新疆农业科学 ›› 2023, Vol. 60 ›› Issue (10): 2419-2425.DOI: 10.6048/j.issn.1001-4330.2023.10.010
收稿日期:
2023-02-09
出版日期:
2023-10-20
发布日期:
2023-11-01
通信作者:
孙建昌(1975-),男,宁夏盐池人,研究员,博士,研究方向为水稻遗传育种,(E-mail)nxsjch@163.com作者简介:
陈丽(1985-),女,陕西商洛人,助理研究员,硕士研究生,研究方向为水稻遗传育种,(E-mail)chen1985li@163.com
基金资助:
CHEN Li1(), MA Jing1, ZHU Zhiming2, LIU Wei1, SUN Jianchang1(
)
Received:
2023-02-09
Published:
2023-10-20
Online:
2023-11-01
Supported by:
摘要:
【目的】 研究挖掘水稻加工品质性状相关基因位点。【方法】 以13HJZ-44/13HJZ-19构建的包括243个家系的RIL群体F7代为材料,于2019~2021年采集稻米出糙率、精米率和整精米率表型数据,并分析加工品质相关性状QTL。【结果】 共检测到加工品质性状相关QTL 9个,其中糙米率的2个QTL分别位于4号和11号染色体上,表型贡献率为18.68%和75.32%;精米率3个QTL分别位于1号、2号和5号染色体上,贡献率为4.35%、0.75%和16.21%;整精米率4个QTL分别位于5号、6号和8号染色体上,贡献率为10.76%、5.86%、5.42%和3.66%。【结论】 qHR-6-1、qHR-6-2和qBR-11是控制糙米率和整精米率位点,其中qHR-6-1、qHR-6-2对整精米率有微效性,qBR-11是一个新的控制糙米率主效QTL。
中图分类号:
陈丽, 马静, 朱志明, 刘炜, 孙建昌. 基于水稻RIL群体的加工品质性状QTL分析[J]. 新疆农业科学, 2023, 60(10): 2419-2425.
CHEN Li, MA Jing, ZHU Zhiming, LIU Wei, SUN Jianchang. QTL mapping of processing quality traits on RIL population in rice[J]. Xinjiang Agricultural Sciences, 2023, 60(10): 2419-2425.
性状 Trait | 亲本Parent | 重组自交系群体RIL population | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
13HJZ -44 | 13HJZ -19 | 差值 Difference | 均值 Mean | 标准差 SD | 最大值 Max | 最小值 Min | 变异系数 Coefficient of variation(%) | 峰度 Kurtosis | 偏度 Skewness | |
出糙率 Brown rice rate (%) | 83.68 | 84.15 | 0.47 | 84.07 | 1.72 | 90.00 | 70.00 | 48.91 | 48.96 | -6.122 |
精米率 Milled rice rate (%) | 70.25 | 73.25 | 2.99 | 72.57 | 2.81 | 86.00 | 57.00 | 25.83 | 8.239 | -1.275 |
整精米率 Head rice rate (%) | 41.27 | 61.02 | 19.75 | 54.10 | 5.86 | 66.00 | 37.00 | 9.23 | -0.389 | -0.48 |
表1 亲本及RIL群体加工品质性状的变异表现
Tab.1 Variation of processing quality traits in parents and RILs
性状 Trait | 亲本Parent | 重组自交系群体RIL population | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
13HJZ -44 | 13HJZ -19 | 差值 Difference | 均值 Mean | 标准差 SD | 最大值 Max | 最小值 Min | 变异系数 Coefficient of variation(%) | 峰度 Kurtosis | 偏度 Skewness | |
出糙率 Brown rice rate (%) | 83.68 | 84.15 | 0.47 | 84.07 | 1.72 | 90.00 | 70.00 | 48.91 | 48.96 | -6.122 |
精米率 Milled rice rate (%) | 70.25 | 73.25 | 2.99 | 72.57 | 2.81 | 86.00 | 57.00 | 25.83 | 8.239 | -1.275 |
整精米率 Head rice rate (%) | 41.27 | 61.02 | 19.75 | 54.10 | 5.86 | 66.00 | 37.00 | 9.23 | -0.389 | -0.48 |
图1 RIL群体加工品质相关性状的家系分布 注:A.代表家系的出糙率;B.代家系的表精米率;C.代表家系的整精米率
Fig.1 Line distribution of processing quality traits in RILs Note:A.stands for roughness distribution of families;B.stands for milled rice rate;C.stands for head rice rate of families
图2 13HJZ-44/13HJZ-19RIL群体的遗传连锁 注:横坐标表示染色体,纵坐标表示遗传图距,横线表示图谱上的分子标记
Fig.2 Genetic linkage map of 13HJZ-44/13HJZ-19RIL RIL population Note:The abscissa represents the chromosome, the ordinate represents the genetic map distance, and the horizontal line represents the molecular markers on the map
性状 Trait | QTL | 标记区间 Marker interval | 区间距离 Interval distance/cM | LOD值 | 贡献率PVE(%) | 加性效应Add(%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2021 | 2019 | 2020 | 2021 | 2019 | 2020 | 2021 | |||||
BR | qBR-11 | Marker1690523-Marker1651369 | 0.623 | 6.06 | 75.32 | -1.21 | |||||||
qBR-4 | Marker2308870-Marker2433873 | 0.21 | 2.53 | 18.68 | 0.47 | ||||||||
MR | qMR-5 | Marker49932-Marker141199 | 0.415 | 10.62 | 16.21 | 2.24 | |||||||
qMR-1 | Marker405598-Marker617137 | 0.415 | 3.7 | 4.35 | 0.35 | ||||||||
qMR-2 | Marker2776334-Marker2942331 | 0 | 2.6 | 0.75 | -0.5 | ||||||||
HR | qHR-5 | Marker160033-Marker137238 | 0.419 | 6.95 | 10.76 | 2.7 | |||||||
qHR-6-1 | Marker3365801-Marker3142370 | 0.42 | 4.07 | 5.86 | 1.25 | ||||||||
qHR-6-2 | Marker3340147-Marker3099891 | 0.208 | 3.41 | 5.42 | -2.47 | ||||||||
qHR-8 | Marker2591821-Marker2551026 | 0 | 3.32 | 3.66 | 2.03 |
表2 稻米加工品质相关性状QTL定位
Tab.2 QTL mapping for processing quality related traits in rice
性状 Trait | QTL | 标记区间 Marker interval | 区间距离 Interval distance/cM | LOD值 | 贡献率PVE(%) | 加性效应Add(%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2021 | 2019 | 2020 | 2021 | 2019 | 2020 | 2021 | |||||
BR | qBR-11 | Marker1690523-Marker1651369 | 0.623 | 6.06 | 75.32 | -1.21 | |||||||
qBR-4 | Marker2308870-Marker2433873 | 0.21 | 2.53 | 18.68 | 0.47 | ||||||||
MR | qMR-5 | Marker49932-Marker141199 | 0.415 | 10.62 | 16.21 | 2.24 | |||||||
qMR-1 | Marker405598-Marker617137 | 0.415 | 3.7 | 4.35 | 0.35 | ||||||||
qMR-2 | Marker2776334-Marker2942331 | 0 | 2.6 | 0.75 | -0.5 | ||||||||
HR | qHR-5 | Marker160033-Marker137238 | 0.419 | 6.95 | 10.76 | 2.7 | |||||||
qHR-6-1 | Marker3365801-Marker3142370 | 0.42 | 4.07 | 5.86 | 1.25 | ||||||||
qHR-6-2 | Marker3340147-Marker3099891 | 0.208 | 3.41 | 5.42 | -2.47 | ||||||||
qHR-8 | Marker2591821-Marker2551026 | 0 | 3.32 | 3.66 | 2.03 |
[1] | 王惠贞, 吴瑞芬, 李丹. 稻米品质形成和调控机理概述[J]. 中国稻米, 2016, 22(1):10-13. |
WANG Huizhen, WU Ruifen, LI Dan. Review on Rice Quality Formation and its Regulation Mechanism[J]. China Rice, 2016, 22(1):10-13.
DOI |
|
[2] | 胡培松, 翟虎渠, 唐绍清, 等. 利用RVA 快速鉴定稻米蒸煮及食味品质的研究[J]. 作物学报, 2004, 30(6):519-524. |
HU Peisong, ZHAI Huqu, TANG Shaoqing, et al. Rapid Evaluation identification of Rice Cooking and Palatability Quality by RVA profile[J]. Acta Agronomica Sinica, 2004, 30(6):519-524. | |
[3] | 莫惠栋. 我国稻米品质的改良[J]. 中国农业科学, 1993, 26(4): 8-14. |
MO Huidong. Improvement of rice quality in China[J]. Scientia Agricultura Sinica, 1993, 26(4): 8-14. | |
[4] | 王炎钦. mRNA 水平水稻品质相关基因的大规模鉴定及应用初探[D]. 杭州: 浙江大学, 2006. |
WANG Yanqin. Primary Investigation in Rice Quality-related Genes Identification and Their Application in mRNA Level[D]. Hangzhou: Zhejiang University, 2006. | |
[5] | YAN Wengui, BAO Jinsong. Rice-Germplasm, Genetics and Improvement[M]. InTech Open Access Publisher. 2014: 239-278. |
[6] |
Tan Y F, Xing Y Z, Li J X, et al. Genetic Bases of Appearance Quality of Rice Grains in Shanyou63, an Elite rice Hybrid[J]. Theoretical and Applied Genetics, 2000, 101:823-829.
DOI URL |
[7] |
Tan Y F, Sun M, Xing Y Z, et al. Mapping Quantitative Trait Loci for Milling Quality, Protein content and Color Characteristics of Rice using a Recombinant Inbred Line Population Derived from an Elite Rice Hybrid[J]. Theoretical and Applied Genetics, 2001, 103:1037-1045.
DOI URL |
[8] |
Kepiro J L, McClung A M, Chen M H, et al. Mapping QTLs for Milling Yield and Grain Characteristics in a Tropical Japonica Long Grain Cross[J]. Cereal Science, 2008, 48(2): 477-485.
DOI URL |
[9] | 穆平, 郭咏梅, 刘家富, 等. 稻米外观和碾磨品质 QTL 定位及其与土壤水分环境互作分析[J]. 农业生物技术学报, 2007, 15(4): 654-660. |
MU Ping, GUO Yongmei, LIU Jiafu, et al. QTL Mapping and QTL×Environments Interactions of Grain Milling and Appearance Quality Traits in Rice under Upland and Lowland Environments[J]. Journal of Agricultural Biotechnology, 2007, 15(4): 654-660. | |
[10] |
Dong Y J, Tsuzuki E, Lin D Z, et al. Molecular Genetic Mapping of Quantitative Trait Loci for Milling Quality in Rice (Oryza sativa L.)[J]. Cereal Science, 2004, 40(2): 109-114.
DOI URL |
[11] | 翁建峰, 万向元, 郭涛, 等. 利用CSSL 群体研究稻米加工品质相关 QTL 表达的稳定性[J]. 中国农业科学, 2007, 40(10): 2128-2135. |
WONG Jianfeng, WANG Xiangyuan, GUO Tao, et al. Stability Analysis of QTLs for Milling Quality of Rice using CSSL population[J]. Scientia Agricultura Sinica, 2007, 40(10): 2128-2135. | |
[12] |
Wan X Y, Wan J M, Weng J F, et al. Stability of QTLs for Rice Grain Dimension and Endosperm Chalkiness Characteristics Across Eight Environments[J]. Theor Appl Genet, 2005, 110(7):1334-1346.
DOI PMID |
[13] |
Jiang G H, Hong X Y, Xu C G, et al. Identification of Quantitative Trait Loci for Grain Appearance and Milling Quality using a Doubled-haploid Rice Population[J]. Integr Plant Biol, 2005, 47(11): 1391-1403.
DOI URL |
[14] |
Li Z F, Wan J M, Xia J F, et al. Identification of Quantitative Trait Loci underlying Milling Quality of Rice (Oryza sativa L.) grains[J]. Plant Breed, 2004, 123(3): 229-234.
DOI URL |
[15] | Li Z F, Wan J M, Xia J F, et al. Mapping Quantitative Traits Loci underlying Appearance Quality of Rice Grains (Oryza sativa L.)[J]. Acta Genet Sin, 2003, 30(3): 251-259. |
[16] |
Lou J, Chen L, Y ue G H, et al. QTL Mapping of Grain Quality Traits in Rice[J]. Cereal Science, 2009, 50(2): 145-151.
DOI URL |
[17] |
Zheng T Q, Xu J L, Li Z K, et al. Genomic Regions Associated with Milling Quality and Grain Shape Identified in a Set of Random Introgression Lines of Rice (Oryza sativa L.)[J]. Plant Breed, 2007, 126(2): 158-163.
DOI URL |
[18] | 梅捍卫, 罗利军, 郭龙彪, 等. 水稻加工品质数量性状基因座(QTLs)分子定位研究[J]. 遗传学报, 2002, 29(9): 791-797. |
MEI Hanwei, LUO Lijun, GUO Longbiao, et al. Molecular Mapping of QTLs for Rice Milling Yield Traits[J]. Journal of Genetics, 2002, 29(9): 791-797. | |
[19] | 胡霞, 石瑜敏, 贾倩, 等. 影响水稻穗部性状及籽粒碾磨品质的QTL 及其环境互作分析[J]. 作物学报, 2011, 37(7): 1175-1185. |
HU Xia, SHI Yumin, JIA Qian, et al. Analysis of QTLs for Rice Panicle and Milling Quality Traits and Their Interaction with Environment[J]. Acta Agronomica Sinica, 2011, 37(7): 1175-1185. | |
[20] |
Aluko G, Martinez C, Tohme J, et al. QTL Mapping of Grain Quality Traits from the In-terspecific Cross Oryza sativa × O. glaberrima[J]. Theor Appl Genet, 2004, 109(3): 630-639.
DOI PMID |
[21] |
Li J M, Xiao J H, Grandillo S, et al. QTL Detection for Rice Grain Quality Traits using an Inter Specific Backcross Population Derived from Cultivated Asian (O. sativa L.) and African (O. glaberrima S.) rice[J]. Genome, 2004, 47(4): 697-704.
DOI URL |
[22] | Septiningsih E M, Trijatmiko K R, Moeljopawiro S, et al. Identification of Quantitative Trait Loci for Grain Quality in an Advanced Backcross Population Derived from the Oryza Sativa Variety IR64 and the Wild Relative O. Rufipogon[J]. Tag Theoretical & Applied Genetics, 2003, 107(8): 1433-1441. |
[23] | 刘家富, 奎丽梅, 朱作峰, 等. 普通野生稻稻米加工品质和外观品质性状 QTL 定位[J]. 农业生物技术学报, 2007, 15(1): 90-96. |
LIU Jiafu, KUI Limei, ZHU Zuofeng, et al. Identification of QTLs Associated with Processing Quality and Appearance Quality of Common Wild Rice (Oryza rufipogon Griff.)[J]. Journal of Agricultural Biotechnology, 2007, 15(1): 90-96. | |
[24] | 代明笠, 邵丽明, 胡慧, 等. 水稻加工品质及其遗传基础研究进展[J]. 长江大学学报, 2015, 12(9):5-8. |
DAI Mingli, SHAO Liming, HU Hui, et al. Research progress of rice processing quality and its genetic basis[J]. Journal of Changjiang University, 2015, 12(9):5-8. | |
[25] |
Li Y B, Fan C C, Xing Y Z, et al. Chalk5 Encodes a Vacuolar H+ Translocating Pyrosphatase Influencing Grain Chalkiness in Rice[J]. Nat Genet, 2014, 46:398-404.
DOI |
[26] | MaCouch S R, Cho Y G, Yang M, et al. Report on QTL Nomenclature[J]. Rice Gene Newslett, 1997, 14:11-13. |
[27] |
SUN Xiaowen, LIU Dongyuan, ZHANG Xiaofeng, et al. SLAF-seq:an Efficient Method of Large-scale Denovo SNP Discovery and Genotyping using High-throughput Sequencing[J]. Plos One, 2013, 8(3):e58700.
DOI URL |
[28] |
Liu D, Ma C, Hong W, et al. Construction and Analysis of High-density Linkage Map using High-throughput Sequencing Data[J]. Plos One, 2014, 9(6):e98855.
DOI URL |
[29] | 梅德勇, 朱玉君, 樊叶杨. 籼稻稻米碾磨与外观品质性状的 QTL 定位[J]. 遗传, 2012, 34(12):1591-1598. |
MEI Deiyong, ZHU Yujun, FAN Yeyang. QTL Mapping for milling and appearance quality traits in Indica Rice[J]. Heredity, 2012, 34(12):1591-1598. | |
[30] | Wang X, Pang Y, Wang C, et al. New Candidate Genes Affecting Rice Grain Appearance and Milling Quality Detected by Genome-wide and Gene-based Association Analyses[J]. Frontiers in Plant Science, 2017, 7:1998. |
[1] | 张鸟, 王卉, 冯国郡, 再吐尼古丽·库尔班. 不同粒用高粱品种产量和农艺性状及品质的差异性分析[J]. 新疆农业科学, 2024, 61(9): 2160-2167. |
[2] | 田海燕, 张占琴, 颉建辉, 王建江, 杨相昆. 加工番茄果实番茄红素与主要品质性状的关系[J]. 新疆农业科学, 2024, 61(9): 2197-2202. |
[3] | 张庭军, 李字辉, 崔豫疆, 孙孝贵, 陈芳. 微生物菌剂对棉花生长及土壤理化性质的影响[J]. 新疆农业科学, 2024, 61(9): 2269-2276. |
[4] | 陈勇, 周蕾, 隋春, 蔺彩霞. 32份板蓝根栽培种质在新疆产区的性状表现[J]. 新疆农业科学, 2024, 61(9): 2307-2314. |
[5] | 苗雨, 陈翠霞, 马艳明, 邢国芳, 董裕生, 陈智军, 王仙, 向莉. 276份中亚大麦种质资源表型性状的遗传多样性分析[J]. 新疆农业科学, 2024, 61(8): 1888-1895. |
[6] | 赵敏华, 宋秉曦, 张宇鹏, 高志红, 朱勇勇, 陈晓远. 旱作条件下氮肥减施对水稻产量及氮肥偏生产力的影响[J]. 新疆农业科学, 2024, 61(8): 1907-1915. |
[7] | 李颖, 郭文文, 李江博, 曲延英, 陈全家, 郑凯. 90份转BT基因抗虫棉品种(系)在新疆早熟棉区的适应性评价[J]. 新疆农业科学, 2024, 61(7): 1561-1573. |
[8] | 高君, 侯献飞, 苗昊翠, 贾东海, 顾元国, 汪天玲, 黄奕, 陈晓露, 李强. 棉花-花生轮作模式对花生干物质积累量分配及产量的影响[J]. 新疆农业科学, 2024, 61(7): 1648-1656. |
[9] | 陈胜磊, 孙国智, 张国威, 马海玉, 刘玲玲, 张维忠, 刘武军. 萨福克羊主要经济性状的遗传参数计非遗传因素分析[J]. 新疆农业科学, 2024, 61(7): 1814-1820. |
[10] | 叶萍毅, 龙遗磊, 谭彦平, 杜霄, 安梦洁, 陶志鑫, 梁发瑞, 艾先涛, 胡守林. 陆地棉果枝夹角与机采农艺性状鉴定评价[J]. 新疆农业科学, 2024, 61(6): 1318-1327. |
[11] | 刘跃, 贾永红, 张金汕, 于月华, 王润琪, 李丹丹, 石书兵. 滴灌条件下不同高油酸花生品种比较[J]. 新疆农业科学, 2024, 61(6): 1361-1367. |
[12] | 阿不都卡地尔·库尔班, 潘竟海, 陈友强, 刘华君, 董心久, 白晓山, 李思忠, 高卫时, 沙红, 李小惠. 基于产量相关性状综合评价晚播甜菜品种的适应性[J]. 新疆农业科学, 2024, 61(6): 1368-1377. |
[13] | 董祯林, 万素梅, 熊世武, 马云珍, 毛廷勇, 杨北方, 骆磊, 刘超群, 陈国栋, 李亚兵. 不同种植密度对中棉113农艺性状及产量的影响[J]. 新疆农业科学, 2024, 61(5): 1102-1111. |
[14] | 杨璐, 王娜, 范少丽, 程平, 李宏, 汪阳东. 黑桑种质资源表型性状变异特征分析[J]. 新疆农业科学, 2024, 61(5): 1172-1181. |
[15] | 代元帅, 鲁为华, 申磊, 王秀媛, 张文龙, 张伟. 林草复合系统中杨树-紫花苜蓿间作对苜蓿生长发育及品质的影响[J]. 新疆农业科学, 2024, 61(5): 1182-1189. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||