 | 0.07 | 0.05 | 0.01 | 15.21 |
茎平均干重 Average dry weight of stem(g) | 0.02 | 0.08 | 0.03 | 0.01 | 36.18 |
排序轴 Sort axis | 第一轴RDA1 Drimary shaft RDA1 | 第二轴RDA2 Second asis RDA2 | 第三轴RDA3 Third axis RDA3 | 第四轴RDA4 Fourth axis RDA4 |
---|---|---|---|---|
特征根 Eigenvalues | 0.083 7 | 0.044 2 | 0.022 6 | 0.020 6 |
方差解释率 Variance explained | 0.240 9 | 0.122 8 | 0.083 4 | 0.075 3 |
累计方差解释率(R2) Cumulative variance explained | 0.240 9 | 0.363 7 | 0.447 1 | 0.522 4 |
表2 RDA排序轴的特征根及其对1 a生天然更新幼苗存活数量和功能性状的方差解释率
Table 2 The characteristic roots of the RDA ordination axis and their variance explanation rates for the survival number and functional traits of 1 year old natural regeneration seedlings
排序轴 Sort axis | 第一轴RDA1 Drimary shaft RDA1 | 第二轴RDA2 Second asis RDA2 | 第三轴RDA3 Third axis RDA3 | 第四轴RDA4 Fourth axis RDA4 |
---|---|---|---|---|
特征根 Eigenvalues | 0.083 7 | 0.044 2 | 0.022 6 | 0.020 6 |
方差解释率 Variance explained | 0.240 9 | 0.122 8 | 0.083 4 | 0.075 3 |
累计方差解释率(R2) Cumulative variance explained | 0.240 9 | 0.363 7 | 0.447 1 | 0.522 4 |
微生境因子 Microhabitat factor | 与RDA排序轴的相关系数(r) Correlation coefficient with RDA sort axis (r) | 置换检验结果 Permutation test results | ||||
---|---|---|---|---|---|---|
RDA1 | RDA2 | F value | P value | |||
Ane | -0.957 6 | 0.288 1 | 6.62 | 0.001** | ||
Hc | -0.311 0 | -0.950 4 | 5.93 | 0.001** | ||
Ele | -0.554 6 | -0.832 2 | 12.65 | 0.001** | ||
Rt | 0.637 2 | -0.770 7 | 22.10 | 0.001** | ||
Mt | 0.923 0 | 0.384 7 | 20.26 | 0.001** | ||
Lt | -0.987 4 | -0.003 7 | 24.42 | 0.001** | ||
Sp | Sp Bottom | 0.135 9 | -0.136 4 | 2.67 | 0.004** | |
Sp Middle | 0.015 4 | 0.084 6 | ||||
Sp Upper | -0.108 8 | -0.139 0 |
表3 1 a生天然更新幼苗微生境因子与RDA微环境排序轴的相关性及置换检验
Table 3 Correlation between microenvironment factors and RDA micro-environment ordination axis and permutation test results of 1 a natural regeneration seedlings
微生境因子 Microhabitat factor | 与RDA排序轴的相关系数(r) Correlation coefficient with RDA sort axis (r) | 置换检验结果 Permutation test results | ||||
---|---|---|---|---|---|---|
RDA1 | RDA2 | F value | P value | |||
Ane | -0.957 6 | 0.288 1 | 6.62 | 0.001** | ||
Hc | -0.311 0 | -0.950 4 | 5.93 | 0.001** | ||
Ele | -0.554 6 | -0.832 2 | 12.65 | 0.001** | ||
Rt | 0.637 2 | -0.770 7 | 22.10 | 0.001** | ||
Mt | 0.923 0 | 0.384 7 | 20.26 | 0.001** | ||
Lt | -0.987 4 | -0.003 7 | 24.42 | 0.001** | ||
Sp | Sp Bottom | 0.135 9 | -0.136 4 | 2.67 | 0.004** | |
Sp Middle | 0.015 4 | 0.084 6 | ||||
Sp Upper | -0.108 8 | -0.139 0 |
图1 1 a生天然更新幼苗存活数量和功能性状与微生境因子的RDA排序 注(Note):草本盖度:Hc; 苔藓厚度:Mt; 枯落物厚度:Lt; 根系盘结层厚度:Rt; 海拔:Ele;大树邻体效应 :Ane; 坡下:Sp Bottom; 坡中:Sp Middle; 坡上:Sp Upper; 比茎密度:SSD; 叶面积:LA; 根直径:RD; 比根长:SRL; 根茎比:RRS; 根长密度:RLD; 根组织密度:RTD; 1 a幼苗存活数量:Qty,下同,the same as below
Fig.1 RDA ordination diagram of the survival number and functional traits of 1 a natural regeneration seedlings and micro-habitat factors
图2 1 a生天然更新幼苗存活数量等值密度拟合曲线-微生境因子的双序轴
Fig.2 1 a natural regeneration seedling survival number equivalent density fitting curve-double sequence diagram of micro-environment factors
微生境因子 Microhabitat factor | Ane | Hc | Ele | Rt | Mt | Lt | Sp |
---|---|---|---|---|---|---|---|
解释率(R2adj) Independent | 0.013 3 | 0.015 5 | 0.059 5 | 0.097 9 | 0.108 5 | 0.151 5 | 0.028 1 |
解释比率 Interpretation perc | 2.8 | 3.27 | 12.54 | 20.64 | 22.88 | 31.94 | 5.92 |
表4 RDA生境因子的变差分解
Table 4 Variability decomposition RDA of redundant analysis habitat factors
微生境因子 Microhabitat factor | Ane | Hc | Ele | Rt | Mt | Lt | Sp |
---|---|---|---|---|---|---|---|
解释率(R2adj) Independent | 0.013 3 | 0.015 5 | 0.059 5 | 0.097 9 | 0.108 5 | 0.151 5 | 0.028 1 |
解释比率 Interpretation perc | 2.8 | 3.27 | 12.54 | 20.64 | 22.88 | 31.94 | 5.92 |
[1] |
Houle G. Environmental filters and seedling recruitment on a coastal dune in subartic Quebec (Canada)[J]. Canadian Journal of Botany, 1996, 74(9): 1507-1513.
DOI URL |
[2] |
Wang Q T, Zhao C Y, Gao C C, et al. Effects of environmental variables on seedling-sapling distribution of Qinghai spruce (Picea crassifolia) along altitudinal gradients[J]. Forest Ecology and Management, 2017, 384(2): 54-64.
DOI URL |
[3] | 胡蓉, 林波, 刘庆. 林窗与凋落物对人工云杉林早期更新的影响[J]. 林业科学, 2011, 47(6): 23-29. |
HU Rong, LIN Bo, LIU Qing. Effects of forest gaps and litter on the early regeneration of Picea asperata plantations[J]. Scientia Silvae Sinicae, 2011, 47(6): 23-29. | |
[4] |
Asplund J, Hustoft E, Nybakken L, et al. Litter impair spruce seedling emergence in beech forests: a litter manipulation experiment[J]. Scandinavian Journal of Forest Research, 2017, 33(4):1-47.
DOI URL |
[5] |
Ando Y, Fukasawa Y, Oishi Y. Interactive effects of wood decomposer fungal activities and bryophytes on spruce seedling regeneration on coarse woody debris[J]. Ecological Research, 2017, 32(2):1-10.
DOI URL |
[6] | 邱华, 舒皓, 吴兆飞, 等. 长白山阔叶红松林乔木幼苗组成及多度格局的影响因素[J]. 生态学报, 2020, 40(6): 2049-2056. |
QIU Hua, SHU Hao, WU Zhaofei, et al. Influencing factors of composition and abundance pattern of tree seedlings in broad-leaved Korean pine (Pinus koraiensis) mixed forest, Changbai Mountain, China[J]. Acta Ecologica Sinica, 2020, 40(6): 2049-2056. | |
[7] |
Fowler N. What is a safe site Neighbor litter germination date and patch effects[J]. Ecology, 1988, 69(4):947-961.
DOI URL |
[8] |
Guo Y X, Zhao P, Zhou Z, et al. Coexistence of three common species in a temperate mixed forest: linking seedling microhabitats and functional traits[J]. Forest Ecology and Management, 2020, 465(11): 118057.
DOI URL |
[9] | Uma a M N, Arellano G, Swenson N G, et al. Tree seedling trait optimization and growth in response to local-scale soil and light variability[J]. Ecology, 2020, 102(4):e03252. |
[10] | Zirbel C R, Brudvig L A. Trait-environment interactions affect plant establishment success during restoration[J]. Ecology, 2020, 101(3):e02971. |
[11] |
潘存德, 王强, 阮晓, 等. 天山云杉针叶水提取物自毒效应及自毒物质的分离鉴定[J]. 植物生态学报, 2009, 33(1):186-196.
DOI |
PAN Cunde, WANG Qiang, RUAN Xiao, et al. Biolocial activity and quantification of potential autotoxins from the leaves of Picea schrenkiana[J]. Chinese Journal of Plant Ecology, 2009, 33(1):186-196. | |
[12] |
Xiao R, Li Z H, Wang Q, et al. Autotoxicity and allelopathy of 3,4-dihydroxyacetophenone isolated from Picea schrenkiana needles[J]. Molecules, 2011, 16(10):8874-8893.
DOI PMID |
[13] |
Wang T, Yu L, Ren H B, et al. Age structure of Picea schrenkiana forest along an altitudinal gradient in the central Tianshan Mountains,northwestern China[J]. Forest Ecology and Management, 2004, 196(2-3): 267-274.
DOI URL |
[14] |
Comita L S, Hubbell S P. Local neighborhood andspecies' shade tolerance influence survival in a diverse seedling bank[J]. Ecology, 2009, 90(2): 328-334.
PMID |
[15] | 张金屯. 数量生态学(第三版)[M]. 北京: 科学出版社, 2018. |
ZHANG Jintun. Quantitative Ecology (3rd Ed.)[M]. Beijing: Science Press, 2018. | |
[16] | Chevan A, Sutherland M. Hierarchical partitioning[J]. American Statistician, 1991, 45(2):90-96. |
[17] |
Parker W C, Watson S R, Cairns D W. The role of hair-cap mosses (Polytrichum spp.) in natural regeneration of white Spruce (Picea glauca (Moench) Voss)[J]. Forest Ecology and Management, 1997, 92(1-3):19-28.
DOI URL |
[18] |
Paz H. Root/shoot allocation and root architecture in seedlings: variation among forest sites,microhabitats,and ecological groups1[J]. Biotropica, 2003, 35(3):318-332.
DOI URL |
[19] |
Ostonen I, Püttsepp, Biel C, et al. Specific root length as an indicator of environmental change[J]. Plant Biosystems, 2007, 141(3): 426-42.
DOI URL |
[20] |
Balachowski J A, Volaire F A. Implications of plant functional traits and drought survival strategies for ecological restoration[J]. Journal of Applied Ecology, 2018, 55(2):631-640.
DOI URL |
[21] |
路兴慧, 丁易, 臧润国, 等. 海南岛热带低地雨林老龄林木本植物幼苗的功能性状分析[J]. 植物生态学报, 2011, 35(12): 1300-1309.
DOI |
LU Xinhui, DING Yi, ZANG Rouguo, et al. Analysis of functional traits of woody plant seedlings in an old-growth tropical lowland rain forest on Hainan Island, China[J]. Chinese Journal of Plant Ecology, 2011, 35(12): 1300-1309.
DOI URL |
|
[22] | 马晓瑜, 孟晖, 潘存德, 等. 天山中部不同年龄和海拔高度天山云杉天然更新幼苗茎干功能性状[J]. 新疆农业科学, 2014, 51(7): 1238-1245. |
MA Xiaoyu, MENG Hui, PAN Cunde, et al. Age and altitudinal variation in stem functional traits of natural regeneration seedling of Picea schrenkiana in the centralpart of the Tianshan Mountains,Xinjiang[J]. Xinjiang Agricultural Sciences, 2014, 51(7):1238-1245. | |
[23] |
StuiverB M, Wradle D A, Gundale M J, et al. The impact of moss species and biomass on the growth of Pinus sylvestristree seedlings at different precipitation frequencies[J]. Forests, 2014, 5(8):1931-1951.
DOI URL |
[24] | 蔺菲, 郝占庆, 叶吉. 苔藓植物对植物天然更新的影响[J]. 生态学杂志, 2006, 25(4):456-460. |
LIN Fei, HAO Zhanqin, YE Ji. Effects of bryophytes on plant natural regeneration[J]. Chinese Journal of Ecology, 2006, 25(4):456-460. | |
[25] |
Azim M, Imrul K. Lichen mated seedbeds inhibit while moss dominated seedbeds facilitate black spruce (Picea mariana) seedling regeneration in post-fire boreal forest[J]. Forest Ecology and Management, 2018, 427(20):260-274.
DOI URL |
[26] | 尹锴, 潘存德, 刘翠玲 等. 天山云杉林土壤种子库物种组成及其垂直空间分布[J]. 新疆农业大学学报, 2005, 28(4):1-4. |
YIN Kai, PAN Cunde, LIU Cuiling, et al. Species composition and vertical distribution of soil seed bank in Picea schrenkiana forest[J]. Journal of Xinjiang Agricultural University, 2005, 28(4): 1-4. | |
[27] | 汪莉, 潘存德, 刘翠玲. 种子年后天山云杉林土壤种子库储量及其垂直空间分布[J]. 新疆农业科学, 2007, 44(2):111-114. |
WANG Li, PAN Cunde, LIU Cuiling. Storage and vertical distribution of soil seed ank in Picea schrenkiana forest after the seed age[J]. Xinjiang Agricultural Sciences, 2007, 44(2): 111-114. | |
[28] |
Molofsky J, AugSpurger C K. The effect of leaf litter on early seedling establishment in a tropical forest[J]. Ecology, 1992, 73(1):68-77.
DOI URL |
[29] |
Li Z H, Wang Q, Ruan X, et al. Phenolics and plant allelopathy[J]. Molecules, 2010, 15(12): 8933-8952.
DOI URL |
[30] | Li Z H, Wang Q, Ruan X, et al. Biological activity and quantification of potential autotoxins from Picea schrenkiana leaves[J]. Allelopathy Journal, 2011, 27(2):245-262. |
[31] |
Balachowski J A, Volaire F A. Implications of plant functional traits and drought survival strategies for ecological restoration[J]. Journal of Applied Ecology, 2018, 55(2): 631-640.
DOI URL |
[32] | 陈迪马. 天山云杉天然更新微生境及其幼苗格局与动态分析[D]. 乌鲁木齐: 新疆农业大学, 2006. |
CHEN Dima. Analysis on microsite of Picea schrenkiana natural regeneration and seedling spatial pattern and dynamic[D]. Urumqi: Xinjiang Agricultural University, 2006. |
[1] | 张帆, 陈晓露, 王洁, 侯献飞, 贾东海, 顾元国, 苗昊翠, 李强. 混合盐碱胁迫对花生种子萌发及幼苗生长的影响[J]. 新疆农业科学, 2024, 61(9): 2168-2182. |
[2] | 李振瑜, 耿召坤, 赵善超, 高玉德, 王褚, 王世伟, 潘存德, 张国林. 天山云杉林地上植被与土壤种子库物种相似性[J]. 新疆农业科学, 2024, 61(9): 2230-2236. |
[3] | 张伟, 杨国慧, 于辉. 2,4-表油菜素内酯对干旱胁迫下西瓜幼苗生长及相关基因表达的影响[J]. 新疆农业科学, 2024, 61(3): 615-622. |
[4] | 刘易, 李江涛, 江应红, 杨茹薇, 孙慧, 吴燕. NaCl胁迫下外源亚精胺对马铃薯幼苗生理特征的影响[J]. 新疆农业科学, 2024, 61(2): 336-344. |
[5] | 闫文静, 秦丽欢, 阿丽娅·阿力木, 张大海, 李嘉乐, 李欢, 谢辉. 不同处理对‘吊干’杏种子发芽及幼苗生长特性分析[J]. 新疆农业科学, 2024, 61(12): 2976-2986. |
[6] | 魏立志, 叶尔江·拜克吐尔汉, 唐努尔·叶尔肯, 王强, 徐栋. 天山云杉球果和针叶性状对海拔梯度的响应特征[J]. 新疆农业科学, 2024, 61(10): 2465-2474. |
[7] | 马琪瑶, 郝康迪, 胡天祺, 陈哲, 王振锡. 不同分辨遥感影像下天山云杉林分形特征[J]. 新疆农业科学, 2024, 61(1): 209-216. |
[8] | 席丽, 李思瑶, 夏晓莹, 陈玉雯, 李林, 王杰, 马小龙, 米尔扎提·柯尼加里木, 阿丽耶·麦麦提, 王卫霞. 不同郁闭度天山云杉林土壤养分特征[J]. 新疆农业科学, 2023, 60(9): 2216-2222. |
[9] | 李志强, 陈昱东, 吕光辉, 王金龙, 蒋腊梅, 王恒方, 李韩鹏, 张磊. 荒漠草本植物功能性状的土壤水盐响应特征及生态策略[J]. 新疆农业科学, 2023, 60(8): 2038-2045. |
[10] | 曲延斌, 王振锡, 胡天祺, 董巍, 陈哲. 基于机载激光雷达影像的天山云杉林树高提取及蓄积量反演[J]. 新疆农业科学, 2023, 60(4): 958-964. |
[11] | 夏晓莹, 李思瑶, 王杰, 马小龙, 席丽, 米尔扎提·柯尼加里木, 阿丽耶·麦麦提, 王卫霞. 地形因子对天山北坡天山云杉林土壤有机碳的影响[J]. 新疆农业科学, 2023, 60(4): 965-973. |
[12] | 冯彩军, 宋瑞娇, 宋凌宇, 张松, 齐军仓. 2,4-表芸苔素内酯浸种对干旱胁迫下大麦种子萌发及幼苗生理特性的影响[J]. 新疆农业科学, 2023, 60(2): 309-316. |
[13] | 成臣, 鄢雨蛟, 曾文愉, 廖雅汶, 高志强, 卢占军, 姚锋先, 朱博, 汪建军. 喷施赤霉素缓解多效唑对叶用莴苣幼苗的抑制作用[J]. 新疆农业科学, 2023, 60(10): 2558-2565. |
[14] | 熊韬, 闫淼, 王豪杰, 毛建才, 王江涛, 胡国智. 盐碱胁迫对甜瓜种子萌发及幼苗生长发育的影响[J]. 新疆农业科学, 2022, 59(8): 1965-1974. |
[15] | 吕金城, 王振锡, 杨勇强, 曲延斌, 马琪瑶. 基于WorldView-2影像和随机森林算法的天山云杉蓄积量反演[J]. 新疆农业科学, 2022, 59(8): 1992-1998. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 43
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1469
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||