| [1] |
Long L, Guo D D, Gao W, et al. Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression[J]. Plant Methods, 2018, 14: 85.
|
| [2] |
Liang Z, Zhang K, Chen K L, et al. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/cas system[J]. Journal of Genetics and Genomics, 2014, 41(2): 63-68.
|
| [3] |
Sun X J, Hu Z, Chen R, et al. Targeted mutagenesis in soybean using the CRISPR-Cas9 system[J]. Scientific Reports, 2015, 5: 10342.
|
| [4] |
Salava H, Thula S, Mohan V, et al. Application of genome editing in tomato breeding: mechanisms, advances, and prospects[J]. International Journal of Molecular Sciences, 2021, 22(2): 682.
|
| [5] |
Li S N, Lin D X, Zhang Y W, et al. Genome-edited powdery mildew resistance in wheat without growth penalties[J]. Nature, 2022, 602(7897): 455-460.
|
| [6] |
Khan Z, Khan S H, Ahmed A, et al. Genome editing in cotton: challenges and opportunities[J]. Journal of Cotton Research, 2023, 6(1): 3.
|
| [7] |
Tang X, Lowder L G, Zhang T, et al. A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants[J]. Nature Plants, 2017, 3: 17018.
|
| [8] |
Li S Y, Li J Y, He Y B, et al. Precise gene replacement in rice by RNA transcript-templated homologous recombination[J]. Nature Biotechnology, 2019, 37(4): 445-450.
|
| [9] |
Pan C T, Sretenovic S, Qi Y P. CRISPR/dCas-mediated transcriptional and epigenetic regulation in plants[J]. Current Opinion in Plant Biology, 2021, 60: 101980.
|
| [10] |
Sun C, Lei Y, Li B S, et al. Precise integration of large DNA sequences in plant genomes using PrimeRoot editors[J]. Nature Biotechnology, 2024, 42(2): 316-327.
|
| [11] |
Yin K Q, Han T, Liu G, et al. A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing[J]. Scientific Reports, 2015, 5: 14926.
|
| [12] |
Baltes N J, Gil-Humanes J, Cermak T, et al. DNA replicons for plant genome engineering[J]. The Plant Cell, 2014, 26(1): 151-163.
|
| [13] |
Gil-Humanes J, Wang Y P, Liang Z, et al. High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9[J]. The Plant Journal, 2017, 89(6): 1251-1262.
|
| [14] |
Cody W B, Scholthof H B. Plant virus vectors 3.0: transitioning into synthetic genomics[J]. Annual Review of Phytopathology, 2019, 57: 211-230.
|
| [15] |
Ma X N, Zhang X Y, Liu H M, et al. Highly efficient DNA-free plant genome editing using virally delivered CRISPR-Cas9[J]. Nature Plants, 2020, 6(7): 773-779.
|
| [16] |
Feng Z Y, Zhang B T, Ding W N, et al. Efficient genome editing in plants using a CRISPR/Cas system[J]. Cell Research, 2013, 23(10): 1229-1232.
|
| [17] |
Gao W, Long L, Tian X Q, et al. Genome editing in cotton with the CRISPR/Cas9 system[J]. Frontiers in Plant Science, 2017, 8: 1364.
|
| [18] |
Jia-ming YAO, Huan-huan HAO, Jing ZHANG, Bin XU. The use of the tRNA-sgRNA/Cas9 system for gene editing in perennial ryegrass[J]. Acta Prataculturae Sinica, 2023, 32(4): 129-141.
|
| [19] |
Gao W, Long L, Tian X Q, et al. Genome editing in cotton with the CRISPR/Cas9 system[J]. Frontiers in Plant Science, 2017, 8: 1364.
|
| [20] |
Sun X J, Hu Z, Chen R, et al. Targeted mutagenesis in soybean using the CRISPR-Cas9 system[J]. Scientific Reports, 2015, 5: 10342.
|
| [21] |
Long L, Guo D D, Gao W, et al. Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression[J]. Plant Methods, 2018, 14: 85.
|
| [22] |
Ma X N, Zhang X Y, Liu H M, et al. Highly efficient DNA-free plant genome editing using virally delivered CRISPR-Cas9[J]. Nature Plants, 2020, 6(7): 773-779.
|
| [23] |
Senthil-Kumar M, Mysore K S. Tobacco rattle virus-based virus-induced gene silencing in Nicotiana benthamiana[J]. Nature Protocols, 2014, 9(7): 1549-1562.
|