新疆农业科学 ›› 2024, Vol. 61 ›› Issue (7): 1648-1656.DOI: 10.6048/j.issn.1001-4330.2024.07.011
• 作物遗传育种·种质资源·分子遗传学·耕作栽培·生理生化 • 上一篇 下一篇
高君1(), 侯献飞2, 苗昊翠2, 贾东海2, 顾元国2, 汪天玲2, 黄奕2, 陈晓露1(
), 李强2(
)
收稿日期:
2023-11-10
出版日期:
2024-07-20
发布日期:
2024-09-04
通信作者:
陈晓露(1981-),男,副教授,博士,研究方向为油料作物育种栽培及有害生物防控,(E-mail)cxl8109@163.com;作者简介:
高君(1996-),女,山东济南人,硕士研究生,研究方向为花生栽培与育种,(E-mail)2287455311@qq.com
基金资助:
GAO Jun1(), HOU Xianfei2, MIAO Haocui2, JIA Donghai2, GU Yuanguo2, WANGH Tianling2, HNU Yi2, CHENG Xiaolu1(
), LI Qiang2(
)
Received:
2023-11-10
Published:
2024-07-20
Online:
2024-09-04
Supported by:
摘要:
【目的】研究棉花-花生轮作模式下花生干物质积累量分配规律特性。【方法】以新疆常规连作花生为对照(CK),设置棉花-花生-棉花轮作(CPC处理)、花生-棉花-花生轮作(PCP处理)2个不同的种植模式,在花生苗期、花针期、结荚期、成熟期分别测定花生根、茎、叶和果的干鲜比、干物质积累量等指标。【结果】花生荚果干重、叶干重与单株生物量间均呈显著正相关。花生全生育期棉花-花生-棉花轮作,花生-棉花-花生轮作的茎、叶、果的干鲜比及干物质积累量均显著高于CK,其中棉花-花生-棉花轮作的百果重、百仁重和产量比CK增加21.17%、35.33%和78.02%;花生-棉花-花生轮作的百果重、百仁重、出仁率和产量比CK分别增加14.68%、6.64%、1.39%和40.54%。棉花-花生-棉花轮作百果重、百仁重均显著高出CK和花生-棉花-花生轮作处理21.42%和35.28%、5.69%和26.08%。【结论】轮作模式具有加快生育进程的效果,轮作可以显著提高干物质积累量及百果重、百仁重,且有利于花生产量的提高。
中图分类号:
高君, 侯献飞, 苗昊翠, 贾东海, 顾元国, 汪天玲, 黄奕, 陈晓露, 李强. 棉花-花生轮作模式对花生干物质积累量分配及产量的影响[J]. 新疆农业科学, 2024, 61(7): 1648-1656.
GAO Jun, HOU Xianfei, MIAO Haocui, JIA Donghai, GU Yuanguo, WANGH Tianling, HNU Yi, CHENG Xiaolu, LI Qiang. Effect of cotton-peanut crop rotation pattern on the distribution of dry matter accumulation and yield of peanut[J]. Xinjiang Agricultural Sciences, 2024, 61(7): 1648-1656.
图1 不同年份间花生和棉花的种植方案 注:A地块不同年份间种植模式为花生-花生-花生,简称为CK;C地块不同年份间种植模式为棉花-花生-棉花,简称为CPC;D地块不同年份间种植模式为花生-棉花-花生,简称为PCP
Fig.1 Planting schemes of peanut and cotton between different years Note: The cropping pattern between years in plot A is peanut-peanut-peanut, abbreviated as CK; the cropping pattern between years in plot C is cotton-peanut-cotton, abbreviated as CPC; and the cropping pattern between years in plot D is peanut-cotton-peanut, abbreviated as PCP
图2 不同处理下花生生长发育过程中各器官干鲜比 注:相同器官图柱上不同小写字母表示不同种植模式间差异在0.05水平显著
Fig.2 Dry-to-fresh ratio of each organ during peanut growth and development under different cropping patterns Note: Different lowercase letters on the plot columns of the same organ indicate significant differences between different cropping patterns at the 0.05 level
图3 不同种植模式下花生单株总干物质积累量的变化 注:相同时期柱上不同小写字母表示不同种植模式间差异在0.05水平显著
Fig.3 Changes of total dry matter accumulation of peanut monocots under different cropping patterns Note: Different lowercase letters on the graph bars for the same period indicate that the differences between different cropping patterns are significant at the 0.05 level
图4 不同种植模式花生苗期、花针期、结荚期、荚果成熟期的干物质分配率变化 注:柱上数字为干物质分配率
Fig.4 Changes of dry matter allocation in different cropping patterns at seedling, flowering-pegging, pod setting and pod filling stages Note:The numbers on the columns are the dry matter distribution ratios
指标 Indexes | Logistic方程 Logistic equation | R2 | t1 | t2 | t3 |
---|---|---|---|---|---|
花生-棉花-花生轮作干物质积累量 Dry matter accumulation in peanut-cotton-peanut | y= | 0.992 67 | 51.50 | 65.73 | 79.978 |
CK干物质积累量 Dry matter accumulation in CK | y= | 0.997 24 | 54.63 | 71.39 | 88.16 |
棉花-花生-棉花轮作干物质积累量 Dry matter accumulation in cotton-peanut-cotton | y= | 0.996 17 | 59.31 | 71.88 | 84.45 |
表1 不同种植模式下花生干物质积累logistic方程及数据
Tab.1 logistic equation and data of dry matter accumulation in continuous cropping and rotation of peanut
指标 Indexes | Logistic方程 Logistic equation | R2 | t1 | t2 | t3 |
---|---|---|---|---|---|
花生-棉花-花生轮作干物质积累量 Dry matter accumulation in peanut-cotton-peanut | y= | 0.992 67 | 51.50 | 65.73 | 79.978 |
CK干物质积累量 Dry matter accumulation in CK | y= | 0.997 24 | 54.63 | 71.39 | 88.16 |
棉花-花生-棉花轮作干物质积累量 Dry matter accumulation in cotton-peanut-cotton | y= | 0.996 17 | 59.31 | 71.88 | 84.45 |
处理 Treatments | 百果重 Hundred pods weight (g) | 百仁重 Hyakuren Heavy (g) | 出仁率 Kernel rate (%) | 500 g果数 Number of pods at 500 g | 单株生物量 single plant biomass | 单株产量 Single plant yield | 产量 Yield (kg/hm2) |
---|---|---|---|---|---|---|---|
棉花-花生- 棉花轮作 Cotton-peanut-cotton | 204.35±4.53a | 87.26±3.03a | 75%±0.01c | 243±2.64c | 169.41±1.21a | 31.47±0.52b | 7 421.28a |
对照CK | 168.65±8.63c | 64.48±0.38c | 72%±0.01b | 286±3.21a | 137.40±1,53c | 30.26±0.86c | 4 160.42c |
花生-棉花- 花生轮作 Peanut-cotton-peanut | 193.47±1.74b | 68.76±2.15b | 73%±0.01a | 269±1.54b | 155.03±0.96b | 33.02±1.23a | 5 847.07b |
表2 不同种植模式下花生的产量及产量构成
Tab.2 Yield and yield components of peanut under different cropping patterns
处理 Treatments | 百果重 Hundred pods weight (g) | 百仁重 Hyakuren Heavy (g) | 出仁率 Kernel rate (%) | 500 g果数 Number of pods at 500 g | 单株生物量 single plant biomass | 单株产量 Single plant yield | 产量 Yield (kg/hm2) |
---|---|---|---|---|---|---|---|
棉花-花生- 棉花轮作 Cotton-peanut-cotton | 204.35±4.53a | 87.26±3.03a | 75%±0.01c | 243±2.64c | 169.41±1.21a | 31.47±0.52b | 7 421.28a |
对照CK | 168.65±8.63c | 64.48±0.38c | 72%±0.01b | 286±3.21a | 137.40±1,53c | 30.26±0.86c | 4 160.42c |
花生-棉花- 花生轮作 Peanut-cotton-peanut | 193.47±1.74b | 68.76±2.15b | 73%±0.01a | 269±1.54b | 155.03±0.96b | 33.02±1.23a | 5 847.07b |
[1] | 李培栋, 王兴祥, 李奕林, 等. 连作花生土壤中酚酸类物质的检测及其对花生的化感作用[J]. 生态学报, 2010, 30(8): 2128-2134. |
LI Peidong, WANG Xingxiang, LI Yilin, et al. The contents of phenolic acids in continuous cropping peanut and their allelopathy[J]. Acta Ecologica Sinica, 2010, 30(8): 2128-2134. | |
[2] | 王春丽, 李增嘉. 小麦花生玉米不同间套作模式产量品质效益比较[J]. 耕作与栽培, 2005,(5): 11-12, 18. |
WANG Chunli, LI Zengjia. Comparison of yield, quality and benefit of different intercropping patterns of wheat, peanut and corn[J]. Tillage and Cultivation, 2005,(5): 11-12, 18. | |
[3] |
杨欢, 周颖, 陈平, 等. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
DOI |
YANG Huan, ZHOU Ying, CHEN Ping, et al. Effects of nutrient uptake and utilization on yield of maize-legume strip inter-cropping system[J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
DOI |
|
[4] | 席亚东, 向运佳, 吴婕, 等. 间套作对辣椒炭疽病、花生叶斑病的影响[J]. 西南农业学报, 2015, 28(1): 150-154. |
XI Yadong, XIANG Yunjia, WU Jie, et al. Efficacy of intercropping systems of pepper and peanut for pepper anthracnose and peanut leafspot diseases[J]. Southwest China Journal of Agricultural Sciences, 2015, 28(1): 150-154. | |
[5] | 李锐, 刘瑜, 褚贵新, 等. 棉花连作对北疆土壤酶活性、致病菌及拮抗菌多样性的影响[J]. 中国生态农业学报, 2015, 23(4): 432-440. |
LI Rui, LIU Yu, CHU Guixin, et al. Response of soil enzyme activity and microbial community structure, diversity to continuous cotton cropping in northern Xinjiang[J]. Chinese Journal of Eco-Agriculture, 2015, 23(4): 432-440. | |
[6] | Xiong W, Li Z G, Liu H J, et al. The effect of long-term continuous cropping of black pepper on soil bacterial communities as determined by 454 pyrosequencing[J]. PLoS One, 2015, 10(8): e0136946. |
[7] |
Urashima Y, Sonoda T, Fujita Y, et al. Application of PCR-denaturing-gradient gel electrophoresis (DGGE) method to examine microbial community structure in asparagus fields with growth inhibition due to continuous cropping[J]. Microbes and Environments, 2012, 27(1): 43-48.
PMID |
[8] | Zhou X G, Gao D M, Liu J, et al. Changes in rhizosphere soil microbial communities in a continuously monocropped cucumber (Cucumis sativusL.) system[J]. European Journal of Soil Biology, 2014, 60: 1-8. |
[9] | 张晓玲, 潘振刚, 周晓锋, 等. 自毒作用与连作障碍[J]. 土壤通报, 2007, 38(4): 781-784. |
ZHANG Xiaoling, PAN Zhengang, ZHOU Xiaofeng, et al. Autotoxicity and continuous cropping obstacles: a review[J]. Chinese Journal of Soil Science, 2007, 38(4): 781-784. | |
[10] | 王根全, 郝晓芬, 郭二虎, 等. 连作与轮作谷子根际土壤真菌群落分布特征[J]. 中国生态农业学报(中英文), 2023, 31(5): 677-689. |
WANG Genquan, HAO Xiaofen, GUO Erhu, et al. Distribution characteristics of the soil fungi community in the rhizosphere of foxtail millet under different planting patterns[J]. Chinese Journal of Eco-Agriculture, 2023, 31(5): 677-689. | |
[11] | 牛倩云, 韩彦莎, 徐丽霞, 等. 作物轮作对谷田土壤理化性质及谷子根际土壤细菌群落的影响[J]. 农业环境科学学报, 2018, 37(12): 2802-2809. |
NIU Qianyun, HAN Yansha, XU Lixia, et al. Effects of crop rotation on soil physicochemical properties and bacterial community of foxtail millet rhizosphere soil[J]. Journal of Agro-Environment Science, 2018, 37(12): 2802-2809. | |
[12] |
刘锦涛, 陈国栋, 万素梅, 等. 棉花干物质积累与转运对密度与行距配置的响应特征[J]. 中国农学通报, 2023, 39(14): 12-19.
DOI |
LIU Jintao, CHEN Guodong, WAN Sumei, et al. Response characteristics of cotton dry matter accumulation and transportation to density and row spacing configuration[J]. Chinese Agricultural Science Bulletin, 2023, 39(14): 12-19.
DOI |
|
[13] |
蒯婕, 李真, 汪波, 等. 密度和行距配置对油菜苗期性状及产量形成的影响[J]. 中国农业科学, 2021, 54(11): 2319-2332.
DOI |
KUAI Jie, LI Zhen, WANG Bo, et al. Effects of density and row spacing on seedling traits of rapeseed and seed yield[J]. Scientia Agricultura Sinica, 2021, 54(11): 2319-2332.
DOI |
|
[14] | 李猛, 陈现平, 张建, 等. 不同密度与行距配置对紧凑型玉米产量效应的研究[J]. 中国农学通报, 2009, 25(8): 132-136. |
LI Meng, CHEN Xianping, ZHANG Jian, et al. Study on the yield of erectophile type maize under the different density and the row spacing[J]. Chinese Agricultural Science Bulletin, 2009, 25(8): 132-136.
DOI |
|
[15] | 朱广凯. 花生连作弊端多[J]. 农家参谋, 2010,(5):10. |
ZHU Guangkai. Peanut crop with many drawbacks[J]. Farmers' Advice, 2010,(5):10. | |
[16] | 刘素, 吴宏亮, 陈倬, 等. 连作年限影响芹菜根际土壤微生物群落结构及功能类群[J]. 中国农业气象, 2023, 44(5): 372-385. |
LIU Su, WU Hongliang, CHEN Zhuo, et al. Continuous cropping years affect the rhizosphere soil microbial community structure and functional taxa of celery[J]. Chinese Journal of Agrometeorology, 2023, 44(5): 372-385. | |
[17] | 朱珏, 石雨荷, 李晴, 等. 百合种质资源遗传多样性及连作障碍研究进展[J]. 北方园艺, 2023,(9): 126-132. |
ZHU Jue, SHI Yuhe, LI Qing, et al. Research progress on genetic diversity and continuous cropping barriers of lily germplasm resources[J]. Northern Horticulture, 2023,(9): 126-132. | |
[18] | 方路斌, 李玉灵, 黄大庄, 等. 不同立地下白桑-花生间作系统生物量及营养元素的积累[J]. 林业科学, 2008, 44(1): 13-18. |
FANG Lubin, LI Yuling, HUANG Dazhuang, et al. Biomass and Nutrient Accumulation in the Morus alba and Peanut Intercropping Ecological System in Different Habitats[J]. Scientia Silvae Sinicae, 2008, 44(1): 13-18. | |
[19] | 伊淼, 王建国, 尹金. 减氮增钙及施用时期对花生生长发育及生理特性的影响[J]. Journal of Agricultural Science & Technology, 2021, 23(4):1008-0864. |
Yi Miao, WANG Jianguo, YIN Jin, et al. Effects of Nitrogen Reduction and Calcium Increase and Application Period on Peanut Growth and Physiological Characteristics[J]. Journal of Agricultural Science & Technology, 2021, 23(4):1008-0864. | |
[20] | 刘颖, 王建国, 郭峰. 玉米花生间作对作物干物质积累和氮素吸收利用的影响[J]. 中国油料作物学报, 2020, 42(6): 994-1001. |
LIU Ying, WANG Jianguo, GUO Feng, et al. Effects of intercropping maize and peanut on dry matter accumulation and nitrogen uptake and utilisation[J]. Chinese Journal of Oil Crops, 2020, 42(6): 994-1001. | |
[21] | 刘文文, 王建国, 万书波. 花生荚果发育及其调控研究进展[J]. 中国油料作物学报, 2020, 42(6): 940. |
LIU Wenwen, WANG Jianguo, WAN Shubo, et al. Progress of peanut pod development and its regulation[J]. Chinese Journal of Oil Crops, 2020, 42(6): 940. | |
[22] |
王海娣, 吴兵, 高玉红, 等. 旱地胡麻同化物积累和分配与产量形成对轮作模式的响应[J]. 中国油料作物学报, 2022, 44(1): 158-167.
DOI |
WANG Haidi, WU Bing, GAO Yuhong, et al. Responses of assimilation accumulation and distribution and grain yield formation of oilseed flax to crop rotation patterns in dry land[J]. Chinese Journal of Oil Crop Sciences, 2022, 44(1): 158-167.
DOI |
|
[23] |
平晓燕, 周广胜, 孙敬松. 植物光合产物分配及其影响因子研究进展[J]. 植物生态学报, 2010, 34(1): 100-111.
DOI |
PING Xiaoyan, ZHOU Guangsheng, SUN Jingsong. Advances in the study of photosynthate allocation and its controls[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 100-111.
DOI |
|
[24] | 殷文, 冯福学, 赵财, 等. 小麦秸秆还田方式对轮作玉米干物质累积分配及产量的影响[J]. 作物学报, 2016, 42(5): 751-757. |
YIN Wen, FENG Fuxue, ZHAO Cai, et al. Effects of wheat straw returning patterns on characteristics of dry matter accumulation, distribution and yield of rotation maize[J]. Acta Agronomica Sinica, 2016, 42(5): 751-757.(与22重复) | |
[25] |
杨锦浩, 李宇星, 张月, 等. 夜间增温对小麦干物质积累、转运、分配及产量的影响[J]. 核农学报, 2022, 36(11):2295-2306.
DOI |
YANG Jinhao, LI Yuxing, ZHANG Yue, et al. Effects of nighttime warming on dry matter accumulation, translocation, distribution and yield of wheat[J]. Journal of Nuclear Agricultural Sciences, 2022, 36(11):2295-2306.
DOI |
|
[26] | 刘华健. 红麻套作油菜对生长发育及产量的影响[D]. 南宁: 广西大学, 2020: 24-25. |
LIU Huajian. Effects of kenaf intercropping rape on growth and yield[D]. Nanning: Guangxi University, 2020: 24-25. | |
[27] |
陆峰, 廖超林, 肖志鹏, 等. 烟-稻复种连作对红壤性水稻土团聚体组成及稳定性的影响[J]. 中国农学通报, 2022, 38(26): 56-61.
DOI |
LU Feng, LIAO Chaolin, XIAO Zhipeng, et al. Effects of tobacco-rice continuous cropping on distribution and stability of soil aggregates in red paddy soil[J]. Chinese Agricultural Science Bulletin, 2022, 38(26): 56-61.
DOI |
[1] | 韩睿, 张全成, 王小丽, 林萍, 魏迎凤, 王俊刚. 龙葵对棉花生长的影响及其经济阈值分析[J]. 新疆农业科学, 2022, 59(8): 1831-1837. |
[2] | 龚照龙, 于可可, 郑巨云, 杜明伟, 梁亚军, 王俊铎, 艾先涛, 李雪源, 郭江平, 莫明. 化学封顶剂不同浓度处理对棉花农艺及产量性状的影响[J]. 新疆农业科学, 2021, 58(8): 1392-1397. |
[3] | 郑巨云, 王俊铎, 张泽坤, 梁亚军、龚照龙, 艾先涛, 郭江平, 莫明, 李雪源. 新疆南疆机采棉品种株型结构与产量性状的相关性[J]. 新疆农业科学, 2020, 57(4): 722-728. |
[4] | 郑巨云, 王俊铎, 龚照龙, 梁亚军, 窦先运, 艾先涛, 郭江平, 莫明, 李雪源. 南疆机采棉品种光合特性与产量性状相关性分析[J]. 新疆农业科学, 2019, 56(7): 1214-1223. |
[5] | 周小云, 郭刚, 马盾. 陆地棉半矮秆免打顶突变体sd农艺和产量性状的研究[J]. 新疆农业科学, 2018, 55(6): 1046-1055. |
[6] | 李强;顾元国;王娟;贾东海;张乐;陈跃华. 新疆旱区不同种植密度对花生光合生理及产量的影响[J]. , 2016, 53(1): 84-90. |
[7] | 余力;何玉梅;海丽齐汗·哈力克;梅拥军. 海岛棉枯萎病对产量性状的贡献分析[J]. , 2015, 52(7): 1346-1351. |
[8] | 王俊铎;梁亚军;龚照龙;艾先涛;郑巨云;李雪源;吐尔逊江;莫明;多力坤. 南疆棉花历史主栽品种产量性状演变规律研究[J]. , 2015, 52(4): 779-784. |
[9] | 王娟;郭伟锋;胡守林;曹新川;万素梅. 陆地棉种质材料遗传多样性研究[J]. , 2014, 51(1): 15-22. |
[10] | 潘竟海;陈友强;林明;白晓山;李承业;张智忠. 黑籽瓜产量性状的相关与通径分析[J]. , 2013, 50(8): 1406-1410. |
[11] | 郑巨云;王俊铎;艾先涛;多力坤;梁亚军;莫明;吐逊江;李雪源;龚照龙. 陆地棉产量与纤维品质性状的遗传相关分析[J]. , 2013, 50(6): 995-1002. |
[12] | 柴颜军;陈全家;曾凯;陈磊;刘艳;王海标;谢元元;郑炜佳;曲延英. 海岛棉产量性状和纤维品质性状的相关性[J]. , 2013, 50(12): 2157-2164. |
[13] | 田海燕;战勇;张恒斌;杨相昆;刘涛. 8个新疆大豆主栽品种产量与主要产量性状关联度的研究[J]. , 2011, 48(11): 2031-2034. |
[14] | 丁胜;鲁乃曾;杨东杰;张利莉;梅拥军. 新疆自育海岛棉品种间杂交产量性状的杂种优势分析[J]. , 2010, 47(1): 42-46. |
[15] | 赛力汗·赛;赵奇;陈兴武;雷钧杰. 不同冬小麦品种产量性状及水分生产率比较研究[J]. , 2009, 46(5): 960-963. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 40
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 122
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||