

Xinjiang Agricultural Sciences ›› 2025, Vol. 62 ›› Issue (5): 1084-1091.DOI: 10.6048/j.issn.1001-4330.2025.05.005
• Crop Genetics and Breeding·Cultivation Physiology·Physiology and Biochemistry • Previous Articles Next Articles
DING Shugen1(
), SHI Yujie1, Abudukeyoumu Abudurezike2, XU Lin2, WU Yuanlong1, LI Zhibo1, LIN Hairong1, ZHAO Zengqiang3, NIE Xinhui1(
)
Received:2024-10-11
Online:2025-05-20
Published:2025-07-09
Correspondence author:
NIE Xinhui
Supported by:
丁树根1(
), 石玉杰1, 阿布都克尤木·阿不都热孜克2, 徐麟2, 吴元龙1, 李志博1, 林海荣1, 赵曾强3, 聂新辉1(
)
通讯作者:
聂新辉
作者简介:丁树根(1998-),男,安徽人,硕士研究生,研究方向为棉花作物遗传育种,(E-mail)dsg199878@gmail.com
基金资助:CLC Number:
DING Shugen, SHI Yujie, Abudukeyoumu Abudurezike, XU Lin, WU Yuanlong, LI Zhibo, LIN Hairong, ZHAO Zengqiang, NIE Xinhui. Mapping and genetic effect analysis of QTL for cotton seed oil content[J]. Xinjiang Agricultural Sciences, 2025, 62(5): 1084-1091.
丁树根, 石玉杰, 阿布都克尤木·阿不都热孜克, 徐麟, 吴元龙, 李志博, 林海荣, 赵曾强, 聂新辉. 棉花种子油分含量QTL的定位及遗传效应分析[J]. 新疆农业科学, 2025, 62(5): 1084-1091.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.xjnykx.com/EN/10.6048/j.issn.1001-4330.2025.05.005
| 环境 Environments | 最小值 Min(%) | 最大值 Max(%) | 均值 Mean(%) | 标准差 SD | 变异系数 CV(%) | 广义遗传力 H2(%) |
|---|---|---|---|---|---|---|
| 2018年库尔勒 Korla in 2018 | 13.41 | 21.98 | 17.70 | 3.29 | 5.38 | 96.98 |
| 2019年库尔勒 Korla in 2019 | 14.45 | 21.76 | 17.79 | 1.93 | 9.22 | |
| 2018年石河子 Shihezi 2018 | 13.96 | 21.05 | 17.43 | 1.86 | 9.37 | |
| 2019年石河子 Shihezi 2019 | 14.17 | 19.67 | 16.84 | 1.59 | 10.59 |
Tab.1 Phenotypic variation of oil traits in four environments
| 环境 Environments | 最小值 Min(%) | 最大值 Max(%) | 均值 Mean(%) | 标准差 SD | 变异系数 CV(%) | 广义遗传力 H2(%) |
|---|---|---|---|---|---|---|
| 2018年库尔勒 Korla in 2018 | 13.41 | 21.98 | 17.70 | 3.29 | 5.38 | 96.98 |
| 2019年库尔勒 Korla in 2019 | 14.45 | 21.76 | 17.79 | 1.93 | 9.22 | |
| 2018年石河子 Shihezi 2018 | 13.96 | 21.05 | 17.43 | 1.86 | 9.37 | |
| 2019年石河子 Shihezi 2019 | 14.17 | 19.67 | 16.84 | 1.59 | 10.59 |
Fig.2 Lines graph of K value with ln(P(D)) value and ΔK value based on structure analysis Notes:A: Line chart of K value and Mean lnP(K); B: Line chart of ΔK changing with K values
| 性状 Trait | 位点 Locus | P_FDR | 表型变 异解释率 Phenotypic variation explanatiory rateR2(%) |
|---|---|---|---|
| HAU4483b** | 2.38E-06 | 8.70 | |
| HAU4483a** | 6.10E-06 | 8.68 | |
| MON_SHIN-1585a** | 6.29E-06 | 7.54 | |
| MON_SHIN-1481a** | 1.14E-05 | 7.32 | |
| MON_CGR5447a** | 1.96E-05 | 7.00 | |
| HAU4022b** | 8.97E-05 | 6.93 | |
| MUSS422aa** | 1.45E-04 | 6.90 | |
| SOC | HAU3071ad** | 3.18E-04 | 6.82 |
| 种子油分含量 | HAU0875** | 0.0034 | 6.69 |
| NAU3346ba** | 0.0036 | 6.65 | |
| MON_DPL0375ca** | 0.0042 | 6.61 | |
| HAU-SNP113b** | 0.0055 | 6.54 | |
| NAU3774a** | 0.0061 | 6.54 | |
| NAU3736bb* | 0.0241 | 6.38 | |
| HAU2588a* | 0.0285 | 6.37 | |
| HAU2588b* | 0.0368 | 6.36 | |
| NAU3827b* | 0.0395 | 6.30 | |
| MUSS422ab* | 0.0432 | 6.06 | |
| NAU5172b* | 0.029 | 5.18 | |
| HAU-SNP113a* | 0.0362 | 5.14 | |
| NBRI_HQ526730c* | 0.0422 | 5.00 | |
| NBRI_HQ527566* | 0.0121 | 5.00 | |
| DPL0062* | 0.0183 | 4.98 | |
| HAU4022c* | 0.0224 | 4.84 | |
| SOC | BNL2449b* | 0.0237 | 4.83 |
| 种子油分含量 | BNL2449a* | 0.029 | 4.76 |
| HAU1952bc* | 0.0368 | 4.71 | |
| NAU7182* | 0.0395 | 4.55 | |
| NAU3774b* | 0.0432 | 4.47 | |
| MON_DPL0893a* | 0.0493 | 4.46 | |
| BNL2535ba* | 0.0496 | 4.45 | |
| BNL2535bb** | 1.14E-05 | 3.06 | |
| NBRI_HQ527820a** | 1.96E-05 | 2.06 | |
| MON_DPL0502a** | 8.97E-05 | 1.83 |
Tab.2 SSR locus associated with seed oil content
| 性状 Trait | 位点 Locus | P_FDR | 表型变 异解释率 Phenotypic variation explanatiory rateR2(%) |
|---|---|---|---|
| HAU4483b** | 2.38E-06 | 8.70 | |
| HAU4483a** | 6.10E-06 | 8.68 | |
| MON_SHIN-1585a** | 6.29E-06 | 7.54 | |
| MON_SHIN-1481a** | 1.14E-05 | 7.32 | |
| MON_CGR5447a** | 1.96E-05 | 7.00 | |
| HAU4022b** | 8.97E-05 | 6.93 | |
| MUSS422aa** | 1.45E-04 | 6.90 | |
| SOC | HAU3071ad** | 3.18E-04 | 6.82 |
| 种子油分含量 | HAU0875** | 0.0034 | 6.69 |
| NAU3346ba** | 0.0036 | 6.65 | |
| MON_DPL0375ca** | 0.0042 | 6.61 | |
| HAU-SNP113b** | 0.0055 | 6.54 | |
| NAU3774a** | 0.0061 | 6.54 | |
| NAU3736bb* | 0.0241 | 6.38 | |
| HAU2588a* | 0.0285 | 6.37 | |
| HAU2588b* | 0.0368 | 6.36 | |
| NAU3827b* | 0.0395 | 6.30 | |
| MUSS422ab* | 0.0432 | 6.06 | |
| NAU5172b* | 0.029 | 5.18 | |
| HAU-SNP113a* | 0.0362 | 5.14 | |
| NBRI_HQ526730c* | 0.0422 | 5.00 | |
| NBRI_HQ527566* | 0.0121 | 5.00 | |
| DPL0062* | 0.0183 | 4.98 | |
| HAU4022c* | 0.0224 | 4.84 | |
| SOC | BNL2449b* | 0.0237 | 4.83 |
| 种子油分含量 | BNL2449a* | 0.029 | 4.76 |
| HAU1952bc* | 0.0368 | 4.71 | |
| NAU7182* | 0.0395 | 4.55 | |
| NAU3774b* | 0.0432 | 4.47 | |
| MON_DPL0893a* | 0.0493 | 4.46 | |
| BNL2535ba* | 0.0496 | 4.45 | |
| BNL2535bb** | 1.14E-05 | 3.06 | |
| NBRI_HQ527820a** | 1.96E-05 | 2.06 | |
| MON_DPL0502a** | 8.97E-05 | 1.83 |
| 位点 Locus | 染色体 Chr | 物理位置 Location (bp) | 已报道研究 性状及文献 Reported traits and references |
|---|---|---|---|
| HAU3071 | Chr14 | 307 | FE[ |
| NAU3346 | Chr15 | 305 | FL[ |
| NAU3736 | Chr01 | 203 | FE[ |
| NAU3827 | Chr18 | 136 | LY[ |
| NAU3774 | Chr26 | 293 | FU[ MV[ |
| DPL0062 | Chr21 | 137 | LW[ FU[ |
| MUSS422 | Chr01 | 207 | FU[ SFC[ |
| BNL2449 | Chr13 | 183 | BW[ MV[ LP[ |
| NBRI_HQ526730 | Chr01 | 228 | SI[ |
Tab.3 Comparative results of this study with reported sites
| 位点 Locus | 染色体 Chr | 物理位置 Location (bp) | 已报道研究 性状及文献 Reported traits and references |
|---|---|---|---|
| HAU3071 | Chr14 | 307 | FE[ |
| NAU3346 | Chr15 | 305 | FL[ |
| NAU3736 | Chr01 | 203 | FE[ |
| NAU3827 | Chr18 | 136 | LY[ |
| NAU3774 | Chr26 | 293 | FU[ MV[ |
| DPL0062 | Chr21 | 137 | LW[ FU[ |
| MUSS422 | Chr01 | 207 | FU[ SFC[ |
| BNL2449 | Chr13 | 183 | BW[ MV[ LP[ |
| NBRI_HQ526730 | Chr01 | 228 | SI[ |
| [1] | 许红霞, 杨伟华, 王延琴, 等. 我国油用棉子质量状况分析[J]. 中国棉花, 2009, 36(7): 2-3. |
| XU Hongxia, YANG Weihua, WANG Yanqin, et al. Analysis on the quality of oil cottonseed in China[J]. China Cotton, 2009, 36(7): 2-3. | |
| [2] |
Liu Q, Singh S, Green A. Genetic modification of cotton seed oil using inverted-repeat gene-silencing techniques[J]. Biochemical Society Transactions, 2000, 28(6): 927-929.
PMID |
| [3] | Meneghetti S M P, Meneghetti M R, Serra T M, et al. Biodiesel production from vegetable oil mixtures: cottonseed, soybean, and Castor oils[J]. Energy & Fuels, 2007, 21(6): 3746-3747. |
| [4] | 贾秀凌. 陆地棉SSR标记遗传图谱构建与纤维品质性状QTL定位[D]. 重庆: 西南大学, 2014. |
| JIA Xiuling. Construction of upland cotton SSR marker genetic map and QTL mapping of fiber quality traits[D]. Chongqing: Southwest University, 2014. | |
| [5] |
Huang X H, Han B. Natural variations and genome-wide association studies in crop plants[J]. Annual Review of Plant Biology, 2014, 65: 531-551.
DOI PMID |
| [6] |
Yano K, Yamamoto E, Aya K, et al. Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice[J]. Nature Genetics, 2016, 48(8): 927-934.
DOI PMID |
| [7] | Yang N, Lu Y L, Yang X H, et al. Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel[J]. PLoS Genetics, 2014, 10(9): e1004573. |
| [8] |
Han Y P, Zhao X, Liu D Y, et al. Domestication footprints anchor genomic regions of agronomic importance in soybeans[J]. New Phytologist, 2016, 209(2): 871-884.
DOI PMID |
| [9] | 刘凯, 邓志英, 张莹, 等. 小麦茎秆断裂强度相关性状QTL的连锁和关联分析[J]. 作物学报, 2017, 43(4): 483-495. |
| LIU Kai, DENG Zhiying, ZHANG Ying, et al. Linkage analysis and genome-wide association study of QTLs controlling stem-breaking-strength-related traits in wheat[J]. Acta Agronomica Sinica, 2017, 43(4): 483-495. | |
| [10] | Yuan Y C, Wang X L, Wang L Y, et al. Genome-wide association study identifies candidate genes related to seed oil composition and protein content in Gossypium hirsutum L[J]. Frontiers in Plant Science, 2018, 9: 1359. |
| [11] | Zhao W X, Kong X H, Yang Y, et al. Association mapping seed kernel oil content in upland cotton using genome-wide SSRs and SNPs[J]. Molecular Breeding, 2019, 39(7): 105. |
| [12] | Liu D X, Liu F, Shan X R, et al. Construction of a high-density genetic map and lint percentage and cottonseed nutrient trait QTL identification in upland cotton (Gossypium hirsutum L.)[J]. Molecular Genetics and Genomics, 2015, 290(5): 1683-1700. |
| [13] |
Li X M, Yuan D J, Wang H T, et al. Increasing cotton genome coverage with polymorphic SSRs as revealed by SSCP[J]. Genome, 2012, 55(6): 459-470.
DOI PMID |
| [14] |
Nie X H, Huang C, You C Y, et al. Genome-wide SSR-based association mapping for fiber quality in nation-wide upland cotton inbreed cultivars in China[J]. BMC Genomics, 2016, 17: 352.
DOI PMID |
| [15] |
田博宇, 黄义文, 周大云, 等. 不同形态棉籽中油分含量快速无损近红外检测方法的建立[J]. 棉花学报, 2023, 35(4): 325-333.
DOI |
| TIAN Boyu, HUANG Yiwen, ZHOU Dayun, et al. Development of a rapid non-destructive method for the detection of cottonseed oil content by near-infrared spectroscopy[J]. Cotton Science, 2023, 35(4): 325-333. | |
| [16] |
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study[J]. Molecular Ecology, 2005, 14(8): 2611-2620.
DOI PMID |
| [17] |
Falush D, Stephens M, Pritchard J K. Inference of population structure using multilocus genotype data: dominant markers and null alleles[J]. Molecular Ecology Notes, 2007, 7(4): 574-578.
DOI PMID |
| [18] |
Liu K J, Muse S V. PowerMarker: an integrated analysis environment for genetic marker analysis[J]. Bioinformatics, 2005, 21(9): 2128-2129.
DOI PMID |
| [19] |
雷杰杰, 邵盘霞, 郭春平, 等. 新疆陆地棉经济性状优异等位基因位点的遗传解析[J]. 棉花学报, 2020, 32(3): 185-198.
DOI |
| LEI Jiejie, SHAO Panxia, GUO Chunping, et al. Genetic dissection of allelic loci associated with economic traits of upland cottons in Xinjiang[J]. Cotton Science, 2020, 32(3): 185-198. | |
| [20] |
Yu Y, Yuan D J, Liang S G, et al. Genome structure of cotton revealed by a genome-wide SSR genetic map constructed from a BC1 population between Gossypium hirsutum and G. barbadense[J]. BMC Genomics, 2011, 12: 15.
DOI PMID |
| [21] | Guo W Z, Cai C P, Wang C B, et al. A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium[J]. Genetics, 2007, 176(1): 527-541. |
| [22] | Yu J W, Zhang K, Li S Y, et al. Mapping quantitative trait loci for lint yield and fiber quality across environments in a Gossypium hirsutum × Gossypium barbadense backcross inbred line population[J]. Theoretical and Applied Genetics, 2013, 126(1): 275-287. |
| [23] | Wang H T, Huang C, Guo H L, et al. QTL mapping for fiber and yield traits in upland cotton under multiple environments[J]. PLoS One, 2015, 10(6): e0130742. |
| [24] | 王寒涛. 陆地棉遗传图谱的构建及其重要农艺性状的QTL定位[D]. 武汉: 华中农业大学, 2015. |
| WANG Hantao. Construction of upland cotton genetic map and QTL positioning of important agronomic traits[D]. Wuhan: Huazhong Agricultural University, 2015. | |
| [25] |
Du X M, Huang G, He S P, et al. Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits[J]. Nature Genetics, 2018, 50(6): 796-802.
DOI PMID |
| [26] | Guo W Z, Ma G J, Zhu Y C, et al. Molecular tagging and mapping of quantitative trait loci for lint percentage and morphological marker genes in upland cotton[J]. Journal of Integrative Plant Biology, 2006, 48(3): 320-326. |
| [27] | Sun F D, Zhang J H, Wang S F, et al. QTL mapping for fiber quality traits across multiple generations and environments in upland cotton[J]. Molecular Breeding, 2012, 30(1): 569-582. |
| [28] | Yu J W, Yu S X, Gore M, et al. Identification of quantitative trait loci across interspecific F2, F2: 3 and testcross populations for agronomic and fiber traits in tetraploid cotton[J]. Euphytica, 2013, 191(3): 375-389. |
| [1] | LUO Ying, Nurziya Yarmamat, JIA Wenjie, ZHU Qi, LI Yutong, SHI Wenting, JIA Peisong. Identification and genetic diversity of wild Pleurotus in Xinjiang [J]. Xinjiang Agricultural Sciences, 2025, 62(5): 1266-1272. |
| [2] | Gulinaer Bahetibieke, LIU Wenjing, MA Jingbiao, ZHANG Guosheng, GUO Qiping, YUAN Jie, ZHANG Yanhong, AN Wangang, Sajidaimu Yusufu, PAN Jianming, REN Lei. Germination characteristics and salt tolerance of rice seeds under salt stress [J]. Xinjiang Agricultural Sciences, 2025, 62(4): 858-868. |
| [3] | WANG Heya, LUO Jingjing, MENG Ling, LI Huaisheng, AI Haifeng, JIA Donghai. Comprehensive evaluation of new variety(strain) in Taer Basin based on principal component analysis and cluster analysis [J]. Xinjiang Agricultural Sciences, 2025, 62(1): 118-128. |
| [4] | Mahemuti Abulaiti, Muhetaer zhare, Mireguli Waili, Hadier Yishake. Correlation and regression analysis between leaf margin scorch diseases and leaf nutrient content of walnut [J]. Xinjiang Agricultural Sciences, 2024, 61(4): 945-953. |
| [5] | WANG Jijiao, PAN Yue, WANG Shiwei, HAN Zhengwei, MA Yong, HU Haifang, WANG Baoqing. Canonical correlation analysis of soil nutrients and the quality of Beibinghong grape juice [J]. Xinjiang Agricultural Sciences, 2024, 61(2): 355-364. |
| [6] | YANG Cunming, ZHANG Xiaoxue, ZHANG Menghua, ZHAO Zhiwen, LI Fengjie, HUANG Xixia, LI Jie, Aizimaiti Awuti, HE Junmin, LI Xue, LI Tingting, TANG Li, ZHANG Wenjing, TIAN Yuezhen, TIAN Kechuan. Analysis of correlation and difference of target traits in fine wool sheep breeding [J]. Xinjiang Agricultural Sciences, 2024, 61(2): 514-520. |
| [7] | WANG Fan, LI Yushan, WANG Wei, DENG Chaohong, ZHAO Lianjia, MA Yue, XIAO Jing, ZHUANG Hongmei, Xu Hongjun. Genetic diversity analysis of major nutritional growth traits in 74 turnip germplasm resources [J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2601-2613. |
| [8] | LI Chao, YANG Ying, ZHENG Heyun, YANG Jianli, CHEN Wei, YANG Mi, SUN Yuping. Genetic diversity and population structure analysis of melon germplasm resources in Xinjiang based on SSR fluorescence markers [J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2614-2625. |
| [9] | OUYANG Danhua, ZHAO Kang, SONG Dongbo, LIU Ziqing, GUO Wangzhen, LIU Yan, GU Aixing, Azhatiguli Maimaitituer, Alikaerjiang Amaier. Identification and comprehensive analysis of Verticillium wilt resistance in 35 cotton strains [J]. Xinjiang Agricultural Sciences, 2024, 61(1): 9-18. |
| [10] | WANG Peng, ZHENG Kai, ZHAO Jieyin, GAO Wenju, LONG Yilei, CHEN Quanjia, QU Yanying. Evaluation and index screening of heat resistance of Gossypium hirsutum germplasm resources [J]. Xinjiang Agricultural Sciences, 2023, 60(9): 2081-2090. |
| [11] | ZHAO Lianjia, LI Gan, XU Lin, YAN Guorong, LIU Ning, WANG Fan, DENG Chaohong, Abudukeyoumu Abudurezike, WANG Cong, WANG Wei. Analysis of the main characters of soybean varieties in Xinjiang and their correlation with yield [J]. Xinjiang Agricultural Sciences, 2023, 60(7): 1663-1670. |
| [12] | ZHANG Yanfei, Subina Xaokelaiti, YANG Lei, HAO Qing, JIN Juan, FAN Dingyu. SSR fingerprinting and genetic diversity analysis of 26 fresh jujube cultivars [J]. Xinjiang Agricultural Sciences, 2023, 60(7): 1671-1678. |
| [13] | HUANG Qiannan, Maerheba Aisibaier, ZOU Hui, WANG Cairong, Ailimaimaiti Kuerban, SUN Na, LEI Junjie. Genetic diversity of main agronomic traits in Xinjiang winter wheat germplasm resources [J]. Xinjiang Agricultural Sciences, 2023, 60(5): 1050-1058. |
| [14] | SANG Zhiwei, LIANG Yajun, GONG Zhaolong, ZHENG Juyun, WANG Junduo, LI Xueyuan, CHEN Quanjia. Analysis of mechanical harvesting characters of germplasm resources of different upland cotton [J]. Xinjiang Agricultural Sciences, 2023, 60(5): 1088-1098. |
| [15] | LU Tao, ZENG Qingtao, ZHANG Wen, WANG Wenbo, WANG Zhengyang, YANG Rui, SUN Yuyan. Comprehensive evaluation of cotton yield and quality by principal component analysis and grey correlation analysis [J]. Xinjiang Agricultural Sciences, 2023, 60(5): 1099-1109. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||