

新疆农业科学 ›› 2021, Vol. 58 ›› Issue (10): 1829-1837.DOI: 10.6048/j.issn.1001-4330.2021.10.008
• 作物遗传育种·种质资源·分子遗传学·耕作栽培·生理生化·农产品分析检测 • 上一篇 下一篇
王强1,2(
), 王柏柯1, 刘会芳1, 韩宏伟1, 庄红梅1, 王娟1, 杨涛1, 王浩1(
), 秦勇2(
)
收稿日期:2021-02-04
出版日期:2021-10-20
发布日期:2021-10-26
通信作者:
王浩(1970-),男,山东人,研究员,研究方向为设施蔬菜栽培与生理,(E-mail) wanghao183@163.com;作者简介:王强(1983-),男,甘肃人,副研究员,研究方向为蔬菜栽培生理与逆境胁迫,(E-mail) wangqiang201004@sina.com
基金资助:
Qiang WANG1,2(
), Baike WANG1, Huifang LIU1, Hongwei HAN1, Hongmei ZHUANG1, Juan WANG1, Tao YANG1, Hao WANG1(
), Yong QIN2(
)
Received:2021-02-04
Published:2021-10-20
Online:2021-10-26
Supported by:摘要:
【目的】回顾近年来蛋白质组学在番茄逆境胁迫中的研究进展,综述蛋白质组学技术在番茄响应非生物(盐碱、干旱、高温、低温、其它)胁迫上的研究进展,为利用蛋白质组学技术进一步研究番茄响应非生物逆境胁迫的分子机制奠定理论基础。【方法】运用统计学方法收集文献资料,并分析汇总蛋白质组学技术在番茄响应非生物(盐碱、干旱、高温、低温等)胁迫的研究文献进展情况。【结果】盐胁迫耐受性(渗透调节,渗透保护,离子稳态,消除氧清除剂,胁迫反应等)与胁迫的持续时间有关;下调的蛋白主要参与代谢和能量转换,上调的蛋白参与信号转导或运输;干旱应答蛋白包括与耐热性和渗透性保护剂的产生、脂质代谢、细胞壁修饰、神经酰胺代谢和丝裂原活化蛋白磷酸化相关的蛋白;蛋白质广泛参与了细胞过程,包括防御/应激反应,离子结合/转运,光合作用和蛋白质合成;最初如何感知胁迫条件,以及植物器官激活了哪些主要反应,可以避免低温胁迫晚期相关蛋白的干扰。【结论】在非生物逆境胁迫条件下,番茄通过改变自身的蛋白质表达水平对各种非生物胁迫作出响应。蛋白质组学研究能够全面揭示番茄响应胁迫时其细胞内蛋白质的动态变化规律,鉴定差异表达的蛋白质,是番茄抗逆生物学研究的重要组成部分。
中图分类号:
王强, 王柏柯, 刘会芳, 韩宏伟, 庄红梅, 王娟, 杨涛, 王浩, 秦勇. 蛋白质组学在番茄非生物逆境胁迫中的研究进展[J]. 新疆农业科学, 2021, 58(10): 1829-1837.
Qiang WANG, Baike WANG, Huifang LIU, Hongwei HAN, Hongmei ZHUANG, Juan WANG, Tao YANG, Hao WANG, Yong QIN. Advances in Tomato Proteomics Research under Abiotic Stress[J]. Xinjiang Agricultural Sciences, 2021, 58(10): 1829-1837.
| [1] | Juhi C, Patil G B, Humira S, et al. Expanding Omics Resources for Improvement of Soybean Seed Composition Traits[J]. Frontiers in Plant Science, 2015, 6(31):504. |
| [2] |
Fukushima, Kusano, Redestig, et al. Integrated omics approaches in plant systems biology[J]. Curr Opin Chem Biol, 2009, 13(5-6):532-538.
DOI PMID |
| [3] | Shah T, Xu J, Zou X, et al. Omics Approaches for Engineering Wheat Production under Abiotic Stresses[J]. International Journal of Molecular Sciences, 2018, 19(8). |
| [4] | Chaudhary, J.,; Deshmukh, R.,; Mir, Z.A.,; Bhat, J.A., et al. Metabolomics: An emerging technology for soybean improvement. In Biotechnology Products in Everyday Life; Springer: Berlin,[J]. Germany, 2019: 175-186. |
| [5] |
Hong J.,; Yang L.,; Zhang D.,; Shi J. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science[J]. Int. J. Mol. Sci, 2016, 17:767.
DOI URL |
| [6] |
Wu Q, Song J Y, Sun Y Q, et al. Transcript profiles of Panax quinquefolius from flower,leaf and root bring new insights into genes related to ginsenosides biosynjournal and transcriptional regulation[J]. Physiologia Plantarum, 2010, 138(2) : 134-149.
DOI URL |
| [7] | Lian J., Zhang X.C., and Gu J.T. Advance in transcriptomics and its application in olericulture research[J]. Zhongguo Nongxue Tongbao (Chinese Agricultural Science Bulletin), 2015, 31(8):118-122. |
| [8] | 刘冠, 赵婷婷, 杨欢欢, 等. 番茄转录组学研究进展[J]. 基因组学与应用生物学, 2016, 35,(10):2802-2807. |
| LIU Guan, ZHZO Tingting, YANG Huanhuan, et al. Advances in tomato transcriptomics[J]. Genomics and Applied Biology, 2016, 35(10):2802-2807. | |
| [9] | 张国儒, 庞胜群, 郭晓珊, 等. 加工番茄耐盐突变体转录组测序结果分析及验证[J]. 园艺学报, 2017, 44(S1):2574. |
| ZHANG Guoru, PANG Shengqun, GUO Xiaoshan, Shan Shu ling. Analysis and validation of transcriptome sequencing results of salt-tolerant mutant in processed tomato[J]. Acta Horticulturae Sinica, 2017, 44(S1):2574. | |
| [10] |
Mazzucotelli E, Mastrangelo AA, Crosatti C, et al. Abiotic stress response in plants: when post-transcriptional and post-translational regulations control transcription[J]. Plant Sci, 2008, 174:420-431.
DOI URL |
| [11] |
Dai S J, Wang T, Yan X F, et al. Proteomics of pollen development and germination[J]. Journal of Proteome Research, 2007, 6(12):4556-4563.
DOI URL |
| [12] | Yu J J, Dai S J . Research advances in plant proteomics[J]. Chinese Bulletin of Botany, 2009, 44(4):410-425. |
| [13] | Yahui Liu, Song Lu, Kefu Liu, Sheng Wang, Luqi Huang, Lanping Guo. Proteomics: a powerful tool to study plant responses to biotic stress[J]. Plant Methods, 2019,(15):135. |
| [14] | 李焕勇, 杨秀艳, 唐晓倩, 等. 植物响应盐胁迫组学研究进展[J]. 西北植物学报, 2016, 36(12):2548-2557. |
| LI Huanyong, YANG Xiuyan, TANG Xiaoqian, ZHANG Hua xing. Omics Research Progress of Plants under Salt Stress Acta Bot[J]. Boreal.-Occident Sin, 2016, 36(12):2548-2557. | |
| [15] | Kosová K., Vítámvás P., Prášil I. T., and Renaut J. Plant proteome changes under abiotic stress - Contribution of proteomics studies to understanding plant stress response[J]. J. Proteomics, 2011,(74):1301-1322. |
| [16] | Ahmad P., Abdel Latef, A. A. H., Rasool, S., Akram, N. A., Ashraf, M., and Gucel, S,. Role of proteomics in crop stress tolerance[J]. Front. Plant Sci, 2016,(7):1336. |
| [17] | Janmohammadi M., Zolla L., and Rinalducci S. Low temperature tolerance in plants: changes at the protein level[J]. Phytochemistry, 2015,(117):76-89. |
| [18] | Johnová P., Skalák J., Saiz-Fernández, I., and Brzobohatý B. Plant responses to ambient temperature fluctuations and water-limiting conditions:a proteome-wide perspective. Biochim. Biophys[J]. Acta Proteins Proteomics, 2016: 1864. |
| [19] | Ning, F., and Wang, W. “The response of chloroplast proteome to abiotic stress, ” in Drought Stress Tolerance in Plants, eds M. A. Hossain, S. H. Wani, S. Bhattacharjee[J]. D.J. Burritt, and L. S. P. Tran (Verlag: Springer), 2016:232-249. |
| [20] | Kosová K., Vítámvás P., Urban M. O., and Prášil I. T. Plant proteome responses to salinity stress - comparison of glycophytes and halophytes[J]. Funct.Plant Biol. 2013,(40):775-786. |
| [21] |
Kosová K., Prášil I. T., and Vítámvás P. Protein contribution to plant salinity response and tolerance acquisition[J]. Int. J. Mol. Sci, 2013, 14:6757-6789.doi: 10.3390/ijms14046757.
DOI PMID |
| [22] |
Tan, B. C., Lim, Y. S., and Lau, S. E. Proteomics in commercial crops: an overview[J]. J. Proteomics, 2017, 169:176-188.
DOI URL |
| [23] |
Agrawal, G. K., Jwa, N. S., and Rakwal, R. Rice proteomics:ending phase I and the beginning of phase II[J]. Proteomics, 2009, 9:935-963.
DOI PMID |
| [24] |
Pechanova, O., Takác, T., Samaj, J., and Pechan, T. Maize proteomics: an insight into the biology of an important cereal crop[J]. Proteomics, 2013, 13:637-662.
DOI PMID |
| [25] | Komatsu, S., Kamal, A. H., and Hossain, Z. Wheat proteomics:proteome modulation and abiotic stress acclimation[J]. Front. Plant Sci, 2014, 5:684. |
| [26] |
Yin, X., Komatsu, S.. Comprehensive analysis of response and tolerant mechanisms in early stage soybean at initial-flooding stress[J]. J. Proteomics, 2017, 169:225-232.
DOI URL |
| [27] |
Kosová K., Vítámvás, P., Urban, M. O., Klíma, M., Roy, A., and Prášil, I. T. Biological networks underlying abiotic stress tolerance in temperate crops - a proteomic perspective[J]. Int. J. Mol. Sci, 2015, 16:20913-20942.
DOI PMID |
| [28] |
Ghatak, A., Chaturvedi, P., Paul, P., Agrawal, G. K., Rakwal, R., Kim, S. T., et al. Proteomics survey of Solanaceae family: current status and challenges ahead[J]. J. Proteomics, 2017, 169:41-57.
DOI URL |
| [29] |
Cuartero J, Bolarin MC, Asins MJ, Moreno V. Increasing salt tolerance in the tomato[J]. Journal of Experimental Botany, 2006, 57:1045-1058.
PMID |
| [30] |
Chen C, Plant A. Salt-induced protein synjournal in tomato roots: the role of ABA[J]. Journal of Experimental Botany, 1999, 50:677-687.
DOI URL |
| [31] |
Amini F, Ehsanpour A, Hoang Q, Shin J. Protein pattern changes in tomato under in vitro salt stress[J]. Russian Journal of Plant Physiology, 2007, 54:464-471.
DOI URL |
| [32] |
Chen S, Gollop N, Heuer B. Proteomic analysis of salt stressed tomato (Solanum lycopersicum) seedlings: effect of genotype and exogenous application of glycinebetaine[J]. Journal of Experimental Botany, 2009, 60:2005-2019.
DOI URL |
| [33] | M. Juan, R.M. Rivero, L. Romero, J.M. Ruiz, Evaluation of some nutritional and biochemical indicators in selecting salt-resistant tomato cultivars[J]. Environ. Exp. Bot, 2005, (54):193-201. |
| [34] | A. Manaa, H. Mimouni, S. Wasti, E. Gharbi, S. Aschi-Smiti, M. Faurobert, H. Ben Ahmed, Comparative proteomic analysis of tomato (Solanum lycopersicum) leaves under salinity stress, Plant Omics, 2013, (6):268-277. |
| [35] | F. Amini, A. Ehsanpour, Q. Hoang, J. Shin, Protein pattern changes in tomato under in vitro salt stress[J]. Russ. J. Plant Physiol, 2007, (54):464-471. |
| [36] | P. Parihar, S. Singh, R. Singh, V.P. Singh, S.M. Prasad, Effect of salinity stress on plants and its tolerance strategies: a review[J]. Environ. Sci. Pollut. Res, 2015, (22):4056-4075. |
| [37] | M. Meng, M. Geisler, H. Johansson, E.J. Mellerowicz, S. Karpinski, L.A. Kleczkowski, Differential tissue/organ-dependent expression of two sucrose-and cold-responsive genes for UDP-glucose pyrophosphorylase in Populus[J]. Gene, 2007, (389):186-195. |
| [38] | L. Ordin, M.A. Hall, Cellulose synjournal in higher plants from UDP glucose[J]. Plant Physiol, 1968, (43):473. |
| [39] | R. Viola, P. Nyvall, M. Pedersén, The unique features of starch metabolism in red algae[J]. Proc. R. Soc. Lond. B Biol. Sci, 2001, (268):1417-1422. |
| [40] | S. Chen, N. Gollop, B. Heuer, Proteomic analysis of salt-stressed tomato (Solanum lycopersicum) seedlings: effect of genotype and exogenous application of glycinebetaine[J]. J. Exp. Bot, 2009, (60):2005-2019. |
| [41] | Biao Gong, Cunjia Zhang, Xiu Li, Dan Wen, Shuoshuo Wang, Qinghua Shi, Xiufeng Wang, Identification of NaCl and NaHCO3stress responsive proteins in tomato roots using iTRAQ-based analysis[J]. Biochemical and Biophysical Research Communications, 2014, (446):417-422. |
| [42] | Arafet Manaa, Mireille Faurobert, Benoıt Valot, Jean-Paul Bouchet, Dominique Grasselly, Mathilde Causse, and Hela Ben Ahmed, Effect of Salinity and Calcium on Tomato Fruit Proteome[J]. OMICS A Journal of Integrative Biology, 2013,(17):338-352. |
| [43] | Tang H., Zhang X., Gong B., Yan Y., Shi Q., Proteomics and metabolomics analysis of tomato fruit at different maturity stages and under salt treatment,[J]. Food Chemistry, doi: https://doi.org/10.1016/j.foodchem.2019.126009. |
| [44] |
A. J. Ogden, J. J. Bhatt, H. M. Brewer, J. Kintigh, S. M. Kariuki, S. Rudrabhatla, J. N. Adkins, and W. R. CurtisInt, Phloem Exudate Protein Profiles during Drought and Recovery Reveal Abiotic Stress Responses in Tomato Vasculature[J]. J. Mol. Sci, 2020, 21:4461; doi: 10.3390/ijms21124461.
DOI URL |
| [45] |
R. Tamburino, M. Vitale, A. Ruggiero, M. Sassi, L. Sannino, S. Arena, A. Costa, Gi. Batelli, N. Zambrano, A. Scaloni, S. Grillo, N, Scotti,Chloroplast proteome response to drought stress and recovery in tomato[J]. BMC Plant Biology, 2017,(17):40, DOI 10.1186/s12870-017-0971-0.
DOI |
| [46] | S. Zhou, M. Palmer, J. Zhou, S. Bhatti, K.J. Howe, T. Fish, T.W. Thannhauser, Differential root proteome expression in tomato genotypes with contrasting drought tolerance exposed to dehydration[J]. J. Am. Soc. Hortic. Sci, 2013, (138):131-141. |
| [47] | M. Marjanovic, R. Stikic, B. Vucelic-Radovic, S. Savic, Z. Jovanovic, N. Bertin, M. Faurobert, Growth and proteomic analysis of tomato fruit under partial root-zone drying[J]. Omi. a J. Integr. Biol, 2012, (16):343-356. |
| [48] | Singh RP, Prasad PVV, Reddy KR. Impacts of changing climate and climate variability on seed production and seed industry[J]. Adv Agron, 2013, 118:49-110. |
| [49] | A. Wahid, S. Gelani, M. Ashraf, M.R. Foolad, Heat tolerance in plants: an overview[J]. Environ. Exp. Bot, 2007, (61):199-223. |
| [50] | J. Berry, O. Bjorkman, Photosynthetic response and adaptation to temperature in higher plants, Annu. Rev[J]. Plant Physiol. 1980, (31):491-543. |
| [51] |
Sato S, Peet MM, Thomas JF. Determining critical pre- and postanjournal periods and physiological processes in Lycopersicon esculentum Mill. exposed to moderately elevated temperatures[J]. J Exp Bot, 2002, 53:1187-1195.
DOI URL |
| [52] |
Sato S, Kamiyama M, Iwata T, Makita N, Furukawa H, Ikeda H. Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentumby disrupting specific physiological processes in male reproductive development[J]. Ann Bot, 2006, 97:731-738.
DOI URL |
| [53] |
Wahid A, Gelani S, Ashrafa M, Foolad MR. Heat tolerance in plants: an overview[J]. Environ Exp Bot, 2007, 61:199-223.
DOI URL |
| [54] | P. Chaturvedi, H. Doerfler, S. Jegadeesan, A. Ghatak, E. Pressman, M.A. Castillejo, S. Wienkoop, V. Egelhofer, N. Firon, W. Weckwerth, Heat-treatment responsive proteins in different developmental stages of tomato pollen detected by targeted Mass Accuracy Precursor Alignment (tMAPA)[J]. J. Proteome Res, 2015,(14):4463-4471. |
| [55] |
Bita CE, Zenoni S, Vriezen WH, Mariani C, Pezzotti M, Gerats T. Temperature stress differentially modulates transcription in meiotic anthers of heat-tolerant and heat-sensitive tomato plants[J]. BMC Genomics, 2011, 12:384.
DOI URL |
| [56] |
Frank G, Pressman E, Ophir R, Althan L, Shaked R, Freedman M, et al. Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers,hormones, and sugars in the heat stress response[J]. J Exp Bot, 2009, 60:3891-3908.
DOI PMID |
| [57] |
Giorno F, Wolters-Arts M, Grillo S, Scharf KD, Vriezen WH, Mariani C. Developmental and heat stress regulated expression of HsfA2 and small heat shock proteins in tomato anthers[J]. J Exp Bot, 2010, 61:453-462.
DOI URL |
| [58] |
Mazzeo M F, Cacace G, Iovieno P, Massarelli I, Grillo S, Siciliano RA. Response mechanism sinduced by exposure to high temperature in anthers from thermo-tolerant and thermo-sensitive tomato plants: Aproteomic perspective[J]. PLoSONE, 2018, 13(7):e0201027. https://doi.org/10.1371/journal.pone.0201027.
DOI URL |
| [59] | S. Zhou, R.J. Sauvé, Z. Liu, S. Reddy, S. Bhatti, Heat-induced proteome changes in tomato leaves[J]. J. Am. Soc. Hortic. Sci, 2012, (136):2012. |
| [60] |
Muneer S, Ko CH, Wei H, Chen Y, Jeong BR. Physiological and Proteomic Investigations to Study the Response of Tomato Graft Unions under Temperature Stress[J]. PLoS ONE, 2016, 11(6):e0157439. doi: 10.1371/journal.pone.0157439.
DOI URL |
| [61] | D. Ghosh, J. Xu, Abiotic stress responses in plant roots: a proteomics perspective[J]. Front. Plant Sci, 2014, (5):6. |
| [62] | M.O. Vega-García, G. López-Espinoza, J.C. Ontiveros, J.J. Caro-Corrales, F.D. Vargas, J.A. López-Valenzuela, Changes in protein expression associated with chilling injury in tomato fruit[J]. J. Am. Soc. Hortic. Sci, 2010, (135):83-89. |
| [63] | P. Sanchez-Bel, I. Egea, M.T. Sanchez-Ballesta, L. Sevillano, M. del Carmen Bolarin, F.B. Flores, Proteome changes in tomato fruits prior to visible symptoms of chilling injury are linked to defensive mechanisms, uncoupling of photosynthetic processes and protein degradation machinery[J]. Plant Cell Physiol, 2012, (53):470-484. |
| [64] | Page D., Gouble B., Valot B., Bouchet J.P., Callot C., Kretzschmar A. et al. Protective proteins are differentially expressed in tomato genotypes differing for their tolerance to low-temperature storage[J]. Planta, 2010,(232):483-500. |
| [65] | Vega-Garcia, M.O., Lopez-Espinoza, G., Chavez Ontiveros, J., Caro-Corrales, J.J., Delgado Vargas, F., and Lopez-Valenzuela, J.A. hanges in protein expression associated with chilling injury in tomato fruit[J]. J. Amer. Soc. Hort. Sci, 2010,(135):83-89. |
| [66] | E. Hattrup, K.A. Neilson, L. Breci, P.A. Haynes, Proteomic analysis of shade-avoidance response in tomato leaves, J. Agric[J]. Food Chem, 2007, (55):8310-8318. |
| [67] | N. Ahsan, D.G. Lee, S.H. Lee, K.W. Lee, J.D. Bahk, B.H. Lee, A proteomic screen and identification of waterlogging-regulated proteins in tomato roots[J]. Plant Soil, 2007,(295):37-51. |
| [68] | S.T. Kim, K.S. Cho, Y.S. Jang, K.Y. Kang, Two-dimensional electrophoretic analysis of rice proteins by polyethylene glycol fractionation for protein arrays[J]. Electrophoresis, 2001, (22):2103-2109. |
| [69] |
Gong, B.,; Zhang, C.,; Li, X.,; Wen, D.,; Wang, S.,; Shi, Q.,; Wang, X. Identification of nacl and nahco3 stress responsive proteins in tomato roots using itraq-based analysis[J]. Biochem. Biophys. Res. Commun, 2014, 446:417-422.
DOI URL |
| [70] |
Muneer, S.,; Ko, C.H.,; Wei, H.,; Chen, Y.,; Jeong, B.R. Physiological and Proteomic Investigations to Study the Response of Tomato Graft Unions under Temperature Stress[J]. PLoS ONE, 2016, 11, e0157439.
DOI URL |
| [71] | Tamburino, R.,; Vitale, M.,; Ruggiero, A.,; Sassi, M.,; Sannino, L.,; Arena, S.,; Costa, A.,; Batelli, G.,; Zambrano, N.,; Scaloni, A.; et al. Chloroplast proteome response to drought stress and recovery in tomato (Solanum lycopersicum L.)[J]. BMC Plant Boil, 2017, 17:40. |
| [72] | Sang, Q.,; Shan, X.,; An, Y.,; Shu, S.,; Sun, J.,; Guo, S. Proteomic Analysis Reveals the Positive Effect of Exogenous Spermidine in Tomato Seedlings’ Response to High-Temperature Stress[J]. Front. Plant Sci, 2017, 8:555. |
| [73] |
Tanveer, Alam, et al. Proteomic and physiological assessment of stress sensitive and tolerant variety of tomato treated with brassinosteroids and hydrogen peroxide under low-temperature stress[J]. Food Chemistry, 2019, 289:500-511.
DOI PMID |
| [74] |
吴琼, 隋欣桐, 田瑞军. 高通量蛋白质组学分析研究进展[J]. 色谱, 2021, 39(2):112-117.
PMID |
|
WU Qiong, SUI Xintong, TIAN Ruijun, Advances in high-throughput proteomic analysis[J]. Chinese Journal of Chromatography, 2021, 39(2):112-117.
DOI PMID |
|
| [75] |
Neilson K A,. Ali N.A,. Muralidharan S. et al Less label, more free: approaches in label-free quantitative mass spectrometry.[J]. Proteomics, 2011, 11(4):535-553.
DOI PMID |
| [76] |
Mora L, Bramley P M, Fraser P D. Development and optimisation of a label‐free quantitative proteomic procedure and its application in the assessment of genetically modified tomato fruit[J]. Proteomics, 2013, 13(12-13):2016-2030.
DOI URL |
| [1] | 徐毛毛, 高杰, 李君明, 李鑫, 刘磊, 潘峰. 20个番茄商业品种群体的多样性分析[J]. 新疆农业科学, 2024, 61(9): 2191-2196. |
| [2] | 田海燕, 张占琴, 颉建辉, 王建江, 杨相昆. 加工番茄果实番茄红素与主要品质性状的关系[J]. 新疆农业科学, 2024, 61(9): 2197-2202. |
| [3] | 田超, 李玉姗, 马越, 宋羽. 不同浓度苦豆子浸提液对连作番茄生长及土壤肥力的影响[J]. 新疆农业科学, 2024, 61(9): 2203-2210. |
| [4] | 陈芳, 李字辉, 孙孝贵, 张庭军. 不同剂量的微生物菌剂对加工番茄产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2285-2289. |
| [5] | 奚瑞, 陈怡佳, 李宁, 余庆辉, 王强, 秦勇. 外源2, 4-表芸苔素内酯对盐胁迫下不同盐敏感型番茄种子萌发的影响[J]. 新疆农业科学, 2024, 61(8): 1983-1992. |
| [6] | 张彩虹, 王国强, 姜鲁艳, 刘涛, 德贤明. 低能耗组装式深冬生产型日光温室环境因子变化及番茄性状分析[J]. 新疆农业科学, 2024, 61(8): 2043-2053. |
| [7] | 张福林, 李宁, 刘宇翔, 陈怡佳, 余庆辉, 闫会转. 外源2,4-表油菜素内酯及褪黑素对樱桃番茄果实品质和果皮形态结构的影响[J]. 新疆农业科学, 2024, 61(7): 1738-1747. |
| [8] | 阮向阳, 蒲敏, 肖乐乐, 罗林毅, 陈瑞杰, 李然, 陈国永, 冶军. 镁肥施用策略对加工番茄产量和品质的影响[J]. 新疆农业科学, 2024, 61(4): 916-925. |
| [9] | 李春雨, 谭占明, 程云霞, 高源, 马全会, 李志国, 马兴. 水肥耦合对沙培番茄叶绿素含量以及光合特性日变化的影响[J]. 新疆农业科学, 2024, 61(12): 3006-3013. |
| [10] | 李亚莉, 哈丽哈什·依巴提, 唐亚莉, 段婧婧, 李青军. 氮磷减施与钾协同共效对加工番茄产量和养分吸收的影响[J]. 新疆农业科学, 2024, 61(12): 3014-3019. |
| [11] | 刘会芳, 王强, 韩宏伟, 庄红梅, 王浩, 常亚南. 盐、碱及复合盐碱胁迫对番茄幼苗光合特性及抗氧化酶活性的影响[J]. 新疆农业科学, 2024, 61(11): 2658-2666. |
| [12] | 赵文轩, 程云霞, 谭占明, 李春雨, 束胜, 阿依买木·沙吾提, 杨历雨, 苗献军. 基于主成分分析比较不同加工番茄品种叶绿素的荧光参数及光合特性[J]. 新疆农业科学, 2024, 61(11): 2667-2675. |
| [13] | 李春雨, 谭占明, 程云霞, 束胜, 马全会, 何淼, 段轶帆, 吴慧. 不同加工番茄品种的农艺性状比较分析[J]. 新疆农业科学, 2024, 61(11): 2676-2683. |
| [14] | 刘佳慧, 李红, 汪晶晶, 常持银. 新疆番茄制品出口贸易高质量发展的测度与评价[J]. 新疆农业科学, 2024, 61(10): 2593-2600. |
| [15] | 王丹丹, 李燕, 张庆银, 李世东, 庞永超, 马琨芝, 马龙, 牛瑞生, 钟增明, 齐连芬, 师建华. 不同微生物菌处理对番茄土壤微生物多样性的影响[J]. 新疆农业科学, 2023, 60(9): 2248-2257. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||