新疆农业科学 ›› 2024, Vol. 61 ›› Issue (9): 2237-2244.DOI: 10.6048/j.issn.1001-4330.2024.09.019
肖淑婷1(), 颜安1(
), 王卫霞2, 张青青3, 侯正清1, 马梦倩1, 孙哲1
收稿日期:
2024-03-05
出版日期:
2024-09-20
发布日期:
2024-10-09
通信作者:
颜安(1983-),男,四川资阳人,教授,博士,硕士生/博士生导师,研究方向为数字农业技术、农业资源与环境,(E-mail)zryanan@163.com作者简介:
肖淑婷(1998-),女,新疆博州人,硕士研究生,研究方向为农业信息化,(E-mail)1367388036@qq.com
基金资助:
XIAO Shuting1(), YAN An1(
), WANG Weixia2, ZHANG Qingqing3, HOU Zhengqing1, MA Mengqian1, SUN Zhe1
Received:
2024-03-05
Published:
2024-09-20
Online:
2024-10-09
Supported by:
摘要:
【目的】研究天山中部典型林区地上生物量在不同时间和空间尺度上的变化规律,分析其影响因素和天然林区生态系统的动态变化过程,探讨影响地上生物量变化的环境因素。【方法】以2000~2022年近20年的遥感数据和研究区林地实际样地数据为基础,利用遥感信息建立估测模型,估算新疆天山典型天然林区地上生物量,分析该地区生物量的时空动态变化,分析天然林地地上生物量变化的影响因素。【结果】研究区林地地上生物量空间分布差异明显,东北地区生物量高,西南地区生物量低,主要集中在研究区北部。2022年实习林场森林生物量约为3.728×106 t,最大值约为559.67 t/hm2,平均生物量约为233.45 t/hm2。东北地区生物量高于西南地区,纬度增加导致生物量减少。研究区林地地上生物量年际变化趋势存在差异,总体呈稳定和增长状态,52.63%的面积生物量增加,47.37%的面积生物量减小。不同林龄阶段的单位面积生物量随林龄增加而增加,乔木层生物量在成熟林时最高。【结论】幼龄林至过熟林面积和生物量比重不同,需要加大天然更新和人工抚育工作投入。2000~2022年研究区林地地上生物量总体由北向南逐渐增加,降水对生物量增长起到重要作用。实习林场西南区域人类活动频繁,气温和降水变化影响树木和草地生长,导致东北高、西南低的生物量分布。
中图分类号:
肖淑婷, 颜安, 王卫霞, 张青青, 侯正清, 马梦倩, 孙哲. 天山中部典型林区地上生物量时空变化及影响因素分析[J]. 新疆农业科学, 2024, 61(9): 2237-2244.
XIAO Shuting, YAN An, WANG Weixia, ZHANG Qingqing, HOU Zhengqing, MA Mengqian, SUN Zhe. Analysis of spatial and temporal variations of aboveground biomass and the factors affecting it in a typical forest area in the central Tianshan Mountains[J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2237-2244.
模型 Model | 表达式 Expression |
---|---|
岭回归模型 Ridge regression model | |
最小二乘法模型 Least squares model | |
逐步回归模型 Stepwise regression model |
表1 模型构建方法
Tab.1 Model building methods
模型 Model | 表达式 Expression |
---|---|
岭回归模型 Ridge regression model | |
最小二乘法模型 Least squares model | |
逐步回归模型 Stepwise regression model |
精度指标 Precision index | 公式 Formula |
---|---|
决定系数(R2) Coefficient of determination | |
均方根误差(RMSE) Root mean square error | |
模型精度(P) Model accuracy |
表2 精度指标
Tab.2 Accuracy index
精度指标 Precision index | 公式 Formula |
---|---|
决定系数(R2) Coefficient of determination | |
均方根误差(RMSE) Root mean square error | |
模型精度(P) Model accuracy |
名称 Name | VI | |
---|---|---|
NDVI | 归一化植被指数 | |
NDMI | 归一化差值 含水指数 | |
EVI | 增强型植被指数 | |
DVI | 差值植被指数 | |
SAVI | 土壤调节 植被指数 | |
OSAVI | 优化型土壤 调节植被指数 | |
SR | 比植被指数 | |
RDVI | 重归一化 植被指数 | |
PVI | 垂直植被指数 |
表3 植被指数计算公式
Tab.3 Formula for calculating vegetation index
名称 Name | VI | |
---|---|---|
NDVI | 归一化植被指数 | |
NDMI | 归一化差值 含水指数 | |
EVI | 增强型植被指数 | |
DVI | 差值植被指数 | |
SAVI | 土壤调节 植被指数 | |
OSAVI | 优化型土壤 调节植被指数 | |
SR | 比植被指数 | |
RDVI | 重归一化 植被指数 | |
PVI | 垂直植被指数 |
模型名称 Model | 评价指标Evaluation index | ||
---|---|---|---|
R2 | RMSE | P(%) | |
岭回归模型 Ridge regression model | 0.729 | 0.242 | 94.95 |
最小二乘法模型 Least squares model | 0.75 | 0.233 | 95.15 |
逐步回归模型 Stepwise regression model | 0.693 | 0.258 | 94.63 |
表4 地上生物量模型精度评价
Tab.4 Accuracy evaluation table of aboveground biomass model
模型名称 Model | 评价指标Evaluation index | ||
---|---|---|---|
R2 | RMSE | P(%) | |
岭回归模型 Ridge regression model | 0.729 | 0.242 | 94.95 |
最小二乘法模型 Least squares model | 0.75 | 0.233 | 95.15 |
逐步回归模型 Stepwise regression model | 0.693 | 0.258 | 94.63 |
图3 研究区2000~2022年林地地上生物量均值(a)、研究区2000~2022年林地地上生物量的变化趋势(b)
Fig.3 Average aboveground biomass of forest land from 2000 to 2022 in the study area (a), and the trend of aboveground biomass in the study area from 2000 to 2022 (b)
[1] | 陈治中, 昝梅, 杨雪峰, 等. 新疆森林植被碳储量预测研究[J]. 生态环境学报, 2023, 32(2): 226-234. |
CHEN Zhizhong, ZAN Mei, YANG Xuefeng, et al. Prediction of forest vegetation carbon storage in Xinjiang[J]. Ecology and Environmental Sciences, 2023, 32(2): 226-234. | |
[2] | 李盈昌. 森林地上生物量的遥感估测模型优化及时空分析方法[D]. 南京: 南京林业大学, 2021. |
LI Y. Optimization and spatiotemporal analysis method of remote sensing estimation model of forest aboveground biomass[D]. Nanjing: Nanjing Forestry University, 2021. | |
[3] | 钱春花, 李明阳, 郑超. 苏南丘陵山区森林生物量时空变化驱动因素分析[J]. 江苏农业学报, 2021, 37(2): 382-388. |
QIAN Chunhua, LI Mingyang, ZHENG Chao. Analysis on driving factors of spatiotemporal changes of forest biomass in hilly areas of southern Jiangsu[J]. Jiangsu Journal of Agricultural Sciences, 2021, 37(2): 382-388. | |
[4] | 张晓娟, 李东杰, 刘思含, 等. 遥感技术在 “双碳” 目标实现中的应用进展[J]. 航天返回与遥感, 2022, 43(6): 106-118. |
ZHANG Xiaojuan, LI Dongjie, LIU Sihan, et al. Application progress of remote sensing technology in the realization of\ “double carbon\” goal[J]. Spacecraft Recovery & Remote Sensing, 2022, 43(6): 106-118. | |
[5] | 曹海翊, 邱心怡, 贺涛. 森林生物量遥感卫星发展综述[J]. 光学学报, 2022, 42(17): 1728001. |
CAO Haiyi, QIU Xinyi, HE Tao. Review on development of forest biomass remote sensing satellites[J]. Acta Optica Sinica, 2022, 42(17): 1728001. | |
[6] | 钱春花. 喀斯特地区森林生物量遥感反演与时空动态分析[D]. 南京: 南京林业大学, 2022. |
QIAN C. Remote sensing inversion and spatiotemporal dynamic analysis of forest biomass in karst area[D]. Nanjing: Nanjing Forestry University, 2022. | |
[7] | 蔡潮勇, 曹姗姗, 孔繁涛. 2014年新疆天山西部云杉地上生物量空间分布数据集[J]. 中国科学数据(中英文网络版), 2022, 7(3): 250-263. |
CAI C, CAO S, KONG F, et al. Spatial distribution dataset of aboveground biomass of spruce in western Tianshan Mountains, Xinjiang in 2014[J]. Science Data in China (Chinese and English Online), 2022, 7(3): 250-263. | |
[8] | 陈冬花, 邹陈, 李滨勇, 等. 西天山云杉林生物量与植被指数关系研究[J]. 北京师范大学学报(自然科学版), 2011, 47(3): 321-325. |
CHEN Donghua, ZOU Chen, LI Binyong, et al. Relationships between biomass and vegetation index of picea schrenkiana var. tianshanica in western Tianshan Mountain[J]. Journal of Beijing Normal University (Natural Science), 2011, 47(3): 321-325. | |
[9] | LY/T 2655—2016. 立木生物量模型及碳计量参数云杉[S]. |
LY/T 2655—2016. Tree biomass models and related parameters to carbon accounting for Picea[S]. | |
[10] | 周蓉, 赵天忠, 吴发云. 基于Landsat 8遥感影像的地上生物量模型反演研究[J]. 西北林学院学报, 2022, 37(2): 186-192. |
ZHOU Rong, ZHAO Tianzhong, WU Fayun. Aboveground biomass model based on landsat 8 remote sensing images[J]. Journal of Northwest Forestry University, 2022, 37(2): 186-192. | |
[11] | 许振宇, 李盈昌, 李明阳, 等. 基于Sentinel-1A和Landsat 8数据的区域森林生物量反演[J]. 中南林业科技大学学报, 2020, 40(11): 147-155. |
XU Zhenyu, LI Yingchang, LI Mingyang, et al. Forest biomass retrieval based on Sentinel-1A and Landsat 8 image[J]. Journal of Central South University of Forestry & Technology, 2020, 40(11): 147-155. | |
[12] | 杨淑霞, 冯琦胜, 孟宝平. 三江源地区高寒草地地上生物量时空动态变化[J]. 草业科学, 2018, 35(5): 956-968. |
YANG S, FENG Q, MENG B. Spatial-temporal dynamics of aboveground biomass in alpine grassland in Sanjiangyuan area[J]. Pratacultural Science, 2018, 35(5): 956-968. | |
[13] | 李晴晴, 曹艳萍, 苗书玲. 黄河流域植被时空变化及其对气候要素的响应[J]. 生态学报, 2022, 42(10): 4041-4054. |
LI Qingqing, CAO Yanping, MIAO Shuling. Spatio-temporal variation in vegetation coverage and its response to climate factors in the Yellow River Basin, China[J]. Acta Ecologica Sinica, 2022, 42(10): 4041-4054. | |
[14] | 王公鑫, 井长青, 董萍, 等. 新疆荒漠草地生物量估算及影响因素研究[J]. 草地学报, 2022, 30(7): 1862-1872. |
WANG Gongxin, JING Changqing, DONG Ping, et al. Study on biomass estimation and influencing factors of desert grassland in Xinjiang[J]. Acta Agrestia Sinica, 2022, 30(7): 1862-1872. | |
[15] | 王启元, 赵艳玲, 房铄东. 基于多光谱遥感的裸土土壤含水量反演研究[J]. 矿业科学学报, 2020, 5(6): 608-615. |
Wet al. Inversion of soil water content in bare soil based on multispectral remote sensing[J]. Journal of Mining Science, 2020, 5(6): 608-615. | |
[16] | 刘天龙. 济南市森林蓄积量遥感监测研究[D]. 济南: 山东师范大学, 2015. |
LIU Tianlong. Study on Remote Sensing Monitoring of Forest Volume in Jinan City[D]. Jinan: Shandong Normal University, 2015. | |
[17] | 罗庆辉, 徐泽源, 许仲林. 天山雪岭云杉林生物量估测及空间格局分析[J]. 生态学报, 2020, 40(15): 5288-5297. |
LUO Qinghui, XU Zeyuan, XU Zhonglin. Estimation and spatial pattern analysis of biomass of Picea schrenkiana forests[J]. Acta Ecologica Sinica, 2020, 40(15): 5288-5297. | |
[18] | 张文强, 罗格平, 郑宏伟, 等. 基于随机森林模型的内陆干旱区植被指数变化与驱动力分析: 以北天山北坡中段为例[J]. 植物生态学报, 2020, 44(11): 1113-1126. |
ZHANG Wenqiang, LUO Geping, ZHENG Hongwei, et al. Analysis of vegetation index changes and driving forces in inland arid areas based on random forest model: a case study of the middle part of northern slope of the North Tianshan Mountains[J]. Chinese Journal of Plant Ecology, 2020, 44(11): 1113-1126. | |
[19] | 宋良友, 何功秀. 不同林龄阶段杉木人工林生物量和碳储量的分布特征[J]. 湖南林业科技, 2021, 48(1): 71-75, 94. |
SONG Liangyou, HE Gongxiu. Distribution characteristics of biomass and carbon storage of Cunninghamia lanceolata plantation in different age stages[J]. Hunan Forestry Science & Technology, 2021, 48(1): 71-75, 94. | |
[20] | 曾伟, 江斌, 余林, 等. 江西杉木人工林生物量分配格局及其模型构建[J]. 南京林业大学学报(自然科学版), 2016, 40(3): 177-182. |
ZENG Wei, JIANG Bin, YU Lin, et al. Biomass allocation and its model construction of Cunninghamia lanceolata plantations in Jiangxi Province[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016, 40(3): 177-182. | |
[21] | 潘鹏, 吕丹, 欧阳勋志, 等. 赣中马尾松天然林不同生长阶段生物量及碳储量研究[J]. 江西农业大学学报, 2014, 36(1): 131-136. |
PAN Peng, LYU Dan, OUYANG Xunzhi, et al. A study on biomass and carbon storage of natural Pinus massoniana forest at different stand growing stages in central Jiangxi Province[J]. Acta Agriculturae Universitatis Jiangxiensis, 2014, 36(1): 131-136. | |
[22] | 徐婷, 曹林, 佘光辉. 基于Landsat 8 OLI的特征变量优化提取及森林生物量反演[J]. 遥感技术与应用, 2015, 30(2): 226-234. |
XU Ting, CAO Lin, SHE Guanghui. Feature extraction and forest biomass estimation based on landsat 8 OLI[J]. Remote Sensing Technology and Application, 2015, 30(2): 226-234. | |
[23] | 范文义, 李明泽, 杨金明. 长白山林区森林生物量遥感估测模型[J]. 林业科学, 2011, 47(10): 16-20. |
FAN Wenyi, LI Mingze, YANG Jinming. Forest biomass estimation models of remote sensing in Changbai Mountain forests[J]. Scientia Silvae Sinicae, 2011, 47(10): 16-20. | |
[24] | Wang X X, Jia K, Li S, et al. Estimating Fractional Vegetation Cover From Landsat-7 ETM+ Reflectance Data Based on a Coupled Radiative Transfer and Crop Growth Model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10). |
[25] | 彭守璋, 赵传燕, 郑祥霖, 等. 祁连山青海云杉林生物量和碳储量空间分布特征[J]. 应用生态学报, 2011, 22(7): 1689-1694. |
PENG Shouzhang, ZHAO Chuanyan, ZHENG Xianglin, et al. Spatial distribution characteristics of the biomass and carbon storage of Qinghai spruce (Picea crassifolia) forests in Qilian Mountains[J]. Chinese Journal of Applied Ecology, 2011, 22(7): 1689-1694. | |
[26] | 李猛, 陆彦羽, 卢腾飞. 云南怒江流域森林地上生物量光学遥感估测及饱和点分析[J]. 西南林业大学学报(自然科学), 2022, 42(3): 116-127. |
LI M, LU Y, LU T, et al. Optical remote sensing estimation and saturation point analysis of aboveground biomass in the Nu River Basin of Yunnan[J]. Journal of Southwest Forestry University (Natural Science), 2022, 42(3): 116-127. | |
[27] | 李路, 常亚鹏, 许仲林. 乌鲁木齐南山森林生物量和碳储量空间分布特征[J]. 水土保持研究, 2018, 25(5): 72-77. |
LI Lu, CHANG Yapeng, XU Zhonglin. Spatial distribution characteristics of the biomass and carbon storage of forest in Nanshan Mountain, Urumqi[J]. Research of Soil and Water Conservation, 2018, 25(5): 72-77. | |
[28] | 曾晶, 张晓丽. 高分一号遥感影像下崂山林场林分生物量反演估算研究[J]. 中南林业科技大学学报, 2016, 36(1): 46-51. |
ZENG Jing, ZHANG Xiaoli. Laoshan forest biomass estimation based on GF-1 images with inversion algorithm[J]. Journal of Central South University of Forestry & Technology, 2016, 36(1): 46-51. | |
[29] | 刘芳, 冯仲科, 赵芳, 等. 资源三号遥感卫星影像的生物量反演研究[J]. 西北林学院学报, 2015, 30(3): 175-181. |
LIU Fang, FENG Zhongke, ZHAO Fang, et al. Biomass inversion study of ZY-3 remote sensing satellite imagery[J]. Journal of Northwest Forestry University, 2015, 30(3): 175-181. | |
[30] | 菅永峰, 韩泽民, 黄光体, 等. 基于高分辨率遥感影像的北亚热带森林生物量反演[J]. 生态学报, 2021, 41(6): 2161-2169. |
JIAN Yongfeng, HAN Zemin, HUANG Guangti, et al. Estimation of forest biomass using high spatial resolution remote sensing imagery in north subtropical forests[J]. Acta Ecologica Sinica, 2021, 41(6): 2161-2169. |
[1] | 李汝勇, 任久明, 雷霆, 王克林, 刘鹏程, 李江涛. 基于光合法和生物量法分析塔里木沙漠公路防护林带碳汇估算差异性[J]. 新疆农业科学, 2024, 61(8): 2014-2022. |
[2] | 张怡然, 叶尔江·拜克吐尔汉, 拜合提古力·卡依尔, 齐智颖. 城市绿地系统中火炬树根蘖苗空间分布格局及预测[J]. 新疆农业科学, 2024, 61(8): 2023-2033. |
[3] | 刘雨萍, 徐兵强, 宋博, 李海强, 陈浩宇, 郝敬喆, 朱晓锋, 任金龙. 李小食心虫在果园的空间分布变化及其最适抽样数的分析[J]. 新疆农业科学, 2024, 61(7): 1772-1777. |
[4] | 邵亚杰, 李珂, 丁文浩, 林涛, 崔建平, 郭仁松, 王亮, 吴凤全, 王心, 汤秋香. 基于无人机多光谱影像特征估算棉花生物量[J]. 新疆农业科学, 2024, 61(6): 1328-1335. |
[5] | 刘钧庆, 梁国成, 张欣, 王庆勇, 赵经华. 调亏灌溉对滴灌核桃树根系空间分布特征的影响[J]. 新疆农业科学, 2024, 61(5): 1160-1171. |
[6] | 耿美菊, 王新绘, 刘晓颖, 吕佩. 封育对荒漠草原真菌群落的影响[J]. 新疆农业科学, 2024, 61(5): 1250-1258. |
[7] | 葛伟淇, 胡安, 王德钢, 许正红, 刘长月, 何梦雅, 唐永清, 王朴, 王少山. 不同林分类型下白蜡窄吉丁空间格局分析[J]. 新疆农业科学, 2024, 61(4): 964-970. |
[8] | 李亚莉, 哈丽哈什·依巴提, 唐亚莉, 段婧婧, 李青军. 氮磷减施与钾协同共效对加工番茄产量和养分吸收的影响[J]. 新疆农业科学, 2024, 61(12): 3014-3019. |
[9] | 陈国祥, 魏杨, 郭文超, 李佩璇, 阿地力·沙塔尔. 核桃园苹果蠹蛾的空间分布型与抽样技术分析[J]. 新疆农业科学, 2024, 61(11): 2769-2778. |
[10] | 侯正清, 颜安, 谢开云, 袁以琳, 夏雯秋, 肖淑婷, 张振飞, 孙哲. 基于植被指数融合天山假狼毒地上生物量的估测[J]. 新疆农业科学, 2024, 61(11): 2787-2796. |
[11] | 侯正清, 颜安, 谢开云, 袁以琳, 夏雯秋, 肖淑婷, 张振飞, 孙哲. 基于多特征融合的无人机天山假狼毒地上生物量估算[J]. 新疆农业科学, 2024, 61(10): 2527-2536. |
[12] | 夏停停, 苏比努尔·吾麦尔江, 于昭文, 李宏, 吕文钧, 吐尔逊娜依·热依木. 不同利用方式对天山北坡中段山地草甸草地植物生物量分布的影响[J]. 新疆农业科学, 2023, 60(4): 974-981. |
[13] | 吕齐, 蒋宇, 赵丰云, 雷叶, 于坤, 姚东东, 李旭娇, 沙日叶, 王芳霞. 施加生物炭对盐胁迫下无花果生物量叶绿素荧光参数及离子分配的影响[J]. 新疆农业科学, 2023, 60(3): 574-581. |
[14] | 赵欣欣, 刘太杰, 韩迎春, 王国平, 陈焕轩, 熊世武, 雷亚平, 杨北方, 李亚兵, 冯璐. 种植密度对机采麦套棉产量形成及品质的影响[J]. 新疆农业科学, 2022, 59(9): 2081-2090. |
[15] | 蒲胜海, 王则玉, 丁峰, 牛新湘, 金秀勤, 马红红, 马兴旺, 李磐, 彭银双, 刘小利, 涂永峰, 赵冬梅, 李小伟, 李韵同. 膜下滴灌水氮空间调控对机采棉群体塑造及产量的影响[J]. 新疆农业科学, 2022, 59(8): 1838-1846. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 37
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 132
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||