Xinjiang Agricultural Sciences ›› 2024, Vol. 61 ›› Issue (5): 1284-1291.DOI: 10.6048/j.issn.1001-4330.2024.05.027
• Prataculture·Animal Husbandry Veterinarian • Previous Articles Next Articles
Gulipari Aikebai1(), SHEN Xuemei2, YU Shigang1,2, WANG Gang2(
), YANG Yaling1, LIU Wujun1(
)
Received:
2023-09-28
Online:
2024-05-20
Published:
2024-07-09
Correspondence author:
WANG Gang, LIU Wujun
Supported by:
古丽帕日·艾克拜1(), 沈雪梅2, 喻世刚1,2, 王钢2(
), 杨雅玲1, 刘武军1(
)
通讯作者:
王钢,刘武军
作者简介:
古丽帕日·艾克拜(1998-),女,新疆吐鲁番人,硕士研究生,研究方向为动物遗传育种与繁殖,(E-mail)1310784945@qq.com
基金资助:
CLC Number:
Gulipari Aikebai, SHEN Xuemei, YU Shigang, WANG Gang, YANG Yaling, LIU Wujun. Identification of chicken circMICAL2, tissue expression profile analysis and its functional prediction[J]. Xinjiang Agricultural Sciences, 2024, 61(5): 1284-1291.
古丽帕日·艾克拜, 沈雪梅, 喻世刚, 王钢, 杨雅玲, 刘武军. 鸡circMICAL2的鉴定、组织表达谱分析及其功能预测[J]. 新疆农业科学, 2024, 61(5): 1284-1291.
基因名称 Gene name | 引物序列 Primer sequences 5'→3' | 产物长度 Product length (bp) |
---|---|---|
正向引物 Divergent primer | F:GCAATTTGCTGTCCTACGCTC R:CCATTGGCCAGAAAGGTCAA | 224 |
反向引物 Convergent primer | F:GCACTGGTGAGAGAAAGGCA R:CGTAGGACAGCAAATTGCCC | 348 |
MICAL2 | F:CTAAAGAGAGGGAGGGCAGGTC R:CCCTTCTCCAAAAGCATCCAG | 192 |
GAPDH | F:GAGAAATTGTGCGTGACATCA R:CCTGAACCTCTCATTGCCA | 152 |
Tab.1 primer sequence information
基因名称 Gene name | 引物序列 Primer sequences 5'→3' | 产物长度 Product length (bp) |
---|---|---|
正向引物 Divergent primer | F:GCAATTTGCTGTCCTACGCTC R:CCATTGGCCAGAAAGGTCAA | 224 |
反向引物 Convergent primer | F:GCACTGGTGAGAGAAAGGCA R:CGTAGGACAGCAAATTGCCC | 348 |
MICAL2 | F:CTAAAGAGAGGGAGGGCAGGTC R:CCCTTCTCCAAAAGCATCCAG | 192 |
GAPDH | F:GAGAAATTGTGCGTGACATCA R:CCTGAACCTCTCATTGCCA | 152 |
Fig.1 The primer design strategy for PCR of chicken circMICAL2 Note: Red arrow indicates convergent primer, Green arrow indicates divergent primer;The R→F coding sequence of circMICAL2 is formed by the region of exons 7,8, and 9 of the MICAL2 gene
Fig.2 The circMICAL2 PCR amplification products were detected by electrophoresis Note: M indicates DNA Marker, the symbol▶◀indicates the divergent primer, and◁▷indicates the convergent primer
Fig.3 circMICAL2 Peak map of head-end linked sequence Note: A shows the chicken circMICAL2 sequence obtained from high-throughput sequencing;B Sequenced sequence after recovery of agarose gel;The circMICAL2 cyclization joint is shown in the red triangle
Fig.6 circMICAL2 tissue expression profile Note:* indicates significant difference(P <0.05);The relative expression levels were compared with the heart as 1
[1] | 李向阳, 张莉. 2021年中国禽肉市场回顾及 “十四五” 时期展望[J]. 农业展望, 2022, 18(1): 33-39. |
LI Xiangyang, ZHANG Li. Review on China’s poultry market in 2021 and its outlook for the 14th five-year plan period[J]. Agricultural Outlook, 2022, 18(1): 33-39. | |
[2] | 邓小英, 刘圣林, 胡浩, 等. CircRNA翻译功能的研究进展及问题[J]. 生理科学进展, 2022, 53(3): 234-238. |
DENG Xiaoying, LIU Shenglin, HU Hao, et al. Research advances and problems on the translation functions of CircRNA[J]. Progress in Physiological Sciences, 2022, 53(3): 234-238. | |
[3] |
Bahn J H, Zhang Q, Li F, et al. The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva[J]. Clinical Chemistry, 2015, 61(1): 221-230.
DOI PMID |
[4] |
Rochow H, Franz A, Jung M, et al. Instability of circular RNAs in clinical tissue samples impairs their reliable expression analysis using RT-qPCR: from the myth of their advantage as biomarkers to reality[J]. Theranostics, 2020, 10(20): 9268-9279.
DOI PMID |
[5] |
Xie M Y, Yu T, Jing X M, et al. Exosomal circSHKBP1 promotes gastric cancer progression via regulating the miR-582-3p/HUR/VEGF axis and suppressing HSP90 degradation[J]. Molecular Cancer, 2020, 19(1): 112.
DOI PMID |
[6] |
Rybak-Wolf A, Stottmeister C, Gla?ar P, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed[J]. Molecular Cell, 2015, 58(5): 870-885.
DOI PMID |
[7] | Peng W, Zhu S X, Chen J L, et al. Hsa_circRNA_33287 promotes the osteogenic differentiation of maxillary sinus membrane stem cells via miR-214-3p/Runx3[J]. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 2019, 109: 1709-1717. |
[8] |
Cai B L, Ma M T, Zhou Z, et al. circPTPN4 regulates myogenesis via the miR-499-3p/NAMPT axis[J]. Journal of Animal Science and Biotechnology, 2022, 13(1): 2.
DOI PMID |
[9] | Yue B L, Yang H Y, Wu J Y, et al. circSVIL regulates bovine myoblast development by inhibiting STAT1 phosphorylation[J]. Science China Life Sciences, 2022, 65(2): 376-386. |
[10] | Yan J Y, Yang Y L, Fan X H, et al. circRNAome profiling reveals circFgfr2 regulates myogenesis and muscle regeneration via a feedback loop[J]. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13(1): 696-712. |
[11] | 欧阳宏佳. 环状RNA对鸡胚胎骨骼肌发育的影响[D]. 广州: 华南农业大学, 2017. |
OUYANG Hongjia. Effect of circular RNA on skeletal muscle development of chicken embryos[D]. Guangzhou: South China Agricultural University, 2017. | |
[12] | Zhao J, Zhao X Y, Shen X X, et al. CircCCDC91 regulates chicken skeletal muscle development by sponging miR-15 family via activating IGF1-PI3K/AKT signaling pathway[J]. Poultry Science, 2022, 101(5): 101803. |
[13] |
徐海冬, 冷奇颖, PATRICIA Adu-Asiama, 等. 环状RNA的特征及其在畜禽中的研究进展[J]. 生物技术通报, 2018, 34(11): 56-69.
DOI |
XU Haidong, LENG Qiying, ADUASIAMA PATRICIA, et al. Circular RNAs: research progress and its significance in birds and livestock[J]. Biotechnology Bulletin, 2018, 34(11): 56-69.
DOI |
|
[14] | 刘洪飞. 牛肌肉组织中品种特异性circQTL的鉴定和功能分析[D]. 杨凌: 西北农林科技大学, 2022. |
LIU Hongfei. Identification and functional analysis of breed-specific circQTL in bovine muscle tissue[D]. Yangling: Northwest A & F University, 2022. | |
[15] | 付晓伟, 欧阳永灏, 洪乐, 等. 基于高通量测序技术的胰腺癌环状RNA差异表达谱分析[J]. 安徽医科大学学报, 2023, 58(1): 101-108. |
FU Xiaowei, OUYANG Yonghao, HONG Le, et al. Analysis of differential expression profile of circRNA in pancreatic cancer based on high-throughput sequencing technology[J]. Acta Universitatis Medicinalis Anhui, 2023, 58(1): 101-108. | |
[16] | 贺花, 徐倩颖, 黄永震, 等. 环状RNA概述及其在动物肌肉发育中的研究进展[J]. 黑龙江畜牧兽医, 2020(3): 32-35. |
HE Hua, XU Qianying, HUANG Yongzhen, et al. Overview of circRNAs and its research progress in animal muscle development[J]. Heilongjiang Animal Science and Veterinary Medicine, 2020(3): 32-35. | |
[17] | Liu R L, Liu X X, Bai X J, et al. Identification and characterization of circRNA in longissimus dorsi of different breeds of cattle[J]. Frontiers in Genetics, 2020, 11: 565085. |
[18] | Wei X F, Li H, Yang J M, et al. Circular RNA profiling reveals an abundant circLMO7 that regulates myoblasts differentiation and survival by sponging miR-378a-3p[J]. Cell Death & Disease, 2017, 8(10): e3153. |
[19] | Liu Y, Chen Q, Bao J J, et al. Genome-wide analysis of circular RNAs reveals circCHRNG regulates sheep myoblast proliferation via miR-133/SRF and MEF2A axis[J]. International Journal of Molecular Sciences, 2022, 23(24): 16065. |
[20] |
Ouyang H J, Chen X L, Wang Z J, et al. Circular RNAs are abundant and dynamically expressed during embryonic muscle development in chickens[J]. DNA Research: an International Journal for Rapid Publication of Reports on Genes and Genomes, 2018, 25(1): 71-86.
DOI PMID |
[21] | 王卫振. 静原鸡circACLY调控成肌细胞增殖、分化和凋亡的机制研究[D]. 银川: 宁夏大学, 2022. |
WANG Weizhen. Study on the Mechanism of circACLY Regulating the Proliferation, Differentiation and Apoptosis of Myoblasts in Jingyuan Chicken[D]. Yinchuan: Ningxia University, 2022. | |
[22] | 余娇, 黎镇晖, 聂庆华, 等. 环状RNA circZBTB10的鉴定及其对鸡骨骼肌细胞增殖的影响[J]. 中国家禽, 2018, 40(24): 7-11. |
YU Jiao, LI Zhenhui, NIE Qinghua, et al. Identification of circZBTB10 and its function on chicken myoblast proliferation[J]. China Poultry, 2018, 40(24): 7-11. | |
[23] | 孙晓峰, 张伟伟, 王阳, 等. MiR-103在牛骨骼肌卫星细胞中的分化调节作用[J]. 黑龙江畜牧兽医, 2015(15): 39-43, 294. |
SUN Xiaofeng, ZHANG Weiwei, WANG Yang, et al. The role of miR-103 in the differentiation and regulation on bovine skeletal muscle satellite cells[J]. Heilongjiang Animal Science and Veterinary Medicine, 2015(15): 39-43, 294. | |
[24] | Wang Y C, Yao X H, Ma M, et al. MiR-130b inhibits proliferation and promotes differentiation in myocytes via targeting Sp1[J]. Journal of Molecular Cell Biology, 2021, 13(6): 422-432. |
[25] |
Xue J, Xue J W, Zhang J, et al. MiR-130b-3p/301b-3p negatively regulated Rb1cc1 expression on myogenic differentiation of chicken primary myoblasts[J]. Biotechnology Letters, 2017, 39(11): 1611-1619.
DOI PMID |
[26] | 张菊香, 张鹏, 陈晓萍. TGF-β/肌肉生长抑制素信号通路对骨骼肌作用的研究进展[J]. 航天医学与医学工程, 2011, 24(3): 224-228. |
ZHANG Juxiang, ZHANG Peng, CHEN Xiaoping. Research progress on roles of TGF-β/myostatin signaling pathway in skeletal muscle[J]. Space Medicine & Medical Engineering, 2011, 24(3): 224-228. | |
[27] | 葛瑶. TCEA3通过ANXA1介导TGF-β通路进而影响小鼠成肌细胞分化[D]. 哈尔滨: 东北农业大学, 2019. |
GE Yao. TCEA3 Promotes Differentiation of C2C12 Cells Via An Annexin A1-mediated TGF-β Signaling Pathway[D]. Harbin: Northeast Agricultural University, 2019. | |
[28] | 胡思敏. 牛肌肉卫星细胞中抑制MSTN表达后对脂肪代谢相关基因的影响[D]. 呼和浩特: 内蒙古大学, 2015. |
HU Simin. Effect of inhibiting MSTN expression in bovine muscle satellite cells on genes related to fat metabolism[D]. Hohhot: Inner Mongolia University, 2015. | |
[29] | 冯阳. MIR-133b,miR-214和miR-495通过MAPK信号通路调节成肌细胞增殖和分化的研究[D]. 武汉: 华中农业大学, 2011. |
FENG Yang. The study of MIR-133b, miR-214 and miR-495 regulating myoblast proliferation and differentiation through MAPK signaling pathway[D]. Wuhan: Huazhong Agricultural University, 2011. | |
[30] | Zou L X, Zhong Y Q, Li X, et al. 3D-printed porous tantalum scaffold improves muscle attachment via integrin-β1-activated AKT/MAPK signaling pathway[J]. ACS Biomaterials Science & Engineering, 2023, 9(2): 889-899. |
[31] |
Wen L, Shumao L, Guihuan L, et al. Integrative Analyses of miRNA-mRNA Interactions Reveal let-7b, miR-128 and MAPK Pathway Involvement in Muscle Mass Loss in Sex-Linked Dwarf Chickens[J]. International Journal of Molecular Sciences, 2016, 17(3): 276.
DOI PMID |
[1] | WANG Chao, XU Wenxiu, LI Pengcheng, ZHENG Cangsong, SUN Miao, FENG Weina, SHAO Jingjing, DONG Helin. Response of cotton seedling growth and development to soil available potassium levels [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2132-2139. |
[2] | ZHANG Chengjie, HU Haoran, DUAN Songjiang, WU Yifan, ZHANG Jusong. Effects of nitrogen-dense interaction on growth, development, yield and quality of Gossypium barbadense L. [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1821-1830. |
[3] | MA Baihuan, ZHAO Qiang, XIE Jia, XU Kaiyue, REN Ruofei, SONG Xinghu. Effects of biopharmaceutical mixture on the control and growth of cotton Verticillium wilt [J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1748-1756. |
[4] | ZHAO Yun, FENG Guojun, Gulizhati Bazierbieke, HU Xiangwei, Subinuer Kadeer, LI Pengbing, SHAO Jiang, LIU Jie. Effects of potassium fertilizer dosage on growth and yield of drip irrigated millet in northern Xinjiang [J]. Xinjiang Agricultural Sciences, 2024, 61(6): 1378-1385. |
[5] | HUANG Jinyue, XU Min, WANG Longfei, LIU Xinyi, GUO Yuqing, WU Xiaolan, WANG Yatong, ZHANG Shikui, FAN Guoquan. Changes of pectin components and enzyme activities during the development of apricot fruits [J]. Xinjiang Agricultural Sciences, 2024, 61(6): 1407-1415. |
[6] | WANG Runqi, JIA Yonghong, WANG Yujiao, LIU Yue, LI Dandan, DONG Yanxue, Gulinigaer Tuerhong, ZHANG Lulu, ZHANG Jinshan, SHI Shubing. Effect of different drip irrigation on the growth, development, and yield of uniform sowing winter wheat [J]. Xinjiang Agricultural Sciences, 2024, 61(5): 1048-1056. |
[7] | LI Xuerui, ZHAI Menghua, XU Xinlong, SUN Minghui, ZHANG Jusong. Effects of spraying different concentrations of SAH by UAV on cotton growth and development [J]. Xinjiang Agricultural Sciences, 2024, 61(5): 1085-1093. |
[8] | YAO Yang, DONG Wei, LI Haiying, ZHAO Xiaoyu, LIAO Herong, WU Yingping, WANG Gang, HUANG Guijie. Growth and development rules and growth curve fitting analysis of Baicheng County Fried Chicken with different feather lines [J]. Xinjiang Agricultural Sciences, 2024, 61(5): 1259-1267. |
[9] | HOU Xianfei, SONG Xianming, LI Qiang, GU Yuanguo, MIAO Haocui, ZENG Youling, GUO Meili, JIA Donghai. Effects of water and nitrogen coupling on growth and yield of Carthamus tinctorius L. under mulch drip irrigation [J]. Xinjiang Agricultural Sciences, 2024, 61(4): 791-803. |
[10] | SUN Minghui, Yeerlan Muhetar, ZHAI Menghua, LI Xuerui, XU Xinlong, ZHANG Jusong. Effects of different planting patterns and varieties on the production of photosynthetic substances in cotton and the impact of output [J]. Xinjiang Agricultural Sciences, 2024, 61(3): 537-546. |
[11] | SU Nan, MA Zen, WANG Xiao, CHEN Wenzhong, ZHANG Yuxia, LIU Wujun, YAN Xiangming. Study on the differences of slaughter performance and meat quality characteristics of Xinjiang Brown Cattle by different feeding methods [J]. Xinjiang Agricultural Sciences, 2024, 61(12): 3105-3112. |
[12] | CHEN Chuanxin, ZHNAG Yongqiang, NIE Shihui, KONG Depeng, Sailihan Sai, XU Qijiang, LEI Junjie. Effects of biomass charcoal application rate on the growth, development, and yield of winter wheat under drip irrigation [J]. Xinjiang Agricultural Sciences, 2023, 60(9): 2146-2151. |
[13] | SONG Bingmei, JIANG Yan, CHEN Xin, ZHANG Yu, CHENG Wannan, PAN Hongsheng. Evaluation of saline/alkali tolerance of new transgenic High-Yield cotton at germination and seedling stages [J]. Xinjiang Agricultural Sciences, 2023, 60(9): 2239-2247. |
[14] | WEI Yingfeng, ZHANG Quancheng, ZHA Hui, WANG Xiaoli, WANG Jungang. Effect of pendimethalin on the main growth and development and physiological indicators of Solanum nigrum L. [J]. Xinjiang Agricultural Sciences, 2023, 60(8): 2013-2021. |
[15] | LI Jiahui, ZHAO Xiaoyu, LI Haiying, ZHANG Lihua, ZHANG Jie, WEI Yan, ZHOU jun, ZHAO Quanzhuang, LI Zongfu. Correlation analysis of growth and development rules and body weight and body size of Yemili chickens [J]. Xinjiang Agricultural Sciences, 2023, 60(5): 1281-1291. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 10
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 128
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||