新疆农业科学 ›› 2023, Vol. 60 ›› Issue (4): 965-973.DOI: 10.6048/j.issn.1001-4330.2023.04.022
夏晓莹(), 李思瑶, 王杰, 马小龙, 席丽, 米尔扎提·柯尼加里木, 阿丽耶·麦麦提, 王卫霞(
)
收稿日期:
2022-07-29
出版日期:
2023-04-20
发布日期:
2023-05-06
通信作者:
王卫霞(1981-),女,新疆乌鲁木齐人,副教授,研究方向为森林生态与经营,(E-mail)wangweixia0993@163.com作者简介:
夏晓莹(1995-),女,新疆昌吉人,硕士研究生,研究方向为森林生态与经营,(E-mail)1065033914@qq.com
基金资助:
XIA Xiaoying(), LI Siyao, WANG Jie, MA Xiaolong, XI Li, Mierzhati Kenijialimu, Aliye Maimaiti, WANG Weixia(
)
Received:
2022-07-29
Published:
2023-04-20
Online:
2023-05-06
Correspondence author:
WANG Weixia(1981-), female, native place: Xinjiang, Associate Professor, Research direction: Forest ecology and management, (E-mail) wangweixia0993@163.comSupported by:
摘要:
【目的】研究地形因子对天山北坡天山云杉林土壤有机碳的影响。【方法】在新疆农业大学实习林场选取不同海拔、不同坡度和不同坡向的样地采集土壤样品,测定土壤有机碳含量并计算其碳密度。【结果】不同海拔梯度下,天山云杉林土壤有机碳含量介于41.65~77.67 g/kg,土壤有机碳密度介于9.47~14.27 kg/m2,土壤有机碳含量及密度均随着海拔的升高呈减少的趋势。0~20 cm土层坡度小于15°时,土壤有机碳含量表现为最高(105.08 g/kg),而当坡度达到30°~35°时,土壤有机碳含量最低;不同坡向上土壤有机碳含量从高到低依次为阴坡>半阴坡>半阳坡>阳坡,其中0~20 cm土层阴坡上土壤有机碳含量显著高于阳坡(P<0.05),20~60 cm土层土壤有机碳含量在各坡向之间差异不显著。【结论】天山北坡天山云杉林在高海拔区域内整个剖面土壤有机碳含量分布较低海拔区域相对均匀。坡向对土壤有机碳的再分配作用在20~60cm土层土壤中难以发挥作用。
中图分类号:
夏晓莹, 李思瑶, 王杰, 马小龙, 席丽, 米尔扎提·柯尼加里木, 阿丽耶·麦麦提, 王卫霞. 地形因子对天山北坡天山云杉林土壤有机碳的影响[J]. 新疆农业科学, 2023, 60(4): 965-973.
XIA Xiaoying, LI Siyao, WANG Jie, MA Xiaolong, XI Li, Mierzhati Kenijialimu, Aliye Maimaiti, WANG Weixia. Effects of topographic factors on soil organic carbon in Picea schrenkiana forest on the northern slope of Tianshan Mountain[J]. Xinjiang Agricultural Sciences, 2023, 60(4): 965-973.
海拔 Elevation (m) | 样地数 Number of plots | 坡度 Slope | 样地数 Number of plots | 坡向 Slope aspect | 样地数 Number of plots |
---|---|---|---|---|---|
1 900 | 10 | <15° | 15 | 阴坡 | 53 |
2 000 | 22 | 15°-20° | 15 | 半阴坡 | 20 |
2 100 | 27 | 20°-25° | 20 | 半阳坡 | 20 |
2 200 | 28 | 25°-30° | 27 | 阳坡 | 7 |
2 300 | 13 | 30°-35° | 14 | ||
>35° | 9 |
表1 研究区样地属性分布
Tab.1 The distribution of the sample plot in study area
海拔 Elevation (m) | 样地数 Number of plots | 坡度 Slope | 样地数 Number of plots | 坡向 Slope aspect | 样地数 Number of plots |
---|---|---|---|---|---|
1 900 | 10 | <15° | 15 | 阴坡 | 53 |
2 000 | 22 | 15°-20° | 15 | 半阴坡 | 20 |
2 100 | 27 | 20°-25° | 20 | 半阳坡 | 20 |
2 200 | 28 | 25°-30° | 27 | 阳坡 | 7 |
2 300 | 13 | 30°-35° | 14 | ||
>35° | 9 |
土壤深度 Soil depth (cm) | 最大值 Maximum | 最小值 Minimum | 平均值 Mean | 标准差 Stand. Dev. | 变异系数 Coefficient of variation (%) | 偏度 Skewness | 峰度 Kurtosis |
---|---|---|---|---|---|---|---|
0~20 | 245.47 | 17.2 | 83.72 | 42.11 | 50.30 | 1.06 | 1.38 |
20~60 | 67.78 | 11.18 | 29.28 | 11.22 | 38.32 | 0.823 | 0.63 |
表2 土壤有机碳含量的描述性统计
Tab.2 Descriptive statistics of soil organic carbon content
土壤深度 Soil depth (cm) | 最大值 Maximum | 最小值 Minimum | 平均值 Mean | 标准差 Stand. Dev. | 变异系数 Coefficient of variation (%) | 偏度 Skewness | 峰度 Kurtosis |
---|---|---|---|---|---|---|---|
0~20 | 245.47 | 17.2 | 83.72 | 42.11 | 50.30 | 1.06 | 1.38 |
20~60 | 67.78 | 11.18 | 29.28 | 11.22 | 38.32 | 0.823 | 0.63 |
图1 不同海拔下土壤有机碳含量变化 注:字母不同表示同一土层不同海拔梯度之间差异显著(P<0.05),下同
Fig.1 Effects of different altitude on soil organic carbon content Note: Different letters indicate significant differences between different altitude of the same soil layer at 0.05 level,the same as below
土壤深度 Soil depths (cm) | 土壤有机碳含量 Soil organic content (g/kg) | |||
---|---|---|---|---|
阴坡 Shady slope | 半阴坡 Half shady slope | 半阳坡 Half sunny slope | 阳坡 Sunny slope | |
0~20 | 95.00±6.41a | 81.19±7.13ab | 67.57±7.75ab | 51.60±4.88b |
20~60 | 31.54±1.71a | 29.09±2.36a | 26.17±1.88a | 21.69±1.01a |
表3 不同坡向土壤有机碳含量变化
Tab.3 Effects of different slope aspect on soil organic content indifferent soil depths
土壤深度 Soil depths (cm) | 土壤有机碳含量 Soil organic content (g/kg) | |||
---|---|---|---|---|
阴坡 Shady slope | 半阴坡 Half shady slope | 半阳坡 Half sunny slope | 阳坡 Sunny slope | |
0~20 | 95.00±6.41a | 81.19±7.13ab | 67.57±7.75ab | 51.60±4.88b |
20~60 | 31.54±1.71a | 29.09±2.36a | 26.17±1.88a | 21.69±1.01a |
土壤深度 Soil depths (cm) | 海拔高度 Altitude (m) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 900 | 2 000 | 2 100 | 2 200 | 2 300 | ||||||||
0~20 | 15.08±2.31a | 12.78±1.27ab | 11.27±0.97bc | 9.27±0.57c | 7.81±0.9c | |||||||
20~60 | 13.46±1.29a | 10.51±0.78b | 9.66±0.61b | 9.66±0.49b | 9.42±0.74b | |||||||
土壤深度 Soil depths (cm) | 坡度 Slope | |||||||||||
<15° | 15°~20° | 20°~25° | 25°~30° | 30°~35° | >35° | |||||||
0~20 | 12.51±1.43a | 10.48±1.41ab | 12.71±1.25a | 10.94±0.89ab | 7.63±0.74b | 10.69±2.18ab | ||||||
20~60 | 10.03±0.79a | 10.13±0.86a | 11.18±0.8a | 9.77±0.6a | 10.32±1.01a | 9.46±1.12a | ||||||
土壤深度 Soil depths (cm) | 坡向 Slope aspect | |||||||||||
阴坡 Schattenseite | 半阴坡 Semi shady slope | 半阳坡 Semi sunny slope | 阳坡 Sunny slope | |||||||||
0~20 | 12.09±0.74a | 10.73±1.17ab | 9.35±1.04ab | 7.87±1.24b | ||||||||
20~60 | 10.85±0.48a | 10.55±0.77a | 9.12±0.52ab | 7.25±0.39b |
表4 不同地形条件下土壤有机碳密度
Tab.4 Soil organic carbon density under different terrain conditions (kg/m2)
土壤深度 Soil depths (cm) | 海拔高度 Altitude (m) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 900 | 2 000 | 2 100 | 2 200 | 2 300 | ||||||||
0~20 | 15.08±2.31a | 12.78±1.27ab | 11.27±0.97bc | 9.27±0.57c | 7.81±0.9c | |||||||
20~60 | 13.46±1.29a | 10.51±0.78b | 9.66±0.61b | 9.66±0.49b | 9.42±0.74b | |||||||
土壤深度 Soil depths (cm) | 坡度 Slope | |||||||||||
<15° | 15°~20° | 20°~25° | 25°~30° | 30°~35° | >35° | |||||||
0~20 | 12.51±1.43a | 10.48±1.41ab | 12.71±1.25a | 10.94±0.89ab | 7.63±0.74b | 10.69±2.18ab | ||||||
20~60 | 10.03±0.79a | 10.13±0.86a | 11.18±0.8a | 9.77±0.6a | 10.32±1.01a | 9.46±1.12a | ||||||
土壤深度 Soil depths (cm) | 坡向 Slope aspect | |||||||||||
阴坡 Schattenseite | 半阴坡 Semi shady slope | 半阳坡 Semi sunny slope | 阳坡 Sunny slope | |||||||||
0~20 | 12.09±0.74a | 10.73±1.17ab | 9.35±1.04ab | 7.87±1.24b | ||||||||
20~60 | 10.85±0.48a | 10.55±0.77a | 9.12±0.52ab | 7.25±0.39b |
[1] |
Dixon R K, Solomon A M, Brown S, et al. Carbon pools and flux of global forest ecosystems[J]. Science, 1994, 263(5144): 185-190.
DOI PMID |
[2] |
LUO Youlin, LI Qiquan, SHEN Jie, et al. Effects of agricultural land use change on organic carbon and its labile fractions in the soil profile in an urban agricultural area[J]. Land Degradation & Development, 2019, 30(15): 1875-1885.
DOI URL |
[3] | 王兵, 牛香, 宋庆丰. 基于全口径碳汇监测的中国森林碳中和能力分析[J]. 环境保护, 2021, 49(16): 32-36. |
WANG Bing, NIU Xiang, SONG Qingfeng. Analysis of forest carbon neutralization capacity in China based on full aperture carbon sink monitoring[J]. Environmental Protection, 2021, 49(16): 32-36. | |
[4] | Mendham D S, O'Connell A M, Grove T S. Organic matter characteristics under native forest, long term pasture, and recent conversion to eucalyptus plantations in western Australia: microbial, soil respiration and permanganate oxidation[J]. Australian Journal of Soil Research, 2002, 40(5): 859-872. |
[5] | 罗由林, 李启权, 王昌全, 等. 四川省仁寿县土壤有机碳空间分布特征及其主控因素[J]. 中国生态农业学报, 2015, 23(1): 34-42. |
LUO Youlin, LI Qiquan, WANG Changquan, et al. Spatial variability of soil organic carbon and related controlling factors in Renshou County, Sichuan Province[J]. Chinese Journal of Eco-Agriculture, 2015, 23(1): 34-42. | |
[6] | 舒蛟靖, 陈奇伯, 常玉山, 等. 华山松人工林土壤碳密度及其影响因子[J]. 干旱区资源与环境, 2015, 29(8): 110-114. |
SHU Jiaojing, CHEN Qibo, CHANG Yushan, et al. Soil organic carbon density of Pinus armandii plantation and related affecting factors[J]. Journal of Arid Land Resources and Environment, 2015, 29(8): 110-114. | |
[7] | 崔鸿侠, 肖文发, 黄志霖, 等. 神农架3种针叶林土壤碳储量比较[J]. 东北林业大学学报, 2014, 42(3): 69-72. |
CUI Hongxia, XIAO Wenfa, HUANG Zhilin, et al. Soil organic carbon storage of three coniferous forests in Shennongjia Nature Reserve[J]. Journal of Northeast Forestry University, 2014, 42(3): 69-72. | |
[8] | 杜雪, 王海燕. 中国森林土壤有机碳活性组分及其影响因素[J]. 世界林业研究, 2022, 35(1):76-81. |
DU Xue, WANG Haiyan. Active components of forest soil organic carbon and its influencing factors in China[J]. World Forestry Research, 2022, 35(1):76-81. | |
[9] |
尤海舟, 毕君, 王超, 等. 河北小五台山不同海拔白桦林土壤有机碳密度分布特征及影响因素[J]. 生态环境学报, 2018, 27(3): 432-437.
DOI |
YOU Haizhou, BI Jun, WANG Chao, et al. Altitudinal distribution rule of Betula platyphylla forest’s soil organic carbon density and its influencing factors in Xiaowutai Mountain in Hebei[J]. Ecology and Environmental Sciences, 2018, 27(3): 432-437. | |
[10] | 林维, 崔晓阳. 地形因子对大兴安岭北端寒温带针叶林土壤有机碳储量的影响[J]. 森林工程, 2017, 33(3): 1-6. |
LIN Wei, CUI Xiaoyang. The influences of topographic factors on soil organic carbon storage in cool conifer forest in the north of Great Xing’an Mountain[J]. Forest Engineering, 2017, 33(3): 1-6. | |
[11] | 丁咸庆, 马慧静, 朱晓龙, 等. 大围山不同海拔森林土壤有机碳垂直分布特征[J]. 水土保持学报, 2015, 29(2): 258-262. |
DING Xianqing, MA Huijing, ZHU Xiaolong, et al. The vertical distribution characteristics of soil organic carbon in different altitude of Dawei Mountain[J]. Journal of Soil and Water Conservation, 2015, 29(2): 258-262. | |
[12] | 胡中洋, 刘锐之, 刘萍. 不同尺度天山云杉活立木空间结构分析[J]. 西北林学院学报, 2020, 35(2): 153-159. |
HU Zhongyang, LIU Ruizhi, LIU Ping. Spatial structure on Picea schrenkiana var. tianschanica standing trees at different scales[J]. Journal of Northwest Forestry University, 2020, 35(2): 153-159. | |
[13] |
刘贵峰, 臧润国, 郭仲军, 等. 不同经度天山云杉群落物种丰富度随海拔梯度变化[J]. 应用生态学报, 2008, 19(7): 1407-1413.
PMID |
LIU Guifeng, ZANG Runguo, GUO Zhongjun, et al. Species richness patterns of Picea schrenkiana var. tianschanica communities along an altitudinal gradient at different longitude in Xinjiang of Northwest China[J]. Chinese Journal of Applied Ecology, 2008, 19(7): 1407-1413.
PMID |
|
[14] | 葛瑶, 王振锡. 天山云杉林冠层结构对草本物种多样性的影响[J]. 西北林学院学报, 2020, 35(6): 74-81. |
GE Yao, WANG Zhenxi. Effects of canopy structure on herbaceous species diversity in Picea schrenkiana var. tianschanica forest[J]. Journal of Northwest Forestry University, 2020, 35(6): 74-81. | |
[15] | 刘梦婷, 王振锡, 王雅佩, 等. 新疆天山云杉林群落分布格局及环境解释[J]. 林业科学研究, 2019, 32(6): 90-98. |
LIU Mengting, WANG Zhenxi, WANG Yapei, et al. Plant communities pattern of Piceatianschanica forest and their interretations with environmental factors in Tianshan area[J]. Forestry Research, 2019, 32(6): 90-98. | |
[16] |
王卫霞, 杨光, 王振锡. 更新方式对天山云杉林土壤碳氮的影响[J]. 新疆农业科学, 2020, 57(8): 1474-1483.
DOI |
WANG Weixia, YANG Guang, WANG Zhenxi. Effects of regeneration patterns on soil carbon and nitrogen in Picea schrenkiana var. tianschanica[J]. Xinjiang Agricultural Sciences, 2020, 57(8): 1474-1483.
DOI |
|
[17] | 孟宪宇. 测树学[M]. 北京: 中国林业出版社, 2006. |
MENG Xianyu. Tree Surveying[M]. Beijing: China Forestry Press, 2006. | |
[18] | 刘殿君. 赤峰市敖汉旗小流域防护林空间对位配置研究[D]. 呼和浩特: 内蒙古农业大学, 2009. |
LIU Dianjun. Study on spatial and para position allocation forprotection forest in small watershed in Aohan Qi, Chifeng City[D] Hohhot: Inner Mongolia Agricultural University, 2009. | |
[19] | 李媛, 程积民, 魏琳, 等. 云雾山典型草原火烧不同恢复年限土壤化学性质变化[J]. 生态学报, 2013, 33(7): 2131-2138. |
LI Yuan, CHENG Jimin, WEI Lin, et al. Changes of soil chemical properties after different burning years in typical steppe of Yunwu Mountains[J]. Acta Ecologica Sinica, 2013, 33(7): 2131-2138.
DOI URL |
|
[20] | 郭晓伟, 骆土寿, 李意德, 等. 海南尖峰岭热带山地雨林土壤有机碳密度空间分布特征[J]. 生态学报, 2015, 35(23): 7878-7886. |
GUO Xiaowei, LUO Tushou, LI Yide, et al. Spatial distribution characteristics of soil organic carbon density in a tropical mountain rainforest of Jianfengling, Hainan Island, China[J]. Acta Ecologica Sinica, 2015, 35(23): 7878-7886. | |
[21] | Nielsen D R, Bouma J. Soil spatial variability: proceedings of a workshop of the ISSS and the SSSA,Las Vegas,USA[C]. Geoderma, 1985, (39): 158-159. |
[22] | 刘波, 陈林, 庞丹波, 等. 六盘山华北落叶松土壤有机碳沿海拔梯度的分布规律及其影响因素[J]. 生态学报, 2021, 41(17): 6773-6785. |
LIU Bo, CHEN Lin, PANG Danbo, et al. Altitudinal distribution rule of Laris principis-rupprechtii forest’s soil organic carbon and influencing factors in Liupan Mountain[J]. Acta Ecologica Sinica, 2021, 41(17): 6773-6785. | |
[23] | 曾立雄, 雷蕾, 王晓荣, 等. 海拔梯度对祁连山青海云杉林乔木层和土壤层碳密度的影响[J]. 生态学报, 2018, 38(20): 7168-7177. |
ZENG Lixiong, LEI Lei, WANG Xiaorong, et al. Effect of altitudinal variation on carbon density in arbor layer and soil layer of Picea crassifolia forest in Qilian Mountains[J]. Acta Ecologica Sinica, 2018, 38(20): 7168-7177. | |
[24] |
杨光, 阿丽娅·阿力木, 王卫霞. 阿克苏地区不同土地利用方式对土壤有机碳的影响[J]. 新疆农业科学, 2020, 57(8): 1542-1550.
DOI |
YANG Guang, Aliya Alimu, WANG Weixia. Effects of different land use patterns on soil organic carbon in Aksu Area[J]. Xinjiang Agricultural Sciences, 2020, 57(8): 1542-1550.
DOI |
|
[25] |
徐侠, 陈月琴, 汪家社, 等. 武夷山不同海拔高度土壤活性有机碳变化[J]. 应用生态学报, 2008, 19(3): 539-544.
PMID |
XU Xia, CHEN Yueqin, WANG Jiashe, et al. Variations of soil labile organic carbon along an altitude gradient in Wuyi Mountain[J]. Chinese Journal of Applied Ecology, 2008, 19(3): 539-544.
PMID |
|
[26] | 郑梓萱, 曾辰. 纳木错典型小流域土壤有机碳含量空间分布[J]. 南方农业学报, 2017, 48(12): 2152-2156. |
ZHENG Zixuan, ZENG Chen. Spatial distribution of soil organic carbon in a typical catchment in Namco Basin[J]. Journal of Southern Agriculture, 2017, 48(12): 2152-2156. | |
[27] | 姜霞, 吴鹏, 谢涛, 等. 雷公山自然保护区森林土壤碳、氮、磷化学计量特征的垂直地带性[J]. 江苏农业科学, 2018, 46(14): 292-295. |
JIANG Xia, WU Peng, XIE Tao, et al. Vertical zonality of stoichiometric characteristics of carbon, nitrogen and phosphorus in forest soils of Leigongshan Nature Reserve[J]. Jiangsu Agricultural Sciences, 2018, 46(14): 292-295. | |
[28] | 姜广争, 宫渊波. 干旱河谷区土壤有机碳及其质量分配特征[J]. 安徽农业科学, 2018, 46(27): 137-142. |
JIANG Guangzheng, GONG Yuanbo. Soil organic carbon and quality distribution characteristics in arid river valley[J]. Journal of Anhui Agricultural Sciences, 2018, 46(27): 137-142. | |
[29] | 贾呈鑫卓, 李帅锋, 苏建荣. 地形因子对思茅松人工林土壤有机碳储量的影响[J]. 林业科学研究, 2016, 29(3): 424-429. |
JIA Chengxinzhuo, LI shuaifeng, SU Jianrong. Influence of terrain factors on soil organic carbon stock in Pinus kesiya var. langbianensis plantation[J]. Forest Research, 2016, 29(3): 424-429. | |
[30] | 李龙, 姜丽娜, 白建华. 半干旱区土壤有机碳空间变异及其影响因素的多尺度相关分析[J]. 中国水土保持科学, 2018, 16(5): 40-48. |
LI Long, JIANG Lina, BAI Jianhua. Multi-scale correlations between spatial variability of soil organic carbon and its influencing factors in semiarid zone[J]. Science of Soil and Water Conservation, 2018, 16(5): 40-48. | |
[31] | 李龙, 姚云峰, 秦富仓, 等. 赤峰市小流域地形因子对土壤有机碳密度的影响[J]. 中国水土保持, 2014, (3): 43-46. |
LI Long, YAO Yunfeng, QIN Fucang, et al. Effects of topographic factors on soil organic carbon density in small watershed of Chifeng City[J]. Soil and Water Conservation in China, 2014, (3): 43-46. | |
[32] | Johnson K D, Scatena F N, Johnson A H, et al. Controls on soil organic matter content within a northern hardwood forest[J]. Geoderma, 2009, (148): 346-356. |
[33] | 李龙, 周飞, 田杰, 等. 地形因子对半干旱地区土壤有机碳含量的影响[J]. 北方园艺, 2019, 43(16): 104-109. |
LI Long, ZHOU Fei, TIAN Jie, et al. Effects of topographic factors on soil organic carbon content in semi-arid regions[J]. Northern Horticulture, 2019, 43(16): 104-109. | |
[34] | 张顺平, 乔杰, 孙向阳, 等. 坡向、坡位对泡桐人工林土壤养分空间分布的影响[J]. 中南林业科技大学学报, 2015, 35(1): 109-116. |
ZHANG Shunping, QIAO Jie, SUN Xiangyang, et al. Effects of slope aspect and slope position on spatial distribution of soil nutrients of Paulownia fortune plantation[J]. Journal of Central South University of Forestry and Technology, 2015, 35(1): 109-116. | |
[35] | 李龙, 姚云峰, 秦富仓. 内蒙古赤峰梯田土壤有机碳含量分布特征及其影响因素[J]. 生态学杂志, 2014, 33(11): 2930-2935. |
LI Long, YAO Yunfeng, QIN Fucang. Distribution and affecting factors of soil organic carbon of terraced fields in Chifeng, Inner Mongolia[J]. Chinese Journal of Ecology, 2014, 33(11): 2930-2935. | |
[36] | 马文瑛, 赵传燕, 王超, 等. 祁连山天老池小流域土壤有机碳空间异质性及其影响因素[J]. 土壤, 2014, 46(3): 426-432. |
MA Wenying, ZHAO Chuanyan, WANG Chao, et al. Spatial variability of soil organic carbon and its relationship with environmental factors in Tianlaochi catchment in Qilian Mountains, Northwest China[J]. Soils, 2014, 46(3): 426-432. | |
[37] | 张凯, 徐慧敏, 李秧秧. 坡向与植物群落对水蚀风蚀交错带土壤有机碳氮的影响[J]. 水土保持学报, 2018, 32(6): 156-165. |
ZHANG Kai, XU Huimin, LI Yangyang. Effects of slope aspects and plant community types on soil organic carbon and nitrogen in the crisscross area of wind-water erosion[J]. Journal of Soil and Water Conservation, 2018, 32(6): 156-165. | |
[38] | 郭月峰, 姚云峰, 秦富仓, 等. 地形因子对老哈河流域土壤有机碳的影响[J]. 干旱区资源与环境, 2014, 28(2): 156-161. |
GUO Yuefeng, YAO Yunfeng, QIN Fucang, et al. Impact of terrain factors on soil organic carbon in Laoha River Basin[J]. Journal of Arid Land Resources and Environment, 2014, 28(2): 156-161. |
[1] | 李振瑜, 耿召坤, 赵善超, 高玉德, 王褚, 王世伟, 潘存德, 张国林. 天山云杉林地上植被与土壤种子库物种相似性[J]. 新疆农业科学, 2024, 61(9): 2230-2236. |
[2] | 杨吉祥, 李新国. 湖滨绿洲土壤有机碳含量的支持向量机估算模型[J]. 新疆农业科学, 2024, 61(6): 1477-1486. |
[3] | 魏立志, 叶尔江·拜克吐尔汉, 唐努尔·叶尔肯, 王强, 徐栋. 天山云杉球果和针叶性状对海拔梯度的响应特征[J]. 新疆农业科学, 2024, 61(10): 2465-2474. |
[4] | 马琪瑶, 郝康迪, 胡天祺, 陈哲, 王振锡. 不同分辨遥感影像下天山云杉林分形特征[J]. 新疆农业科学, 2024, 61(1): 209-216. |
[5] | 席丽, 李思瑶, 夏晓莹, 陈玉雯, 李林, 王杰, 马小龙, 米尔扎提·柯尼加里木, 阿丽耶·麦麦提, 王卫霞. 不同郁闭度天山云杉林土壤养分特征[J]. 新疆农业科学, 2023, 60(9): 2216-2222. |
[6] | 汤东, 安玉光, 程平, 李宏, 杨建军, 王凯. 天山北坡前山带典型灌木光合特性对干旱胁迫的响应[J]. 新疆农业科学, 2023, 60(6): 1531-1539. |
[7] | 曲延斌, 王振锡, 胡天祺, 董巍, 陈哲. 基于机载激光雷达影像的天山云杉林树高提取及蓄积量反演[J]. 新疆农业科学, 2023, 60(4): 958-964. |
[8] | 胡文聪, 潘存德, 赵善超, 宋梦真, 童海麦, 田晨阳. 天山北坡中部天山云杉1 a生天然更新幼苗存活数量与功能性状的微生境分析[J]. 新疆农业科学, 2023, 60(2): 454-463. |
[9] | 张帅, 程平, 张齐武, 王凯, 武胜利, 李宏. 天山北坡前山带疏花蔷薇集水造林技术措施筛选[J]. 新疆农业科学, 2023, 60(1): 161-170. |
[10] | 吕金城, 王振锡, 杨勇强, 曲延斌, 马琪瑶. 基于WorldView-2影像和随机森林算法的天山云杉蓄积量反演[J]. 新疆农业科学, 2022, 59(8): 1992-1998. |
[11] | 汪振国, 马媛媛, 王西娜, 刘少泉, 古超峰, 姬强. 生物炭输入对土壤有机碳和玉米生长的影响[J]. 新疆农业科学, 2022, 59(4): 818-826. |
[12] | 葛瑶, 王振锡. 天山云杉林不同林型物种多样性对土壤因子的响应[J]. 新疆农业科学, 2022, 59(1): 134-144. |
[13] | 裴媛, 王振锡, 朱思名, 葛瑶, 师玉霞. 天山西部云杉林群落数量分类与排序[J]. 新疆农业科学, 2021, 58(2): 313-323. |
[14] | 李永福, 耿庆龙, 陈署晃, 赖宁, 李娜, 信会男, 赵海燕. 天山南坡农区土壤养分空间分布特征[J]. 新疆农业科学, 2021, 58(2): 324-331. |
[15] | 吕金城, 王振锡, 杨勇强, 曲延斌, 马琪瑶, 朱思明. 基于无人机影像的天山云杉林树高提取及蓄积量的反演[J]. 新疆农业科学, 2021, 58(10): 1838-1845. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 54
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 189
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||