

新疆农业科学 ›› 2025, Vol. 62 ›› Issue (6): 1421-1430.DOI: 10.6048/j.issn.1001-4330.2025.06.014
刘德粉1,2(
), 袁玉婷1, 孙万金3, 姜娜2, 方毅4, 赵多勇2(
), 康露2(
)
收稿日期:2024-11-19
出版日期:2025-06-20
发布日期:2025-07-29
通信作者:
赵多勇(1980-),男,新疆奇台人,研究员,博士,博士生导师,研究方向为农产品质量与食物安全,(E-mail)luckydyz@163.com;作者简介:刘德粉(1996-),女,贵州兴仁人,硕士研究生,研究方向为食品加工与安全,(E-mail)1835649819@qq.com
基金资助:
LIU Defen1,2(
), YUAN Yuting1, SUN Wanjin3, JIANG Na2, FANG Yi4, ZHAO Duoyong2(
), KANG Lu2(
)
Received:2024-11-19
Published:2025-06-20
Online:2025-07-29
Supported by:摘要:
【目的】探讨不同种类的植物生长调节剂赤霉酸(GA3)、芸苔素内酯(BR)、噻苯隆(TDZ)在骏枣上的残留消解规律及其对果实黄酮、酚酸类化合物的影响,为科学规范使用植物生长调节剂提供理论依据。【方法】在红枣盛花期以叶面喷雾分别施用18 g/hm2、36 g/hm2 GA3,并与BR(45 mg/hm2)、TDZ(1.8 mg/hm2)同时喷施,采用超高效液相色谱串联质谱测定施药后叶片GA3、TDZ的残留量,基于广泛靶向代谢组学分析果实中黄酮、酚酸含量的变化。【结果】2种剂量的GA3施药后14 d在骏枣上的残留量分别为0.10 mg/kg、0.20 mg/kg;TDZ的残留量为0.01 mg/kg,低于MRL值;GA3、TDZ在骏枣上的消解率均在90%以上。2种剂量GA3的半衰期分别为3.73和4.26 d,TDZ的半衰期为1.63 d。GA3、BR、TDZ处理后,骏枣果实中黄酮类化合物儿茶素没食子酸酯、表儿茶素没食子酸酯、异槲皮苷、芦丁、槲皮素等上调;酚酸类化合物苯甲酸、水杨酸苯酯、咖啡酸苯乙酯、肉桂酸等上调。【结论】 GA3、TDZ在骏枣上降解较快,施用适量的GA3、BR、TDZ有助于提高果实中黄酮、酚酸的含量。
中图分类号:
刘德粉, 袁玉婷, 孙万金, 姜娜, 方毅, 赵多勇, 康露. 植物生长调节剂在骏枣上的残留消解及其对果实品质的影响[J]. 新疆农业科学, 2025, 62(6): 1421-1430.
LIU Defen, YUAN Yuting, SUN Wanjin, JIANG Na, FANG Yi, ZHAO Duoyong, KANG Lu. Residual digestion of different plant growth regulators on jujube and their effects on fruit quality[J]. Xinjiang Agricultural Sciences, 2025, 62(6): 1421-1430.
| 处理组 Processing group | 处理方式 Processing method |
|---|---|
| JCK | 自来水 |
| J1 | 18 g/hm2 GA3 |
| J2 | 18 g/hm2 GA3、45 mg/hm2 BR、1.8 mg/hm2 TDZ |
| J3 | 36 g/hm2 GA3 |
| J4 | 36 g/hm2 GA3、45 mg/hm2 BR、1.8 mg/hm2 TDZ |
表1 植物生长调节剂的组合处理
Tab.1 Combined treatment of plant growth regulators
| 处理组 Processing group | 处理方式 Processing method |
|---|---|
| JCK | 自来水 |
| J1 | 18 g/hm2 GA3 |
| J2 | 18 g/hm2 GA3、45 mg/hm2 BR、1.8 mg/hm2 TDZ |
| J3 | 36 g/hm2 GA3 |
| J4 | 36 g/hm2 GA3、45 mg/hm2 BR、1.8 mg/hm2 TDZ |
| 化合物 Compound | 母离子 Parent ion (m/z) | 子离子 Ions (m/z) | 去簇电压 Cone voltage (V) | 碰撞电压 Collision energy (V) | 保留时间 Retention time (min) | 标准曲线 Standard curve | R2 |
|---|---|---|---|---|---|---|---|
| GA3 | 345.2 | 143.3*,239.3 | 18 | 27,16 | 5.52 | y=90.245x-1 187.5 | 0.999 3 |
| TDZ | 219.2 | 100.2*,71.2 | 13 | 12,27 | 9.43 | y=6 593.1x-63 097 | 0.999 4 |
表2 GA3和TDZ的质谱条件及线性方程
Tab.2 Mass spectrometry conditions and linearity equation of GA3 and TDZ
| 化合物 Compound | 母离子 Parent ion (m/z) | 子离子 Ions (m/z) | 去簇电压 Cone voltage (V) | 碰撞电压 Collision energy (V) | 保留时间 Retention time (min) | 标准曲线 Standard curve | R2 |
|---|---|---|---|---|---|---|---|
| GA3 | 345.2 | 143.3*,239.3 | 18 | 27,16 | 5.52 | y=90.245x-1 187.5 | 0.999 3 |
| TDZ | 219.2 | 100.2*,71.2 | 13 | 12,27 | 9.43 | y=6 593.1x-63 097 | 0.999 4 |
| 施药时间 Medication application time | GA3 (18 g/hm2) | GA3 (36 g/hm2) | TDZ (1.8 mg/hm2) | |||
|---|---|---|---|---|---|---|
| 残留量 Residual amount (mg/kg) | 消解率 Digestion rate (%) | 残留量 Residual amount (mg/kg) | 消解率 Digestion rate (%) | 残留量 Residual amount (mg/kg) | 消解率 Digestion rate (%) | |
| 2 h | 1.60±0.24 | - | 3.66±0.44 | - | 0.32±0.14 | - |
| 1 d | 0.88±0.18 | 44.84 | 2.84±0.42 | 22.37 | 0.11±0.09 | 64.47 |
| 3 d | 0.42±0.08 | 74.07 | 0.45±0.18 | 87.73 | 0.05±0.03 | 83.53 |
| 5 d | 0.35±0.10 | 78.09 | 0.29±0.10 | 92.15 | 0.02±0.01 | 92.96 |
| 7 d | 0.27±0.05 | 82.99 | 0.25±0.06 | 93.10 | 0.02±0.01 | 94.12 |
| 14 d | 0.10±0.07 | 93.85 | 0.20±0.11 | 94.42 | 0.01±0.01 | 96.85 |
| 消解方程 | 半衰期(d) | 消解方程 | 半衰期(d) | 消解方程 | 半衰期(d) | |
| Ct=0.255 5e-0.185 7t | 3.73 | Ct=0.835 5e-0.162 8t | 4.26 | Ct=0.075 2e-0.425 2t | 1.63 | |
表3 GA3、TDZ的消解动态
Tab.3 Degradation dynamics of GA3 and TDZ
| 施药时间 Medication application time | GA3 (18 g/hm2) | GA3 (36 g/hm2) | TDZ (1.8 mg/hm2) | |||
|---|---|---|---|---|---|---|
| 残留量 Residual amount (mg/kg) | 消解率 Digestion rate (%) | 残留量 Residual amount (mg/kg) | 消解率 Digestion rate (%) | 残留量 Residual amount (mg/kg) | 消解率 Digestion rate (%) | |
| 2 h | 1.60±0.24 | - | 3.66±0.44 | - | 0.32±0.14 | - |
| 1 d | 0.88±0.18 | 44.84 | 2.84±0.42 | 22.37 | 0.11±0.09 | 64.47 |
| 3 d | 0.42±0.08 | 74.07 | 0.45±0.18 | 87.73 | 0.05±0.03 | 83.53 |
| 5 d | 0.35±0.10 | 78.09 | 0.29±0.10 | 92.15 | 0.02±0.01 | 92.96 |
| 7 d | 0.27±0.05 | 82.99 | 0.25±0.06 | 93.10 | 0.02±0.01 | 94.12 |
| 14 d | 0.10±0.07 | 93.85 | 0.20±0.11 | 94.42 | 0.01±0.01 | 96.85 |
| 消解方程 | 半衰期(d) | 消解方程 | 半衰期(d) | 消解方程 | 半衰期(d) | |
| Ct=0.255 5e-0.185 7t | 3.73 | Ct=0.835 5e-0.162 8t | 4.26 | Ct=0.075 2e-0.425 2t | 1.63 | |
图1 枣果实差异代谢物PCA分析 注:JCK:对照组,J3:36 g/hm2 GA3,J4:36 g/hm2 GA3、45 mg/hm2 BR、1.8 mg/hm2 TDZ,不同
Fig.1 PCA analysis of different metabolites in jujube fruit Notes: JCK: control group. J3: 36 g/hm2 GA3. J4: 36 g/hm2 GA3, 45 mg/hm2 BR, 1.8 mg/hm2 TDZ,the same as below
图5 GA3处理骏枣果实KEGG通路的差异代谢物聚类热图 注:A. α-亚麻酸代谢通路的差异代谢物聚类热图。B. 核苷酸代谢通路的差异代谢物聚类热图
Fig.5 Heat map of differential metabolite clustering of KEGG pathway in fruit treated with GA3 Notes: A. Cluster heatmap of differential metabolites in the alpha-Linolenic acid metabolism pathway. B. Cluster heatmap of differential metabolites in the Nucleotide metabolism pathway
图6 不同植物生长调节剂处理骏枣果实KEGG通路的差异代谢物聚类热图 注:A.苯丙烷类生物合成通路的差异代谢物聚类热图。B.黄酮和黄酮醇的生物合成通路的差异代谢物聚类热图
Fig.6 Heat map of differential metabolite clustering of KEGG pathway in fruit treated with different plant growth regulators Notes: A. Cluster heatmap of differential metabolites in the Phenylpropanoid biosynthesis pathway. B. Cluster heatmap of differential metabolites in the Flavone and flavonol biosynthesis pathway
| [1] | 石鹏, 王永, 张大鹏. 赤霉素调控林木生长发育的研究进展[J]. 江西农业学报, 2021, 33(2): 33-41. |
| SHI Peng, WANG Yong, ZHANG Dapeng. Advances in gibberellins regulating growth and development of tree[J]. Acta Agriculturae Jiangxi, 2021, 33(2): 33-41. | |
| [2] | 宋文亮, 张泽杰, 陈修德, 等. 外施GA3调控植物激素含量诱导设施甜樱桃的单性结实[J]. 植物生理学报, 2019, 55(2): 185-193. |
| SONG Wenliang, ZHANG Zejie, CHEN Xiude, et al. GA3 regulates phytohormonal content and induces parthenocarpy of sweet cherry in greenhouse[J]. Plant Physiology Journal, 2019, 55(2): 185-193. | |
| [3] | Ugare B, Banerjee K, Ramteke S D, et al. Dissipation kinetics of forchlorfenuron, 6-benzyl aminopurine, gibberellic acid and ethephon residues in table grapes (Vitis vinifera)[J]. Food Chemistry, 2013, 141(4): 4208-4214. |
| [4] | 姜长岭. 赤霉酸及其降解产物在茶叶中的残留行为研究[D]. 北京: 中国农业科学院, 2021. |
| JIANG Changling. Study on the residual behavior of gibberellic acid and its degradation products in tea[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. | |
| [5] | 江唐鑫, 罗聪, 李雨泽, 等. 噻苯隆在芒果中的残留与消解动态研究[J]. 食品安全质量检测学报, 2022, 13(7): 2349-2356. |
| JIANG Tangxin, LUO Cong, LI Yuze, et al. Study on the residue and digestion dynamics of thidiazuron in Mangifera indica[J]. Journal of Food Safety & Quality, 2022, 13(7): 2349-2356. | |
| [6] | 兰珊珊, 沙凌杰, 林昕, 等. 噻苯隆在草莓和土壤中的残留动态及膳食评估[J]. 食品安全质量检测学报, 2020, 11(24): 9522-9527. |
| LAN Shanshan, SHA Lingjie, LIN Xin, et al. Residual dynamic and acute risk assessment of thidiazuron in strawberry and soil[J]. Journal of Food Safety & Quality, 2020, 11(24): 9522-9527. | |
| [7] | Luo T, Lin X L, Lai T T, et al. GA3 treatment delays the deterioration of ‘Shixia’ Longan during the on-tree preservation and room-temperature storage and up-regulates antioxidants[J]. Foods, 2023, 12(10): 2032. |
| [8] | Rizzuti A, Aguilera-Sáez L M, Gallo V, et al. On the use of Ethephon as abscising agent in cv. Crimson Seedless table grape production: Combination of Fruit Detachment Force, Fruit Drop and metabolomics[J]. Food Chemistry, 2015, 171: 341-350. |
| [9] | Li Z X, Yang S, Wang X, et al. Widely targeted metabolomics analysis reveals the effect of exogenous auxin on postharvest resistance to Botrytis cinerea in kiwifruit (Actinidia chinensis L.)[J]. Postharvest Biology and Technology, 2023, 195: 112129. |
| [10] | 杨海燕, 严志祥, 樊苏帆, 等. 不同浓度赤霉素处理对基质栽培蓝莓'安娜'果实品质的影响[J]. 北方园艺, 2020,(23): 39-43. |
| YANG Haiyan, YAN Zhixiang, FAN Sufan, et al. Effects of different gibberellic acid concentrations on the fruits quality of blueberry cultivar ‘Anna’[J]. Northern Horticulture, 2020,(23): 39-43. | |
| [11] | 樊丁宇, 赵婧彤, 阿布都卡尤木·阿依麦提, 等. 喷施赤霉素对骏枣叶片发育及产量品质的影响[J]. 西北农业学报, 2021, 30(8): 1199-1209. |
| Fan Dingyu, Zhao Jingtong, Abudukayoumu Ayimaiti, et al. Effect of gibberellin spraying on leaf development, yield and quality of Junzao[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2021, 30(8): 1199-1209. | |
| [12] | 宋丽华, 万仲武, 曹兵. 不同药剂处理对灵武长枣坐果与光合指标的影响[J]. 经济林研究, 2016, 34(1): 40-44. |
| SONG Lihua, WAN Zhongwu, CAO Bing. Effect of different chemical treatments on fruit setting and photosynthetic indexes in Lingwu Long Jujube[J]. Nonwood Forest Research, 2016, 34(1): 40-44. | |
| [13] | 薛莞莞, 龚荣高, 丁建林, 等. 赤霉素喷施对红灯甜樱桃果实品质及解剖结构的影响[J]. 浙江农业学报, 2018, 30(6): 978-984. |
| XUE Wanwan, GONG Ronggao, DING Jianlin, et al. Effect of gibberellin on fruit quality and anatomical structure of Hongdeng sweet cherry[J]. Acta Agriculturae Zhejiangensis, 2018, 30(6): 978-984. | |
| [14] | 李慧, 李百云, 刘超. 赤霉素和环割对灵武长枣生长发育、着果及果实品质的影响[J]. 中国南方果树, 2020, 49(4): 90-94. |
| LI Hui, LI Baiyun, LIU Chao. Effects of gibberellin and circumcision on growth and development, fruiting and fruit quality of lingwu jujube[J]. South China Fruits, 2020, 49(4): 90-94. | |
| [15] | 杨锐. 植物生长调节剂高效检测方法的建立及矮壮素、多效唑、赤霉素在番茄中的残留研究[D]. 武汉: 华中农业大学, 2015. |
| YANG Rui. Establishment of an efficient detection method for plant growth regulators and residues of mequartin, paclobutrazol and gibberellin in tomato[D]. Wuhan: Huazhong Agricultural University, 2015. | |
| [16] | 王超, 庞涛, 黄玉南, 等. 高效液相色谱-串联质谱法测定葡萄和土壤中噻苯隆残留消解动态[J]. 果树学报, 2017, 34(1): 69-74. |
| WANG Chao, PANG Tao, HUANG Yunan, et al. Study on decline and residue of thidiazuron in grape and soil by high performance liquid chromatography-tandem mass spectrometry[J]. Journal of Fruit Science, 2017, 34(1): 69-74. | |
| [17] | 苏杭. 噻苯隆对薄皮甜瓜风味品质的影响[D]. 北京: 中国农业科学院, 2018. |
| SU Hang. Effect of thiazuron on flavor quality of thin-skinned melon[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. | |
| [18] | 邹凤莲, 寿森炎, 叶纨芝, 等. 类黄酮化合物在植物胁迫反应中作用的研究进展[J]. 细胞生物学杂志, 2004, 26(1): 39-44. |
| ZOU Fenglian, SHOU Senyan, YE Wanzhi, et al. Advances in the research on flavonoid biosynthesis and plant stress response[J]. Chinese Journal of Coll Biology, 2004, 26(1): 39-44. | |
| [19] | 张艳军. 花椒黄酮和多酚含量及抗氧化活性研究[D]. 杨凌: 西北农林科技大学, 2013. |
| ZHANG Yanjun. Study on flavonoids and polyphenols content and antioxidant activity of zanthoxylum[D]. Yangling: Northwest A & F University, 2013. | |
| [20] | 张艳红. 红枣中营养成分测定及质量评价[D]. 乌鲁木齐: 新疆大学, 2007. |
| ZHANG Yanhong. Determination and quality evaluation of nutrients in jujube[D]. Urumqi: Xinjiang University, 2007. | |
| [21] | 刘聪, 海妮, 张英. 红枣不同部位中有效成分含量的比较研究[J]. 现代食品科技, 2014, 30(3): 258-261, 205. |
| LIU Cong, HAI Ni, ZHANG Ying. The content variation of phytochemicals in different parts of Chinese jujube from different cultivars[J]. Modern Food Science and Technology, 2014, 30(3): 258-261, 205. | |
| [22] | 张茹潭. 崂山酸枣叶茶特征成分分析及其质量控制方法研究[D]. 青岛: 国家海洋局第一海洋研究所, 2014. |
| ZHANG Rutan. Analysis of characteristic components and quality control methods of Laoshan jujube leaf tea[D]. Qingdao: First Institute of Oceanography, State Oceanic Administration, 2014. | |
| [23] | 王鼎豪, 刘宇, 国颖, 等. 外源激素对银杏叶中黄酮类化合物积累的影响[J]. 经济林研究, 2020, 38(2): 123-130. |
| WANG Dinghao, LIU Yu, GUO Ying, et al. Effects of exogenous hormones on accumulation of flavonoids in Ginkgo biloba leaves[J]. Non-wood Forest Research, 2020, 38(2): 123-130. | |
| [24] | Park C H, Yeo H J, Park Y J, et al. Influence of indole-3-acetic acid and gibberellic acid on phenylpropanoid accumulation in common buckwheat (Fagopyrum esculentum moench) sprouts[J]. Molecules, 2017, 22(3): 374. |
| [25] | 贾宇尧, 王超, 石倩倩, 等. 陕北3个枣品种果实代谢产物及代谢途径分析[J]. 食品科学, 2022, 43(10): 142-149. |
| JIA Yuyao, WANG Chao, SHI Qianqian, et al. Analysis of metabolites and metabolic pathways of three jujube cultivars from northern Shaanxi[J]. Food Science, 2022, 43(10): 142-149. | |
| [26] | 王乐飞, 古绍彬, 吴影. 基于UPLC-MS代谢组学技术的枣果皮黄酮类化合物分析[J]. 食品科学, 2020, 41(24): 155-161. |
| WANG Lefei, GU Shaobin, WU Ying. Analysis of flavonoids in fruit of jujube(Ziziphus jujuba) by UPLC-MS-based metabonomics[J]. Food Science, 2020, 41(24): 155-161. | |
| [27] | Zhang C, Cui L W, Zhang P A, et al. Transcriptome and metabolite profiling reveal that spraying calcium fertilizer reduces grape berry cracking by modulating the flavonoid biosynthetic metabolic pathway[J]. Food Chemistry: Molecular Sciences, 2021, 2: 100025. |
| [28] | 张倩倩, 李思谦, 周立红, 等. 咖啡酸等小分子酚酸类成分自氧化及聚合机制产物及药理活性研究进展[J]. 中国现代中药, 2021, 23(3): 555-561. |
| ZHANG Qianqian, LI Siqian, ZHOU Lihong, et al. Research progress on self-oxidation and polymerization mechanism, products and pharmacological activities of small-molecule phenolic acids such as caffeic acid[J]. Modern Chinese Medicine, 2021, 23(3): 555-561. | |
| [29] | 刘畅, 温静, 阎新佳, 等. 连翘中酚酸类成分的研究进展[J]. 中国药房, 2020, 31(12): 1516-1522. |
| LIU Chang, WEN Jing, YAN Xinjia, et al. Research progress on phenolic acids in forsythia forsythia[J]. China Pharmacy, 2020, 31(12): 1516-1522. | |
| [30] | 万子玉, 李巧, 赖月月, 等. 半夏酚酸类化感物质积累规律研究[J]. 生态毒理学报, 2021, 16(6): 335-344. |
| WAN Ziyu, LI Qiao, LAI Yueyue, et al. Accumulation and secretion of pinellitic acid allelochemicals in Pinellia ternata (thunb.) breit[J]. Asian Journal of Ecotoxicology, 2021, 16(6): 335-344. | |
| [31] | Dong Y J, Wu Y X, Zhang Z X, et al. Transcriptomic analysis reveals GA3 is involved in regulating flavonoid metabolism in grape development for facility cultivation[J]. Molecular Genetics and Genomics, 2023, 298(4): 845-855. |
| [32] | 刘迪迪, 刘美迎, 王珍, 等. 赤霉素拉穗处理对西拉葡萄果实酚类物质的影响[J]. 食品科学, 2018, 39(17): 40-46. |
| LIU Didi, LIU Meiying, WANG Zhen, et al. Effect of gibberellin-induced cluster elongation on phenolic contents of Syrah grapes[J]. Food Science, 2018, 39(17): 40-46. | |
| [33] | 刘美迎, 姜军生, 姜乃春, 等. 乙烯利处理‘赤霞珠’葡萄果实对其葡萄酒中酚类物质组分的影响[J]. 食品科学, 2022, 43(1): 48-58. |
| LIU Meiying, JIANG Junsheng, JIANG Naichun, et al. Effect of ethephon treatment on phenolic composition of cabernet sauvignon grape fruit on wine[J]. Food Science, 2022, 43(1): 48-58. | |
| [34] | Sarrou E, Chatzopoulou P, Dimassi-Theriou K, et al. Effect of melatonin, salicylic acid and gibberellic acid on leaf essential oil and other secondary metabolites of bitter orange young seedlings[J]. Journal of Essential Oil Research, 2015, 27(6): 487-496. |
| [35] | 应支萍, 李彪, 张澳, 等. 不同发育时期澳洲坚果果实果皮中酚酸类物质成分分析[J]. 中国南方果树, 2023, 52(6): 66-71. |
| YING Zhiping, LI Biao, ZHANG Ao, et al. Analysis of phenolic acids in macadamia nut peel at different developmental stages[J]. South China Fruit Trees, 2023, 52(6): 66-71. | |
| [36] | 邵洁玲, 单守明, 马军, 等. ‘北玫’‘北全’葡萄果实中酚类物质比较[J]. 中外葡萄与葡萄酒, 2023,(6): 33-39. |
| SHAO Jieling, SHAN Shouming, MA Jun, et al. Comparison of phenolic compounds in grape fruits of 'Beimei' and 'Beiquan'[J]. Chinese and Foreign Grapes & Wines, 2023,(6): 33-39. | |
| [37] | 李光宗, 马军, 雷昊, 等. ‘黑比诺’、‘马瑟兰’和‘北红’葡萄酚类物质差异研究[J]. 食品与发酵工业, 2023, 49(18): 125-133. |
| LI Guangzong, MA Jun, LEI Hao, et al. Study on the differences of grape phenols in 'Pinot Noir', 'Marselan' and 'Beihong'[J]. Food and Fermentation Industry, 2023, 49(18): 125-133. |
| [1] | 王亚玲, 江应红, 孙慧, 刘易. 不同马铃薯耐盐性转录组比较及耐盐基因的挖掘[J]. 新疆农业科学, 2025, 62(5): 1121-1130. |
| [2] | 尹美霖, 林敏娟, 井双泉, 熊仁次. 拉枝角度对骏枣光合特性和果实品质的影响[J]. 新疆农业科学, 2025, 62(2): 343-349. |
| [3] | 陈沛, 鲍军秀, 王斐, 汤寿伍, 刘海峰, 李鸿彬. 响应面优化超声提取绿色棉纤维总黄酮[J]. 新疆农业科学, 2024, 61(3): 576-583. |
| [4] | 冯梅, 肖莉娟, 张世卿, 王晶晶. 骏枣果园土壤养分含量对果实氨基酸的影响[J]. 新疆农业科学, 2024, 61(1): 136-147. |
| [5] | 邓永辉, 郑强卿, 兖攀, 王文军, 陈奇凌, 王晶晶, 张锦强, 王振东. 干旱区骏枣根系分布和土壤养分关系分析[J]. 新疆农业科学, 2024, 61(1): 156-164. |
| [6] | 户金鸽, 白世践, 陈光, 蔡军社. 不同地面覆盖方式下新郁葡萄果皮黄酮转录组和代谢组联合分析[J]. 新疆农业科学, 2024, 61(1): 63-78. |
| [7] | 束佳敏, 郭元印, 卫丁一, 刘浩然, 依斯马依力, 黄磊, 何子涵, 姚刚, 戴小华. 野山杏总黄酮对LPS诱导鸡肝炎的影响[J]. 新疆农业科学, 2023, 60(8): 2066-2073. |
| [8] | 李硕, 王娟, 尼格尔热依·亚迪卡尔, 朱金芳, 冯作山, 帕尔哈提·艾尼瓦尔. 不同品种杏果实不同发育期功能性成分变化规律[J]. 新疆农业科学, 2023, 60(5): 1200-1207. |
| [9] | 邵华伟, 孟阿静, 唐燕, 周燕, 程新瑛, 唐蕾, 王新勇. 化肥减施增施黄腐酸磷酸二氢钾水溶配方肥对骏枣生长及品质的影响[J]. 新疆农业科学, 2022, 59(9): 2192-2199. |
| [10] | 金科旭, 戴小华, 谷虹霏, 束佳敏, 王天琪, 海婷玉. 大孔树脂纯化野山杏总黄酮工艺[J]. 新疆农业科学, 2022, 59(4): 900-907. |
| [11] | 岳婉婉, 阿布都卡尤木·阿依麦提, 靳娟, 郝庆, 樊丁宇, 杨磊. 不同植物生长调节剂对骏枣光合特性、果实品质及产量的影响[J]. 新疆农业科学, 2022, 59(12): 3013-3021. |
| [12] | 赵婧彤, 樊丁宇, 阿布都卡尤木·阿依麦提, 杨磊, 靳娟, 郝庆, 耿文娟. 花期喷施GA3对骏枣产量品质影响及枣果残留评价[J]. 新疆农业科学, 2022, 59(1): 199-204. |
| [13] | 王仙, 聂石辉, 向莉, 张金汕, 李鹏, 方伏荣. 干旱胁迫对中亚大麦农艺性状、产量和品质的影响[J]. 新疆农业科学, 2022, 59(1): 86-94. |
| [14] | 戴小华, 谷虹霏, 金科旭, 束佳敏, 杨若蓝, 吴梦岚, 潘慧, 赵红琼. 应用RP-HPLC法测定野山杏果肉黄酮类化合物[J]. 新疆农业科学, 2021, 58(8): 1476-1485. |
| [15] | 靳元元, 马生军, 徐万里, 张军, 耿阳, 吴文平, 王雪双. 不同产地黄芪活性成分与硒含量比较分析[J]. 新疆农业科学, 2021, 58(5): 873-881. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||