新疆农业科学 ›› 2025, Vol. 62 ›› Issue (2): 286-293.DOI: 10.6048/j.issn.1001-4330.2025.02.004
陆明昆1,2,3(), 李军宏2,3, 尼陆排尔·于苏甫江4, 潘喜鹏4, 刘晓成1, 张正贵2,3, 潘占磊2,3, 翟梦华2,3, 张要朋2,3, 赵文琪2,3, 王丽宏1, 王占彪1,2,3(
)
收稿日期:
2024-08-10
出版日期:
2025-02-20
发布日期:
2025-04-17
通信作者:
王占彪(1986-),男,河北邢台人,研究员,博士,硕士生导师,研究方向为棉花栽培, (E-mail) wang_zhanbiao@126.com作者简介:
陆明昆(1997-),女,河北唐山人,硕士研究生,研究方向为棉花抗逆栽培, (E-mail) 1838558355@qq.com
基金资助:
LU Mingkun1,2,3(), LI Junhong2,3, Nilupaier Yusufujiang4, PAN Xipeng4, LIU Xiaocheng1, ZHANG Zhenggui2,3, PAN Zhanlei2,3, ZHAI Menghua2,3, ZHANG Yaopeng2,3, ZHAO Wenqi2,3, WANG Lihong1, WANG Zhanbiao1,2,3(
)
Received:
2024-08-10
Published:
2025-02-20
Online:
2025-04-17
Supported by:
摘要:
【目的】探究膜下滴灌棉田追施硅肥对棉花农艺性状、产量及纤维品质的影响,分析追施硅肥影响棉花生长发育的机制,筛选出硅肥最佳施用浓度,为硅肥在棉花上推广应用提供数据支撑。【方法】选用中棉113(生育周期115 d)为材料,分别于棉花蕾期、花期追施硅肥。CK(常规施肥 + 0 kg/hm2 SiO2)、S1(常规施肥 + 7.2 kg/hm2 SiO2)、S2(常规施肥 + 14.4 kg/hm2 SiO2)、S3(常规施肥 + 21.6 kg/hm2 SiO2),分析施用硅肥对棉花生长发育、产量和纤维品质的影响。【结果】追施硅肥的棉花株高低于对照;茎粗高于对照;追施硅肥能显著增加棉花的根、茎、叶和蕾花铃的干物质积累量(P<0.05)。S2施用量效果最佳。追施硅肥能显著提高棉花单株铃数(8.6%)和单铃重(10.2%)(P<0.05),提高棉花籽棉产量(25.1%)和皮棉产量(23.0%)(P<0.05)。长度整齐度指数、断裂比强度和马克隆值均有所提高。【结论】随水滴施硅肥可以促进棉花生长发育、增加生物量及产量,并提升品质。
中图分类号:
陆明昆, 李军宏, 尼陆排尔·于苏甫江, 潘喜鹏, 刘晓成, 张正贵, 潘占磊, 翟梦华, 张要朋, 赵文琪, 王丽宏, 王占彪. 追施硅肥对棉花生长发育及产量品质的影响[J]. 新疆农业科学, 2025, 62(2): 286-293.
LU Mingkun, LI Junhong, Nilupaier Yusufujiang, PAN Xipeng, LIU Xiaocheng, ZHANG Zhenggui, PAN Zhanlei, ZHAI Menghua, ZHANG Yaopeng, ZHAO Wenqi, WANG Lihong, WANG Zhanbiao. Effect of silic on fertiliser application on the growth and development of cotton and its yield and quality[J]. Xinjiang Agricultural Sciences, 2025, 62(2): 286-293.
生育时期 Age | 处理 Treatments | 株高 Height of plant (cm) | 茎粗 Stem thickness (mm) | 主茎节数 Number of nodes of main stem (个) | 始节位 Euclidian (节) | 始节高度 Height of beginning node (cm) | 果枝台数 Fruit branch number (个) |
---|---|---|---|---|---|---|---|
蕾期 Squaring stage | CK | 36.6±5.7a | 8.8±0.6b | 11.0±0.6a | 4.3±0.8ab | 14.4±3.4a | 7.3±1.6b |
S1 | 38.8±2.7a | 9.2±0.4ab | 11.3±0.5a | 4.5±1.1ab | 12.6±3.4a | 8.0±1.1ab | |
S2 | 40.0±5.2a | 10.0±0.9a | 11.3±1.0a | 4.2±0.4b | 12.4±1.5a | 9.0±1.1a | |
S3 | 41.3±3.6a | 9.9±0.8a | 11.7±0.5a | 5.3±1.0a | 15.6±4.1a | 8.0±0.9ab | |
花期 Flowering stage | CK | 96.4±7.2a | 11.8±3.9a | 17.2±3.8a | 5.3±0.5a | 18.5±7.1a | 11.8±3.8a |
S1 | 85.4±4.1b | 13.0±1.7a | 15.7±1.4a | 5.2±1.5a | 17.7±6.7a | 11.7±2.3a | |
S2 | 87.3±6.7b | 14.5±2.4a | 16.5±0.6a | 5.5±1.4a | 16.5±4.3a | 12.7±2.3a | |
S3 | 86.3±5.3b | 13.6±1.7a | 16.2±1.0a | 4.8±1.7a | 15.4±5.9a | 12.5±1.1a | |
铃期 Boll stage | CK | 92.3±6.2a | 14.6±1.2a | 17.7±1.0a | 5.3±0.8a | 14.1±4.5a | 12.8±2.2a |
S1 | 95.5±11.8a | 14.3±1.4a | 18.2±1.2a | 6.5±1.4a | 18.7±9.5a | 12.7±1.9a | |
S2 | 92.6±7.9a | 14.5±1.2a | 17.5±1.1a | 6.8±1.5a | 20.1±9.1a | 10.7±1.4a | |
S3 | 94.0±6.2a | 15.7±1.4a | 18.0±1.1a | 6.5±1.2a | 19.5±6.3a | 11.7±1.8a | |
吐絮期 Boll openning | CK | 101.5±2.5a | 14.3±0.5b | 15.8±0.8a | 4.7±0.8b | 16.0±2.7a | 12.3±0.5a |
S1 | 96.6±2.6b | 13.7±1.6b | 15.0±1.1a | 5.2±0.8ab | 15.53±4.3a | 12.3±1.0a | |
S2 | 94.6±3.8b | 16.8±3.6a | 15.8±1.5a | 3.5±0.6c | 10.7±2.3b | 13.3±0.8a | |
S3 | 92.4±5.8b | 13.1±0.9b | 14.7±1.4a | 6.0±1.4a | 16.4±5.3a | 11.2±1.2b |
表1 不同处理间棉花各生育时期农艺性状的差异
Tab.1 Differences in agronomic traits among treatments at various fertility periods of cotton
生育时期 Age | 处理 Treatments | 株高 Height of plant (cm) | 茎粗 Stem thickness (mm) | 主茎节数 Number of nodes of main stem (个) | 始节位 Euclidian (节) | 始节高度 Height of beginning node (cm) | 果枝台数 Fruit branch number (个) |
---|---|---|---|---|---|---|---|
蕾期 Squaring stage | CK | 36.6±5.7a | 8.8±0.6b | 11.0±0.6a | 4.3±0.8ab | 14.4±3.4a | 7.3±1.6b |
S1 | 38.8±2.7a | 9.2±0.4ab | 11.3±0.5a | 4.5±1.1ab | 12.6±3.4a | 8.0±1.1ab | |
S2 | 40.0±5.2a | 10.0±0.9a | 11.3±1.0a | 4.2±0.4b | 12.4±1.5a | 9.0±1.1a | |
S3 | 41.3±3.6a | 9.9±0.8a | 11.7±0.5a | 5.3±1.0a | 15.6±4.1a | 8.0±0.9ab | |
花期 Flowering stage | CK | 96.4±7.2a | 11.8±3.9a | 17.2±3.8a | 5.3±0.5a | 18.5±7.1a | 11.8±3.8a |
S1 | 85.4±4.1b | 13.0±1.7a | 15.7±1.4a | 5.2±1.5a | 17.7±6.7a | 11.7±2.3a | |
S2 | 87.3±6.7b | 14.5±2.4a | 16.5±0.6a | 5.5±1.4a | 16.5±4.3a | 12.7±2.3a | |
S3 | 86.3±5.3b | 13.6±1.7a | 16.2±1.0a | 4.8±1.7a | 15.4±5.9a | 12.5±1.1a | |
铃期 Boll stage | CK | 92.3±6.2a | 14.6±1.2a | 17.7±1.0a | 5.3±0.8a | 14.1±4.5a | 12.8±2.2a |
S1 | 95.5±11.8a | 14.3±1.4a | 18.2±1.2a | 6.5±1.4a | 18.7±9.5a | 12.7±1.9a | |
S2 | 92.6±7.9a | 14.5±1.2a | 17.5±1.1a | 6.8±1.5a | 20.1±9.1a | 10.7±1.4a | |
S3 | 94.0±6.2a | 15.7±1.4a | 18.0±1.1a | 6.5±1.2a | 19.5±6.3a | 11.7±1.8a | |
吐絮期 Boll openning | CK | 101.5±2.5a | 14.3±0.5b | 15.8±0.8a | 4.7±0.8b | 16.0±2.7a | 12.3±0.5a |
S1 | 96.6±2.6b | 13.7±1.6b | 15.0±1.1a | 5.2±0.8ab | 15.53±4.3a | 12.3±1.0a | |
S2 | 94.6±3.8b | 16.8±3.6a | 15.8±1.5a | 3.5±0.6c | 10.7±2.3b | 13.3±0.8a | |
S3 | 92.4±5.8b | 13.1±0.9b | 14.7±1.4a | 6.0±1.4a | 16.4±5.3a | 11.2±1.2b |
图2 不同处理棉花生物量的比较 注:CK、S1、S2、S3:施硅量分别为0、14.4、28.8、43.2 kg SiO2/hm2。SS:蕾期;FS:花期;BS:铃期;BO:吐絮期。不同小写字母表示处理间差异显著(P<0.05)
Fig.2 Comparisons of cotton biomass in different treatments Notes:CK、S1、S2、S3: The silicon application rate was 0、14.4、28.8、43.2 kg SiO2/hm2,respectively. SS: Squaring stage; FS: Flowering stage; BS: Boll stage; BO: Boll openning stage.Different small letters meant significant differenceamong treatments at 0.05 level
处理 Treatments | 收获密度 Harvest density (104株/hm2) | 单株铃数 Boll number per plant (个) | 单铃重 Single boll weight (g) | 衣分 Lint percentage (%) | 籽棉产量 Seed cotton yield (kg/hm2) | 皮棉产量 Lint cotton yield (kg/hm2) |
---|---|---|---|---|---|---|
CK | 12.2±0.2a | 9.3±0.1b | 4.9±0.1b | 47.91±0.0a | 5 475.6±166.5b | 2 623.8±91.6c |
S1 | 12.5±0.2a | 9.9±0.5a | 5.2±0.2ab | 45.70±0.0a | 6 386.4±276.3a | 2 918.4±153.6b |
S2 | 12.6±0.3a | 10.1±0.2a | 5.4±0.2a | 47.16±0.0a | 6 847.7±248.9a | 3 228.4±100.4a |
S3 | 12.4±0.5a | 10.1±0.3a | 5.3±0.3a | 47.02±0.0a | 6 566.7±578.0a | 3 083.3±202.6ab |
表2 不同处理下棉花产量及其构成因素的比较
Tab.2 Comparisons of cotton yield and its components in different treatments
处理 Treatments | 收获密度 Harvest density (104株/hm2) | 单株铃数 Boll number per plant (个) | 单铃重 Single boll weight (g) | 衣分 Lint percentage (%) | 籽棉产量 Seed cotton yield (kg/hm2) | 皮棉产量 Lint cotton yield (kg/hm2) |
---|---|---|---|---|---|---|
CK | 12.2±0.2a | 9.3±0.1b | 4.9±0.1b | 47.91±0.0a | 5 475.6±166.5b | 2 623.8±91.6c |
S1 | 12.5±0.2a | 9.9±0.5a | 5.2±0.2ab | 45.70±0.0a | 6 386.4±276.3a | 2 918.4±153.6b |
S2 | 12.6±0.3a | 10.1±0.2a | 5.4±0.2a | 47.16±0.0a | 6 847.7±248.9a | 3 228.4±100.4a |
S3 | 12.4±0.5a | 10.1±0.3a | 5.3±0.3a | 47.02±0.0a | 6 566.7±578.0a | 3 083.3±202.6ab |
处理 Treatments | 上半部平均长度 Fiber length (mm) | 长度整齐度指数 Length Neatness Index(%) | 断裂比强度 Specific breaking strength (cN/tex) | 断裂伸长率 Elongation at break(%) | 马克隆值 Micronaire |
---|---|---|---|---|---|
CK | 31.6±0.6a | 85.6±0.9b | 32.0±0.5a | 9.1±1.1a | 4.9±0.1ab |
S1 | 31.1±1.0ab | 87.3±0.5a | 33.5±1.2a | 8.6±0.7a | 4.5±0.2b |
S2 | 31.0±0.4ab | 86.9±0.3ab | 32.4±1.9a | 8.4±0.4a | 4.9±0.4ab |
S3 | 30.1±0.1b | 85.8±1.0b | 32.4±2.1a | 9.0±0.5a | 5.1±0.3a |
表3 硅肥处理与对照棉花纤维品质的差异
Tab.3 Fiber quality difference between silicon fertilizer treatment and control cotton
处理 Treatments | 上半部平均长度 Fiber length (mm) | 长度整齐度指数 Length Neatness Index(%) | 断裂比强度 Specific breaking strength (cN/tex) | 断裂伸长率 Elongation at break(%) | 马克隆值 Micronaire |
---|---|---|---|---|---|
CK | 31.6±0.6a | 85.6±0.9b | 32.0±0.5a | 9.1±1.1a | 4.9±0.1ab |
S1 | 31.1±1.0ab | 87.3±0.5a | 33.5±1.2a | 8.6±0.7a | 4.5±0.2b |
S2 | 31.0±0.4ab | 86.9±0.3ab | 32.4±1.9a | 8.4±0.4a | 4.9±0.4ab |
S3 | 30.1±0.1b | 85.8±1.0b | 32.4±2.1a | 9.0±0.5a | 5.1±0.3a |
指标 Indicators | 株高 Height of plant | 茎粗 Stem thick- ness | 主茎节数 Number of nodes of main stem | 始节位 Eucl- idian | 始节 高度 Height of beginning node | 果枝 台数 Fruit branch number | 蕾花铃 Bud Fower Bell | 单株 铃数 Boll number per plant | 单铃重 Single boll weight | 衣分 Lint percentage | 籽棉 产量 Seed cotton yield | 皮棉 产量 Lint cotton yield |
---|---|---|---|---|---|---|---|---|---|---|---|---|
株高 Height of plant | 1 | |||||||||||
茎粗 Stem thickness | -0.04 | 1 | ||||||||||
主茎节数 Number of nodes of main stem | 0.53** | -0.06 | 1 | |||||||||
始节位 Euclidian | -0.00 | -0.46* | -0.07 | 1 | ||||||||
始节高度 Height of beginning node | 0.32 | -0.28 | -0.20 | 0.56** | 1 | |||||||
果枝台数 Fruit branch number | 0.42* | 0.24 | 0.44* | -0.50* | -0.21 | 1 | ||||||
蕾花铃 Bud Fower Bell | -0.06 | 0.59** | 0.32 | -0.55** | -0.52** | 0.58** | 1 | |||||
单株铃数 Boll number per plant | -0.03 | 0.31 | 0.22 | -0.16 | -0.38 | 0.15 | 0.16 | 1 | ||||
单铃重 Single boll weight | -0.01 | -0.20 | 0.28 | 0.36 | -0.14 | -0.17 | -0.09 | 0.48* | 1 | |||
衣分 Lint percentage | -0.01 | 0.13 | 0.17 | -0.21 | -0.22 | -0.00 | 0.17 | 0.39 | 0.12 | 1 | ||
籽棉产量 Seed cotton yield | 0.03 | -0.07 | 0.25 | 0.28 | -0.12 | -0.04 | -0.07 | 0.48* | 0.82** | -0.33 | 1 | |
皮棉产量 Lint cotton yield | 0.10 | 0.12 | 0.32 | 0.10 | -0.25 | 0.04 | 0.00 | 0.83** | 0.79** | 0.16 | 0.79** | 1 |
表4 不同处理下棉花主要农艺性状和产量性状的相关关系
Tab.4 Correlation between cotton main agronomic traits and yield traits under different treatments
指标 Indicators | 株高 Height of plant | 茎粗 Stem thick- ness | 主茎节数 Number of nodes of main stem | 始节位 Eucl- idian | 始节 高度 Height of beginning node | 果枝 台数 Fruit branch number | 蕾花铃 Bud Fower Bell | 单株 铃数 Boll number per plant | 单铃重 Single boll weight | 衣分 Lint percentage | 籽棉 产量 Seed cotton yield | 皮棉 产量 Lint cotton yield |
---|---|---|---|---|---|---|---|---|---|---|---|---|
株高 Height of plant | 1 | |||||||||||
茎粗 Stem thickness | -0.04 | 1 | ||||||||||
主茎节数 Number of nodes of main stem | 0.53** | -0.06 | 1 | |||||||||
始节位 Euclidian | -0.00 | -0.46* | -0.07 | 1 | ||||||||
始节高度 Height of beginning node | 0.32 | -0.28 | -0.20 | 0.56** | 1 | |||||||
果枝台数 Fruit branch number | 0.42* | 0.24 | 0.44* | -0.50* | -0.21 | 1 | ||||||
蕾花铃 Bud Fower Bell | -0.06 | 0.59** | 0.32 | -0.55** | -0.52** | 0.58** | 1 | |||||
单株铃数 Boll number per plant | -0.03 | 0.31 | 0.22 | -0.16 | -0.38 | 0.15 | 0.16 | 1 | ||||
单铃重 Single boll weight | -0.01 | -0.20 | 0.28 | 0.36 | -0.14 | -0.17 | -0.09 | 0.48* | 1 | |||
衣分 Lint percentage | -0.01 | 0.13 | 0.17 | -0.21 | -0.22 | -0.00 | 0.17 | 0.39 | 0.12 | 1 | ||
籽棉产量 Seed cotton yield | 0.03 | -0.07 | 0.25 | 0.28 | -0.12 | -0.04 | -0.07 | 0.48* | 0.82** | -0.33 | 1 | |
皮棉产量 Lint cotton yield | 0.10 | 0.12 | 0.32 | 0.10 | -0.25 | 0.04 | 0.00 | 0.83** | 0.79** | 0.16 | 0.79** | 1 |
[1] | de Oliveira S A, Nunes de Macedo J R, dos Santos Rosa D. Eco-efficiency of poly (lactic acid)-starch-cotton composite with high natural cotton fiber content: environmental and functional value[J]. Journal of Cleaner Production, 2019, 217: 32-41. |
[2] | 国家统计局. 国家统计局关于2023年棉花产量的公告[J]. 中国棉花加工, 2023,(6): 15, 20. |
National Bureau of Statistics. Announcement of national bureau.Announcement of national bureau of statistics on cotton output in 2023[J]. China Cotton Processing, 2023,(6): 15, 20. | |
[3] | 张静. 新疆棉花种植农户绿色农业技术采纳行为研究[D]. 石河子: 石河子大学, 2023. |
ZHANG Jing. Study on green agricultural technology adoption behavior of cotton farmers in Xinjiang[D]. Shihezi: Shihezi University, 2023. | |
[4] |
EPSTEIN E. SILICON[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50: 641-664
PMID |
[5] | Naidu S, Pandey J, Mishra L C, et al. Silicon nanoparticles: Synthesis, uptake and their role in mitigation of biotic stress[J]. Ecotoxicology and Environmental Safety, 2023, 255: 114783. |
[6] | 张鑫月, 翟玉莹. 不同胁迫下硅对植物的作用及发展前景[J]. 现代园艺, 2024,(1): 58-59, 64. |
ZHANG Xinyue, ZHAI Yuying. Effects of silicon on plants under different stresses and its development prospect[J]. Contemporary Horticulture, 2024,(1): 58-59, 64. | |
[7] | 宋兴宜, 刘昌华, 郭祥, 等. 施用有机硅肥对提高烤烟农艺性状和质量的作用[J]. 中南农业科技, 2023,(9): 3-5. |
SONG Xingyi, LIU Changhua, GUO Xiang, et al. Effect of applying silicone fertilizer on improving agronomic characters and quality of flue-cured tobacco[J]. South-Central Agricultural Science and Technology, 2023,(9): 3-5. | |
[8] |
Kah M, Kookana R S, Gogos A, et al. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues[J]. Nature Nanotechnology, 2018, 13(8): 677-684.
DOI PMID |
[9] | Gomaa A, Kandil E, El-Banna A, et al. Response of some maize hybrids to foliar application of silicon under soil affected by salinity[J]. Egyptian Academic Journal of Biological Sciences, H Botany, 2021, 12(1): 1-8. |
[10] | 马新. 石河子垦区土壤有效硅的空间分布与硅肥肥效[D]. 石河子: 石河子大学, 2015. |
MA Xin. Spatial distribution of soil available silicon and its fertilizer efficiency in Shihezi reclamation area[D]. Shihezi: Shihezi University, 2015. | |
[11] | 孙浩妍, 纪武鹏. 硅肥对玉米农艺性状及产量的影响[J]. 现代化农业, 2021,(7): 47-48. |
SUN Haoyan, JI Wupeng. Effect of silicon fertilizer on agronomic traits and yield of maize[J]. Modernizing Agriculture, 2021,(7): 47-48. | |
[12] |
孙星, 朱克亚, 刘勤, 等. 皖南山区稻田土壤施用硅肥效应研究[J]. 中国农学通报, 2016, 32(6): 6-10.
DOI |
SUN Xing, ZHU Keya, LIU Qin, et al. Effect of silicon fertilizer application on paddy soil in mountainous area of southern Anhui Province[J]. Chinese Agricultural Science Bulletin, 2016, 32(6): 6-10.
DOI |
|
[13] | 赖添奎, 邓裕娴, 葛少彬, 等. 施用硅肥对水稻稻瘟病、生长及产量的影响[J]. 热带农业工程, 2012, 36(2): 6-8. |
LAI Tiankui, DENG Yuxian, GE Shaobin, et al. Effects of silicon fertilizer on rice blast control, rice growth and yield[J]. Tropical Agricultural Engineering, 2012, 36(2): 6-8. | |
[14] | 刘鹏, 卜文宣, 王斌, 等. 硅肥对马铃薯生长发育及产量品质的影响[J]. 中国蔬菜, 2023,(5): 88-92. |
LIU Peng, BU Wenxuan, WANG Bin, et al. Effect of silicon fertilizer on potato growth and development and yield quality[J]. China Vegetables, 2023,(5): 88-92. | |
[15] |
李欣欣, 赵强, 张特, 等. 叶面喷施硅锌肥对棉花生长发育及产量和品质的影响[J]. 中国棉花, 2023, 50(3): 13-17.
DOI |
LI Xinxin, ZHAO Qiang, ZHANG Te, et al. Effects of foliar application of silicon and zinc fertilizer on cotton growth, yield and fiber quality[J]. China Cotton, 2023, 50(3): 13-17.
DOI |
|
[16] | 李阳. 不同施硅量对马铃薯农艺性状及产量品质的影响[D]. 大庆: 黑龙江八一农垦大学, 2023. |
LI Yang. Effects of different silicon application rates on agronomic characters, yield and quality of potato[D]. Daqing: Heilongjiang Bayi Agricultural University, 2023. | |
[17] | 郝立冬. 硅肥对春小麦生长及产量品质的影响[D]. 大庆: 黑龙江八一农垦大学, 2013. |
HAO Lidong. Effects of silicon fertilizer on growth, yield and quality of spring wheat[D]. Daqing: Heilongjiang Bayi Agricultural University, 2013. | |
[18] |
张大伟, 魏鑫, 徐海江, 等. 滴施硅肥对棉花生长发育和产量品质的影响[J]. 新疆农业科学, 2020, 57(11): 1998-2003.
DOI |
ZHANG Dawei, WEI Xin, XU Haijiang, et al. Effects of silicon fertilizer on cotton growth, yield and quality[J]. Xinjiang Agricultural Sciences, 2020, 57(11): 1998-2003.
DOI |
|
[19] |
Khan M I R, Ashfaque F, Chhillar H, et al. The intricacy of silicon, plant growth regulators and other signaling molecules for abiotic stress tolerance: an entrancing crosstalk between stress alleviators[J]. Plant Physiology and Biochemistry, 2021, 162: 36-47.
DOI PMID |
[20] | 陈健晓, 屠乃美, 易镇邪, 等. 硅肥对超级早稻产量形成和部分生理特性的影响[J]. 作物研究, 2011, 25(6): 544-549. |
CHEN Jianxiao, TU Naimei, YI Zhenxie, et al. Effects of silicon fertilizer on yield formation and some physiological characteristics of super early rice[J]. Crop Research, 2011, 25(6): 544-549. | |
[21] | 苏素苗, 杨春雷, 饶雄飞, 等. 硅对植物抗逆性影响的研究进展[J]. 华中农业大学学报, 2022, 41(6): 160-168. |
SU Sumiao, YANG Chunlei, RAO Xiongfei, et al. Progress on effects of silicon on plant stress resistance[J]. Journal of Huazhong Agricultural University, 2022, 41(6): 160-168. | |
[22] | 罗赵福. 液体硅肥在水稻上的应用效果研究[J]. 园艺与种苗, 2022, 42(8): 76-77, 83. |
LUO Zhaofu. Study on the application effect of liquid silicon frtilizer on rice[J]. Horticulture & Seed, 2022, 42(8): 76-77, 83. | |
[23] | 孙德祥. 外源施加锌、硅肥对干旱胁迫下小麦旗叶生理特性及产量的影响[D]. 郑州: 河南农业大学, 2015. |
SUN Dexiang. Effects of exogenous application of zinc and silicon fertilizers on physiological characteristics and yield of flag leaves of wheat under drought stress[D]. Zhengzhou: Henan Agricultural University, 2015. | |
[24] | 施作家, 潘国庆, 周青, 等. 硅肥在棉花上的应用研究[J]. 中国棉花, 2001, 28(7): 17-18. |
SHI Zuojia, PAN Guoqing, ZHOU Qing, et al. Study on the application of silicon fertilizer in cotton[J]. China Cotton, 2001, 28(7): 17-18. | |
[25] | Boylston E K. Presence of silicon in developing cotton fibers[J]. Journal of Plant Nutrition, 1988, 11(12): 1739-1747. |
[1] | 王勇攀, 马君, 李晨宇, 姚梦瑶, 王子轩, 黄灵芝, 朱海艳, 刘皖蓉, 李波, 杨洋, 高文伟. 基于卷积神经网络和合成数据集训练鉴定棉花种子萌发期的耐盐性[J]. 新疆农业科学, 2025, 62(2): 261-269. |
[2] | 胡莎莎, 邵丽萍, 陈丽华, 宋卫平, 赵海, 张新宇, 孙杰. 脱叶剂对机采棉棉铃发育及纤维品质的影响[J]. 新疆农业科学, 2025, 62(2): 270-277. |
[3] | 刘跃, 连世昊, 李家豪, 王泓懿, 田文强, 聂凌帆, 孙刚刚, 贾永红, 石书兵, 于月华, 张金汕. 播期和密度对花生产量形成及品质的影响[J]. 新疆农业科学, 2025, 62(2): 278-285. |
[4] | 王奕丁, 张凯, 张凌健, 张慧, 郭小梦, 陈国悦. 滴灌量对新疆棉花生长发育、产量形成和水分利用效率的影响[J]. 新疆农业科学, 2025, 62(2): 294-301. |
[5] | 王晓艳, 白云岗, 柴仲平, 卢震林, 刘洪波, 肖军, 阿曼尼萨. 休作期冬灌滴灌调控下“干播湿出”对棉花生长及产量影响[J]. 新疆农业科学, 2025, 62(2): 302-313. |
[6] | 张腾艺, 李千里, 冯贝贝, 南坤, 闫鹏, 耿文娟. 金冠、维纳斯黄金、瑞雪苹果采收期的判定及果实品质的变化动态[J]. 新疆农业科学, 2025, 62(2): 314-323. |
[7] | 李天乐, 白新禄, 安世杰, 郑强卿, 汤智辉, 支金虎. 水肥耦合对库尔勒香梨生长、果实品质及产量的影响[J]. 新疆农业科学, 2025, 62(2): 335-342. |
[8] | 尹美霖, 林敏娟, 井双泉, 熊仁次. 拉枝角度对骏枣光合特性和果实品质的影响[J]. 新疆农业科学, 2025, 62(2): 343-349. |
[9] | 司艳娥, 如克艳木·买提司地克, 艾克拜尔·伊拉洪, 杨琪峰. 生物有机肥对枸杞品质及土壤酶活性的影响[J]. 新疆农业科学, 2025, 62(2): 350-360. |
[10] | 叶朵朵, 孟新涛, 古丽米热·祖努纳, 阿比代姆·阿卜杜热伊木, 库尔班娜依·吐尔逊麦麦提, 张婷, 马燕, 潘俨. 非浓缩还原(NFC)枸杞汁加工过程中品质变化特性[J]. 新疆农业科学, 2025, 62(2): 361-372. |
[11] | 张锦强, 杨湘, 苏学德, 王欢欢, 李铭, 李鹏程. 新疆北疆日光温室不同栽培模式下甜樱桃果实品质的差异性评价[J]. 新疆农业科学, 2025, 62(2): 446-453. |
[12] | 韩禧卿, 张鲜花, 袁惠, 熊辉, 撒成辉. 10份梯牧草植株形态特征与产量分析及评价[J]. 新疆农业科学, 2025, 62(2): 454-462. |
[13] | 许莹月, 侯钰荣, 周晨烨, 王静, 李有政, 周齐, 兰吉勇, 柯梅, 魏鹏, 王玉祥. 紫花苜蓿与冰草混播当年对牧草品质的影响[J]. 新疆农业科学, 2025, 62(2): 474-483. |
[14] | 郑培宇, 阿米妮古丽, 艾尔登巴图, 敖云巴特尔, 唐丽苹, 张彦威, 谢梦婉, 狄江, 于丽娟. 自然放牧条件下不同月龄巴音布鲁克羊肉品质的比较分析[J]. 新疆农业科学, 2025, 62(2): 494-501. |
[15] | 孙娜, 马林, 邹辉, 张志辉, 张胜军, 黄倩楠, 杨蕙, 登斯拉木·吐尔逊拜, 李志彬, 曹俊梅, 雷钧杰. 氮磷钾配施对冬小麦产量和品质的影响及其肥效分析[J]. 新疆农业科学, 2025, 62(1): 1-12. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 24
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 65
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||