Xinjiang Agricultural Sciences ›› 2022, Vol. 59 ›› Issue (6): 1301-1311.DOI: 10.6048/j.issn.1001-4330.2022.06.001
• Crop Genetics and Breeding·Cultivation Physiology·Physiology and Biochemistry • Previous Articles Next Articles
MA Xiaomei1(), LI Baocheng1, DONG Chengguan1, ZHOU Xiaofeng1, WANG Xin1, TIAN Qin1, ZHAO Suqing2(
), WANG Gang3(
)
Received:
2021-10-11
Online:
2022-06-20
Published:
2022-07-07
Correspondence author:
ZHAO Suqing, WANG Gang
Supported by:
马晓梅1(), 李保成1, 董承光1, 周小凤1, 王新1, 田琴1, 赵素琴2(
), 王刚3(
)
通讯作者:
赵素琴,王刚
作者简介:
马晓梅(1978-),女,四川绵竹人,研究员,硕士,研究方向为棉花遗传育种,(E-mail) maxm_09@sina.com
基金资助:
CLC Number:
MA Xiaomei, LI Baocheng, DONG Chengguan, ZHOU Xiaofeng, WANG Xin, TIAN Qin, ZHAO Suqing, WANG Gang. Correlation between Leaf Morphological Indexes and Defoliation Regularity of Early-maturing Upland Cotton Varieties[J]. Xinjiang Agricultural Sciences, 2022, 59(6): 1301-1311.
马晓梅, 李保成, 董承光, 周小凤, 王新, 田琴, 赵素琴, 王刚. 早熟陆地棉品种叶片形态学指标与脱叶规律相关性分析[J]. 新疆农业科学, 2022, 59(6): 1301-1311.
品种名称 Breed name | 供种单位 Unit |
---|---|
山农280 Shannong 280 | 石河子市富依德科技有限公司 |
益农2011 Yinong 2011 | 新疆众信益农农业科技有限公司 |
中棉所2021 CRI2021 | 中国农业科学院棉花研究所 |
新垦M2083 Xinken M2083 | 新疆农垦科学院棉花研究所 |
浙大2061 Zheda 2061 | 浙江大学植物精准育种研究院 |
浙大2062 Zheda 2062 | 浙江大学植物精准育种研究院 |
盛棉13号 Shenmian 13 | 新疆天盛禾农业科技发展有限公司 |
QS1907 | 新疆生产建设兵团第七师农业科学研究所、 九圣禾种业股份有限公司 |
新农早140号 Xinnongzao 140 | 新疆农业科学院经济作物研究所 |
五师1872 Wushi 1872 | 新疆生产建设兵团第五师农科所、 九圣禾种业股份有限公司 |
五师1878 Wushi 1878 | 新疆生产建设兵团第五师农科所 |
H7194 | 新疆生产建设兵团第七师农科所 |
石A7 Shi A7 | 石河子农业科学科学研究院 |
新早棉109 Xinzaomian 109 | 石河子农业科学科学研究院 |
新垦M209 Xinken M209 | 新疆农垦科学院棉花研究所 |
18-34-103 | 新疆农垦科学院棉花研究所 |
新陆早61号 Xinluzao 61 | 石河子农业科学研究院棉花所 |
Table 1 Source of test materials
品种名称 Breed name | 供种单位 Unit |
---|---|
山农280 Shannong 280 | 石河子市富依德科技有限公司 |
益农2011 Yinong 2011 | 新疆众信益农农业科技有限公司 |
中棉所2021 CRI2021 | 中国农业科学院棉花研究所 |
新垦M2083 Xinken M2083 | 新疆农垦科学院棉花研究所 |
浙大2061 Zheda 2061 | 浙江大学植物精准育种研究院 |
浙大2062 Zheda 2062 | 浙江大学植物精准育种研究院 |
盛棉13号 Shenmian 13 | 新疆天盛禾农业科技发展有限公司 |
QS1907 | 新疆生产建设兵团第七师农业科学研究所、 九圣禾种业股份有限公司 |
新农早140号 Xinnongzao 140 | 新疆农业科学院经济作物研究所 |
五师1872 Wushi 1872 | 新疆生产建设兵团第五师农科所、 九圣禾种业股份有限公司 |
五师1878 Wushi 1878 | 新疆生产建设兵团第五师农科所 |
H7194 | 新疆生产建设兵团第七师农科所 |
石A7 Shi A7 | 石河子农业科学科学研究院 |
新早棉109 Xinzaomian 109 | 石河子农业科学科学研究院 |
新垦M209 Xinken M209 | 新疆农垦科学院棉花研究所 |
18-34-103 | 新疆农垦科学院棉花研究所 |
新陆早61号 Xinluzao 61 | 石河子农业科学研究院棉花所 |
品种(系) Vatiety | 果枝分枝 (式) branch | 冠层结构特点 Characteristics of canopy architecture |
---|---|---|
山农280 Shannong 280 | Ⅰ | 叶小,通风透光 |
益农2011 Yinong 2011 | Ⅰ-Ⅱ | 叶小、通风透光 |
中棉所2021 CRI 2021 | Ⅰ-Ⅲ | 叶量少、通风透光 |
新垦M2083 Xinken M2083 | Ⅰ-Ⅲ | 叶小、通风透光 |
浙大2061 Zheda 2061 | Ⅰ-Ⅱ | 叶量多,郁闭 |
浙大2062 Zheda 2062 | Ⅰ-Ⅱ | 叶量多,郁闭 |
盛棉13号 Shenmian 13 | Ⅰ-Ⅱ | 叶量多,上举 |
QS1907 | Ⅰ-Ⅱ | 叶上举 |
新农早140号 Xinnongzao 140 | Ⅰ-Ⅲ | 叶大,郁闭 |
五师1872 Wushi 1872 | Ⅰ-Ⅲ | 叶量多,上举 |
五师1878 Wushi 1878 | Ⅰ-Ⅲ | 叶量多 |
H7194 | Ⅰ-Ⅲ | 郁闭 |
石A7 Shi A7 | Ⅰ-Ⅲ | 叶量多,郁闭 |
新早棉109 Xinzaomian 109 | Ⅰ-Ⅲ | 叶量多,郁闭 |
新垦M209 Xinken M209 | Ⅰ-Ⅲ | 叶大,上举、叶量多 |
18-34-103 | Ⅰ-Ⅱ | 叶量多 |
新陆早61号 | Ⅰ-Ⅱ | 叶量多 |
Table 2 Characteristics of canopy architecture of tested varieties
品种(系) Vatiety | 果枝分枝 (式) branch | 冠层结构特点 Characteristics of canopy architecture |
---|---|---|
山农280 Shannong 280 | Ⅰ | 叶小,通风透光 |
益农2011 Yinong 2011 | Ⅰ-Ⅱ | 叶小、通风透光 |
中棉所2021 CRI 2021 | Ⅰ-Ⅲ | 叶量少、通风透光 |
新垦M2083 Xinken M2083 | Ⅰ-Ⅲ | 叶小、通风透光 |
浙大2061 Zheda 2061 | Ⅰ-Ⅱ | 叶量多,郁闭 |
浙大2062 Zheda 2062 | Ⅰ-Ⅱ | 叶量多,郁闭 |
盛棉13号 Shenmian 13 | Ⅰ-Ⅱ | 叶量多,上举 |
QS1907 | Ⅰ-Ⅱ | 叶上举 |
新农早140号 Xinnongzao 140 | Ⅰ-Ⅲ | 叶大,郁闭 |
五师1872 Wushi 1872 | Ⅰ-Ⅲ | 叶量多,上举 |
五师1878 Wushi 1878 | Ⅰ-Ⅲ | 叶量多 |
H7194 | Ⅰ-Ⅲ | 郁闭 |
石A7 Shi A7 | Ⅰ-Ⅲ | 叶量多,郁闭 |
新早棉109 Xinzaomian 109 | Ⅰ-Ⅲ | 叶量多,郁闭 |
新垦M209 Xinken M209 | Ⅰ-Ⅲ | 叶大,上举、叶量多 |
18-34-103 | Ⅰ-Ⅱ | 叶量多 |
新陆早61号 | Ⅰ-Ⅱ | 叶量多 |
品种(系) Vatiety | 总叶片数 The total number of leaf (片/株) | 主茎叶脱叶率 Main stem leaf defoliation rate (%) | 果枝叶脱叶率 Fruit branches leaf defoliation rate(%) | 叶枝叶脱叶率 Leaves and branches defoliation rate(%) | 单株叶片脱叶率 Plant leaves defoliation rate (%) |
---|---|---|---|---|---|
新垦M209 Xinken M209 | 26.8A | 96.7A | 100.0 A | 80.0a | 92.22A |
浙大2061 Zheda 2061 | 23.2ABC | 93.3AB | 100.0 A | 80.0a | 91.11A |
山农280 Shannong 280 | 26.4AB | 100.0A | 100.0 A | 72.0ab | 90.67AB |
QS1907 | 23.0ABC | 100.0A | 96.0 AB | 46.7ab | 80.89AB |
新农早140号 Xinnongzao 140 | 20.1BCD | 100.0A | 95.0 AB | 46.0ab | 80.33AB |
五师1878 Wushi 1878 | 25.5AB | 96.0A | 95.3 AB | 65.0ab | 85.44AB |
18-34-103 | 18.6CD | 100.0A | 81.7 B | 44.7ab | 75.45AB |
盛棉13号 Shenmian 13 | 25.7AB | 95.0AB | 96.5 A | 40.0ab | 77.16AB |
浙大2062 Zheda 2062 | 26.3AB | 95.0AB | 89.1 AB | 60.0ab | 81.36AB |
H7194 | 20.8ABCD | 84.1ABC | 97.8 A | 60.0ab | 80.62AB |
五师1872 Wushi 1872 | 23.1ABC | 81.7ABC | 88.6 AB | 55.0ab | 75.11AB |
益农2011 Yinong 2011 | 22.2ABCD | 80.3ABC | 87.0 AB | 50.0ab | 72.45AB |
石A7 Shi A7 | 20.4ABCD | 81.0ABC | 85.5 AB | 72.1ab | 79.56AB |
新早棉109 Xinzaomian 109 | 25.4AB | 70.0BC | 96.7 A | 66.7ab | 77.78AB |
新垦M2083 Xinken M2083 | 22.0ABCD | 69.2BC | 100.0 A | 60.0ab | 76.41AB |
中棉所2021 CRI 2021 | 15.8D | 89.3ABC | 100.0 A | 20.0ab | 69.78AB |
新陆早61号 Xinluzao 61 | 17.3CD | 64.4C | 93.5 AB | 36.0b | 64.61B |
Table 3 Leaf abscission of different varieties and types
品种(系) Vatiety | 总叶片数 The total number of leaf (片/株) | 主茎叶脱叶率 Main stem leaf defoliation rate (%) | 果枝叶脱叶率 Fruit branches leaf defoliation rate(%) | 叶枝叶脱叶率 Leaves and branches defoliation rate(%) | 单株叶片脱叶率 Plant leaves defoliation rate (%) |
---|---|---|---|---|---|
新垦M209 Xinken M209 | 26.8A | 96.7A | 100.0 A | 80.0a | 92.22A |
浙大2061 Zheda 2061 | 23.2ABC | 93.3AB | 100.0 A | 80.0a | 91.11A |
山农280 Shannong 280 | 26.4AB | 100.0A | 100.0 A | 72.0ab | 90.67AB |
QS1907 | 23.0ABC | 100.0A | 96.0 AB | 46.7ab | 80.89AB |
新农早140号 Xinnongzao 140 | 20.1BCD | 100.0A | 95.0 AB | 46.0ab | 80.33AB |
五师1878 Wushi 1878 | 25.5AB | 96.0A | 95.3 AB | 65.0ab | 85.44AB |
18-34-103 | 18.6CD | 100.0A | 81.7 B | 44.7ab | 75.45AB |
盛棉13号 Shenmian 13 | 25.7AB | 95.0AB | 96.5 A | 40.0ab | 77.16AB |
浙大2062 Zheda 2062 | 26.3AB | 95.0AB | 89.1 AB | 60.0ab | 81.36AB |
H7194 | 20.8ABCD | 84.1ABC | 97.8 A | 60.0ab | 80.62AB |
五师1872 Wushi 1872 | 23.1ABC | 81.7ABC | 88.6 AB | 55.0ab | 75.11AB |
益农2011 Yinong 2011 | 22.2ABCD | 80.3ABC | 87.0 AB | 50.0ab | 72.45AB |
石A7 Shi A7 | 20.4ABCD | 81.0ABC | 85.5 AB | 72.1ab | 79.56AB |
新早棉109 Xinzaomian 109 | 25.4AB | 70.0BC | 96.7 A | 66.7ab | 77.78AB |
新垦M2083 Xinken M2083 | 22.0ABCD | 69.2BC | 100.0 A | 60.0ab | 76.41AB |
中棉所2021 CRI 2021 | 15.8D | 89.3ABC | 100.0 A | 20.0ab | 69.78AB |
新陆早61号 Xinluzao 61 | 17.3CD | 64.4C | 93.5 AB | 36.0b | 64.61B |
相关系数 Coefficient of association | 主茎叶总数 The total number of main stem leaf (片/株)(X1) | 主茎叶夹角 Leaf inclination angle(°)(X2) | 主茎叶长 Main stem leaf length (mm)(X3) | 主茎叶宽 Main stem leaf width (mm)(X4) | 主茎叶脱叶率 Main stem leaf defoliation rate (%)(X5) |
---|---|---|---|---|---|
主茎叶总数(片/株) (Y1) The total number of main stem leaf(leaf/plant) (Y1) | 1 | ||||
主茎叶夹角(°)(Y2) Leaf inclination angle(°)(Y2) | -0.217 | 1 | |||
主茎叶长(mm)(Y3) Main stem leaf length(mm)(Y3) | 0.012 | -0.719** | 1 | ||
主茎叶宽(mm)(Y4) Main stem leaf width (mm)(Y4) | -0.232 | -0.574** | 0.863** | 1 | |
主茎叶脱叶率(%)(Y5) Main stem leaf defoliation rate(%)(Y5) | -0.355* | 0.201 | 0.001 | 0.106 | 1 |
Table 4 Correlation coefficient between the main stem leaf phenotypic traits and abscission rate
相关系数 Coefficient of association | 主茎叶总数 The total number of main stem leaf (片/株)(X1) | 主茎叶夹角 Leaf inclination angle(°)(X2) | 主茎叶长 Main stem leaf length (mm)(X3) | 主茎叶宽 Main stem leaf width (mm)(X4) | 主茎叶脱叶率 Main stem leaf defoliation rate (%)(X5) |
---|---|---|---|---|---|
主茎叶总数(片/株) (Y1) The total number of main stem leaf(leaf/plant) (Y1) | 1 | ||||
主茎叶夹角(°)(Y2) Leaf inclination angle(°)(Y2) | -0.217 | 1 | |||
主茎叶长(mm)(Y3) Main stem leaf length(mm)(Y3) | 0.012 | -0.719** | 1 | ||
主茎叶宽(mm)(Y4) Main stem leaf width (mm)(Y4) | -0.232 | -0.574** | 0.863** | 1 | |
主茎叶脱叶率(%)(Y5) Main stem leaf defoliation rate(%)(Y5) | -0.355* | 0.201 | 0.001 | 0.106 | 1 |
相关系数 Coefficient of association | 果枝叶总数 The total number of fruit spur leaf (leaf/plant)(X1) | 果枝叶长 Fruit spur leaf length (mm)(X2) | 果枝叶宽 Fruit spur leaf width (mm)(X3) | 果枝叶脱叶率 Fruit spur leaf defoliation rate (%)(X4) |
---|---|---|---|---|
果枝叶总数(leaf/plant)(Y1) The total number of fruit spur leaf (leaf/plant)(Y1) | 1 | |||
果枝叶叶长(mm)(Y2) Fruit spur leaf length(mm)(Y2) | 0.539** | 1 | ||
果枝叶宽(mm)(Y3) Fruit spur leaf width(mm)(Y3) | 0.235 | 0.754** | 1 | |
果枝叶脱叶率(%)(Y4) Fruit spur leaf defoliation rate(%)(Y4) | 0.062 | -0.115 | -0.020 | 1 |
Table 5 Correlation coefficient between the fruit spur leaf phenotypic traits and abscission rate
相关系数 Coefficient of association | 果枝叶总数 The total number of fruit spur leaf (leaf/plant)(X1) | 果枝叶长 Fruit spur leaf length (mm)(X2) | 果枝叶宽 Fruit spur leaf width (mm)(X3) | 果枝叶脱叶率 Fruit spur leaf defoliation rate (%)(X4) |
---|---|---|---|---|
果枝叶总数(leaf/plant)(Y1) The total number of fruit spur leaf (leaf/plant)(Y1) | 1 | |||
果枝叶叶长(mm)(Y2) Fruit spur leaf length(mm)(Y2) | 0.539** | 1 | ||
果枝叶宽(mm)(Y3) Fruit spur leaf width(mm)(Y3) | 0.235 | 0.754** | 1 | |
果枝叶脱叶率(%)(Y4) Fruit spur leaf defoliation rate(%)(Y4) | 0.062 | -0.115 | -0.020 | 1 |
相关系数 Coefficient of association | 叶枝叶总数 The total number of leafy shoot leaf (leaf/plant)(X1) | 叶枝叶长 leafy shoot leaf length (mm)(X2) | 叶枝叶宽 leafy shoot leaf width (mm)(X3) | 叶枝叶脱叶率 leafy shoot leaf defoliation rate (%)(X4) |
---|---|---|---|---|
叶枝叶总数(leaf/plant)(Y1) The total number of leafy shoot leaf (leaf/plant)(Y1) | 1 | |||
叶枝叶长(mm)(Y2) leafy shoot leaf length(mm)(Y2) | -0.044 | 1 | ||
叶枝叶宽(mm)(Y3) leafy shoot leaf width(mm)(Y3) | -0.029 | 0.736** | 1 | |
叶枝叶脱落率(%)(Y4) leafy shoot leaf defoliation rate(%)(Y4) | 0.103 | -0.177 | -0.006 | 1 |
Table 6 Correlation coefficient between the leafy shoot leaf phenotypic traits and abscission rate
相关系数 Coefficient of association | 叶枝叶总数 The total number of leafy shoot leaf (leaf/plant)(X1) | 叶枝叶长 leafy shoot leaf length (mm)(X2) | 叶枝叶宽 leafy shoot leaf width (mm)(X3) | 叶枝叶脱叶率 leafy shoot leaf defoliation rate (%)(X4) |
---|---|---|---|---|
叶枝叶总数(leaf/plant)(Y1) The total number of leafy shoot leaf (leaf/plant)(Y1) | 1 | |||
叶枝叶长(mm)(Y2) leafy shoot leaf length(mm)(Y2) | -0.044 | 1 | ||
叶枝叶宽(mm)(Y3) leafy shoot leaf width(mm)(Y3) | -0.029 | 0.736** | 1 | |
叶枝叶脱落率(%)(Y4) leafy shoot leaf defoliation rate(%)(Y4) | 0.103 | -0.177 | -0.006 | 1 |
分类 Classification | 性状(脱叶速度) Trait(abscission rates) | 回归曲线模型 Regression curve model | F值 F-value | R2值 | t检验值 t value |
---|---|---|---|---|---|
主茎叶 The main stem leaf | 药后21 d(Y1)-药后7 d(X1)、 药后14 d(X2) | Y=0.101-0.804X1-0.663X2 | 19.897 | 0.740 | t(Y1,X1)=-4.438** t(Y1,X2)=-4.815** |
果枝叶 The fruit spur leaf | 药后21 d(Y1)-药后7 d(X1)、 药后14 d(X2) | Y=0.110-0.686X1-0.789X2 | 54.894 | 0.887 | t(Y1,X1)=-7.762** t(Y1,X2)=-8.022** |
枝叶 The leafy shoot leaf | 药后21 d(Y1)-药后7 d(X1)、 药后14 d(X2) | 不可拟合 | - | - | - |
Table 7 Regression curve model of leaf abscission rate among different types
分类 Classification | 性状(脱叶速度) Trait(abscission rates) | 回归曲线模型 Regression curve model | F值 F-value | R2值 | t检验值 t value |
---|---|---|---|---|---|
主茎叶 The main stem leaf | 药后21 d(Y1)-药后7 d(X1)、 药后14 d(X2) | Y=0.101-0.804X1-0.663X2 | 19.897 | 0.740 | t(Y1,X1)=-4.438** t(Y1,X2)=-4.815** |
果枝叶 The fruit spur leaf | 药后21 d(Y1)-药后7 d(X1)、 药后14 d(X2) | Y=0.110-0.686X1-0.789X2 | 54.894 | 0.887 | t(Y1,X1)=-7.762** t(Y1,X2)=-8.022** |
枝叶 The leafy shoot leaf | 药后21 d(Y1)-药后7 d(X1)、 药后14 d(X2) | 不可拟合 | - | - | - |
[1] | 段留生, 何钟佩. DPC 对棉花叶片发育及活性氧代谢的影响[J]. 棉花学报, 1996. 8(6):312-315. |
DUAN Liusheng, HE Zhongpei. Effects of DPC on leaf development and active oxygen metabolism of Cotton[J]. Cotton Science, 1996, 8(6):312-315. | |
[2] | 彭长连, 林植芳, 林桂珠. 玉米不同叶位叶片对光氧化的敏感性简报[J]. 植物生理学通讯 2000. 36(1):30-32 |
PENG Changlian, LIN Zhifang, LIN Guizhu. Sensitivity of maize leaves at different leaf positions to photooxidation[J]. Plant Physiology Communications, 2000, 36(1):30-32 | |
[3] |
Long S P, Zhu X G, Naidu S L, Ort D R. Can improvement in photosynthesis increase crop yields[J]. Plant Cell Environment, 2006, 29: 315-330.
DOI URL |
[4] | Beadle C L.. Dynamics of leaf and canopy developmen[J]. Management of Soil Nutrients & Water in Tropical Plantation Forests, 2000. |
[5] | 张波, 高利达. 棉花脱叶剂使用技术[J]. 新疆农机化, 2006,(6): 14-15. |
ZHANG Bo, GAO Lida. Application technology of cotton defoliant[J]. Xinjiang Agricultural Mechanization, 2006,(6): 14-15. | |
[6] | 薛利, 姬永年, 刘杰, 陈生兵. 新疆玛河流域新湖垦区棉花脱叶剂使用技术[J]. 种子科技, 2017, (35): 80. |
XUE LI, JI Yongnian, LIU Jie, et al. Application technology of cotton defoliant in Xinhu Reclamation area of Xinjiang Mahe River Basin[J]. Seeds Science and Technology, 2017,(35): 80. | |
[7] | 胡红岩, 任相亮, 马小艳, 等. 无人机喷施与人工喷施棉花脱叶剂效果对比[J]. 中国棉花, 2018, 45(7): 13-15,19. |
HU Hongyan, REN Xiangliang, MA Xiaoyan, et al. Comparison of Defoliation Effects between Unmanned Air Vehicle Spraying and Artificial Spraying in Cotton Field[J]. China Cotton, 2018, 45(7): 13-15,19. | |
[8] | 王喆, 冯宏祖, 王兰, 等. MG-1S型无人机喷施不同棉花脱叶剂的田间效果对比[J]. 中国棉花, 2018, (45): 27-28,46. |
WANG Zhe, FENG Hongzu, WANG Lan, et al. Effects Comparison of Different Defoliants Applied by Dajiang MG-1 S Unmanned Air Vehicle in Cotton Field[J]. China Cotton, 2018,(45): 27-28,46. | |
[9] | 叶新. 机械化采棉发展概况及技术要求[J]. 新疆农垦科技, 2010, (1):87-88. |
YE Xin. Development and technical requirements of mechanized cotton picking[J]. Xinjiang Agricultural Reclamation Technology, 2010 (1):87-88. | |
[10] | 彭小峰, 李克富, 刘永庆, 等. 棉花脱叶剂筛选试验[J]. 新疆农垦科技, 2014, (5):43-44. |
PENG Xiaofeng, LI Kefu, LIU Yongqin, et al. Screening test of cotton defoliant[J]. Xinjiang Agricultural Reclamation Technology, 2014, (5):43-44. | |
[11] |
York A C. Cotton Cultivar Response to Mepiquat Chloride[J]. Agronomy Journal, 1983, 75(4):663-667.
DOI URL |
[12] | 程玉新. 提高机采棉产量及采净率的配套措施[J]. 农业与技术, 2014, (3):164-165. |
CHENG Yuxing. Supporting measures for improving the yield and net rate of mechanical cotton picking[J]. Agriculture and Technology, 2014, (3):164-165. | |
[13] | 姜鸿君. 新疆库尔勒垦区机采棉 (陆地棉)综合农艺关键技术的研究[D]. 北京: 中国农业大学, 2005. |
JIANG Hongjun. Study on key techniques of integrated agronomy of mechanized cotton (upland cotton) in Kuerle Reclamation Area, Xinjiang[D]. Beijing: China Agricultural University, 2005. | |
[14] | 刘向新, 闫向辉, 周亚立, 等. 新疆生产建设兵团机采棉试验、推广应用及特点[J]. 农业机械, 2009, (38):73-74. |
LIU Xiangxin, YAN Xianghui, ZHOU Yali, et al. Experiment, popularization and application of mechanical cotton picking in Xinjiang Production and Construction Corps and its characteristics[J]. Agricultural Machinery, 2009,(38):73-74. | |
[15] | 王谦, 陈景玲, 孙治强. LAI-2000冠层分析仪在不同植物群体光分布特征研究中的应用[J]. 中国农业科学, 2006, 39(5): 922-927. |
WANG Qian, CHEN Jingling, SUN Zhiqiang. The utility of LAI-2000 canopy analyzerstudying the sunlight distribution characteristics in different plant colonies[J]. Scientia Agricultura Sinica, 2006, 39(5): 922-927. | |
[16] |
Xu J, Chen L, Sun H, et al. Crosstalk between cytokinin and ethylene signaling pathways regulates leaf abscission in cotton in response to chemical defoliants[J]. Journal of Experimental Botany, 2019, 70(5):1525-1538.
DOI URL |
[17] | 高瑜, 徐娇, 张冰, 等. 机采棉化学脱叶伴随着剧烈的乙烯及细胞分裂素信号响应[J]. 棉花学报, 2020, 32(6):491-500 |
GAO Yu, XU Jiao, ZHANG Bing, et al. Chemical Defoliation of Machine-picked Cotton was Accompanied by Intense Ethylene and Cytokin in Signal Responses[J]. Cotton Science, 2020, 32(6):491-500 | |
[18] | 田晓莉, 段留生, 李召虎, 等. 棉花化学催熟与脱叶的生理基础[J]. 植物生理学通讯, 2004, 40(6): 758-762. |
TIAN Xiaoli, DUAN Liusheng, LI Zhaohu, et al. Physiological basis of chemical ripening and defoliation of cotton[J]. Plant Physiology Communications, 2004, 40(6): 758-762. | |
[19] |
Suttle J C, Hultstrand J F. Ethylene-induced leaf abscission incotton seedlings: The physiological bases for age-dependent differences in sensitivity[J]. Plant Physiology, 1991, 95: 29-33.
DOI PMID |
[20] |
Morgan P W. Stimulation of ethylene evolution and abscission in the cotton by 2-chloroethaneposphonic acid[J]. Plant Physiology, 1969, 44: 337-341.
DOI PMID |
[21] | Jeffrey C S. Involvement of ethylene in the action of the cotton defoliant thidiazuron[J]. PlantPhysiology, 1985, 78(2):272-276. |
[22] | 王爱玉, 高明伟, 王志伟, 等. 棉花化学脱叶催熟技术应用研究进展[J]. 农学学报, 2015, 5(4):20-23. |
WANG Aiyu, GAO Mingwei, WANG Zhiwei, et al. Research progress on the technology of chemical defoliation and ripening in cotton[J]. Journal of Agriculture, 2015, 5(4): 20-23. | |
[23] |
Wang H M, Gao K, Fang S, et al. Cotton yield and defoliation efficiency in response to nitrogen and harvest aids[J]. Agronomy Journal, 2019, 111(1): 250-256.
DOI URL |
[24] | Li J, Wu P, Xiao S, et al. Effects of cotton planting modes with machine picking on defoliation and fiber quality of different plant types[J]. Agricultural Research in the Arid Areas, 2019, 37(1): 82-88. |
[1] | ZENG Wanying, GENG Hongwei, CHENG Yukun, LI Sizhong, QIAN Songting, GAO Weishi, ZHANG Liming. Comprehensive evaluation of drought resistance during the rapid growth stage of sugar beet cultivars [J]. Xinjiang Agricultural Sciences, 2024, 61(9): 2140-2151. |
[2] | HU Huabing, SUN Linlin, LIU Jianxiong, HE Biwei, LIU Xun, HUAN Tin, LI Youfang. Correlation analysis of sugar accumulation and temperature in sugar beet under drip irrigation [J]. Xinjiang Agricultural Sciences, 2024, 61(8): 1916-1925. |
[3] | YE Pingyi, LONG Yilei, TANG Yanping, DU Xiao, AN Mengjie, TAO Zhixin, LIANG Farui, AI Xiantao, HU Shoulin. Identification and evaluation of fruit branch angle and machine-picked agronomic traits in Gossypium hirsutum L. [J]. Xinjiang Agricultural Sciences, 2024, 61(6): 1318-1327. |
[4] | Mahemuti Abulaiti, Muhetaer zhare, Mireguli Waili, Hadier Yishake. Correlation and regression analysis between leaf margin scorch diseases and leaf nutrient content of walnut [J]. Xinjiang Agricultural Sciences, 2024, 61(4): 945-953. |
[5] | LI Xiaojuan, ZHAO Wenju, GA Sang, DENG Changrong, ZHAO Mengliang, REN Yanjing. Analysis of turnip nutrient at different altitudes [J]. Xinjiang Agricultural Sciences, 2024, 61(3): 652-664. |
[6] | WANG Jijiao, PAN Yue, WANG Shiwei, HAN Zhengwei, MA Yong, HU Haifang, WANG Baoqing. Canonical correlation analysis of soil nutrients and the quality of Beibinghong grape juice [J]. Xinjiang Agricultural Sciences, 2024, 61(2): 355-364. |
[7] | YANG Cunming, ZHANG Xiaoxue, ZHANG Menghua, ZHAO Zhiwen, LI Fengjie, HUANG Xixia, LI Jie, Aizimaiti Awuti, HE Junmin, LI Xue, LI Tingting, TANG Li, ZHANG Wenjing, TIAN Yuezhen, TIAN Kechuan. Analysis of correlation and difference of target traits in fine wool sheep breeding [J]. Xinjiang Agricultural Sciences, 2024, 61(2): 514-520. |
[8] | MA Yuejun, TAN Zhanming, CHENG Yunxia, WU Hui, ZHANG Qiaoqiao, DU Jiageng, WANG Qi, CUI Hewei, MA Xing. Effects of different matrix ratios and anvil combinations on cucumber growth and development [J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2635-2647. |
[9] | OUYANG Danhua, ZHAO Kang, SONG Dongbo, LIU Ziqing, GUO Wangzhen, LIU Yan, GU Aixing, Azhatiguli Maimaitituer, Alikaerjiang Amaier. Identification and comprehensive analysis of Verticillium wilt resistance in 35 cotton strains [J]. Xinjiang Agricultural Sciences, 2024, 61(1): 9-18. |
[10] | WANG Peng, ZHENG Kai, ZHAO Jieyin, GAO Wenju, LONG Yilei, CHEN Quanjia, QU Yanying. Evaluation and index screening of heat resistance of Gossypium hirsutum germplasm resources [J]. Xinjiang Agricultural Sciences, 2023, 60(9): 2081-2090. |
[11] | ZHAO Lianjia, LI Gan, XU Lin, YAN Guorong, LIU Ning, WANG Fan, DENG Chaohong, Abudukeyoumu Abudurezike, WANG Cong, WANG Wei. Analysis of the main characters of soybean varieties in Xinjiang and their correlation with yield [J]. Xinjiang Agricultural Sciences, 2023, 60(7): 1663-1670. |
[12] | LI Peiqi, SUN Qingpei, WANG Zhihui, QIN Xinzheng, FAN Yonghong. Correlation analysis of lignin degradation and enzyme activity changes in solid fermentation of cotton stalks [J]. Xinjiang Agricultural Sciences, 2023, 60(6): 1423-1432. |
[13] | HUANG Qiannan, Maerheba Aisibaier, ZOU Hui, WANG Cairong, Ailimaimaiti Kuerban, SUN Na, LEI Junjie. Genetic diversity of main agronomic traits in Xinjiang winter wheat germplasm resources [J]. Xinjiang Agricultural Sciences, 2023, 60(5): 1050-1058. |
[14] | SANG Zhiwei, LIANG Yajun, GONG Zhaolong, ZHENG Juyun, WANG Junduo, LI Xueyuan, CHEN Quanjia. Analysis of mechanical harvesting characters of germplasm resources of different upland cotton [J]. Xinjiang Agricultural Sciences, 2023, 60(5): 1088-1098. |
[15] | LU Tao, ZENG Qingtao, ZHANG Wen, WANG Wenbo, WANG Zhengyang, YANG Rui, SUN Yuyan. Comprehensive evaluation of cotton yield and quality by principal component analysis and grey correlation analysis [J]. Xinjiang Agricultural Sciences, 2023, 60(5): 1099-1109. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 128
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1579
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||