

新疆农业科学 ›› 2023, Vol. 60 ›› Issue (12): 2949-2961.DOI: 10.6048/j.issn.1001-4330.2023.12.011
• 作物遗传育种·种质资源·分子遗传学·土壤肥料 • 上一篇 下一篇
段燕燕(
), 胡静, 祁炳琴, 潘志远, 吴昊楠, 勾玲(
)
收稿日期:2023-03-30
出版日期:2023-12-20
发布日期:2024-01-03
作者简介:段燕燕(1996-),女,甘肃武威人,硕士研究生,研究方向为作物高产优质高效栽培,(E-mail)3256696993@qq.com
基金资助:
DUAN Yanyan(
), HU Jing, QI Bingqin, PAN Zhiyuan, WU Haonan, GOU Ling(
)
Received:2023-03-30
Published:2023-12-20
Online:2024-01-03
Supported by:摘要:
【目的】研究正反交对玉米杂交种F1植株形态特征、抗倒伏特性、杂种优势及耐密性的影响。【方法】选择母本相同、父本不同的两个杂交种KX2564和KX3564及其亲本,采用反交方法培育父本相同、母本不同的2个杂交种反-KX2564和反-KX3564为材料,设置低、中和高3个种植密度(4.5×104、9.0×104和13.5×104株/hm2)。【结果】种植密度从4.5×104株/hm2增加到13.5×104株/hm2时,亲本及杂交种节粗、单位节长干重明显降低,茎秆抗倒伏强度下降,田间倒伏率逐渐增加。正交试验中,母本自交系的节粗、单位节长干重显著高于父本,正交组合的超父优势高于超母优势,节长的超母优势高于超父优势,而杂种优势随密度的增加而降低。茎秆穿刺强度和弯曲强度的超父优势较高,弯曲强度的杂种优势随密度增加而增加。反交时,反交组合节粗、单位节长干重的超母优势较高,单位节长干重的杂种优势随着种植密度增加而降低。母本的倒伏率高于父本和杂交种,茎秆强度的超母优势高于超父优势。杂交种穗粒数和千粒重均随密度的增加而减小,产量随着密度的增加显著增加。KX3564的穗粒数、千粒重和产量均显著高于KX2564,杂交种产量及构成因素的杂种优势指数随密度的增加逐渐降低。【结论】选择节长短、节间直径粗、单位节长干重、茎秆强度高的丰产类型自交系作父本,单穗粒数多、子粒重的自交系作母本,有利于提高杂交种的茎秆抗倒伏能力,培育抗倒、高产耐密品种。
中图分类号:
段燕燕, 胡静, 祁炳琴, 潘志远, 吴昊楠, 勾玲. 正反交对玉米杂交种茎秆抗倒伏性能及种植密度的响应[J]. 新疆农业科学, 2023, 60(12): 2949-2961.
DUAN Yanyan, HU Jing, QI Bingqin, PAN Zhiyuan, WU Haonan, GOU Ling. Response of reciprocal cross to lodging resistance and planting density of maize hybrids[J]. Xinjiang Agricultural Sciences, 2023, 60(12): 2949-2961.
| 年份 Year | 类型 Type | 杂交种 Hybrid | 母本 Female parent | 父本 Male parent |
|---|---|---|---|---|
| 2020 | 正交 | KX2564 | KW4M029 | KW7M031 |
| KX3564 | KW4M029 | KW7M14 | ||
| 2021 | 正交 | KX2564 | KW4M029 | KW7M031 |
| KX3564 | KW4M029 | KW7M14 | ||
| 反交 | 反-KX2564 | KW7M031 | KW4M029 | |
| 反-KX3564 | KW7M14 | KW4M029 |
表1 试验材料
Tab.1 Test materials
| 年份 Year | 类型 Type | 杂交种 Hybrid | 母本 Female parent | 父本 Male parent |
|---|---|---|---|---|
| 2020 | 正交 | KX2564 | KW4M029 | KW7M031 |
| KX3564 | KW4M029 | KW7M14 | ||
| 2021 | 正交 | KX2564 | KW4M029 | KW7M031 |
| KX3564 | KW4M029 | KW7M14 | ||
| 反交 | 反-KX2564 | KW7M031 | KW4M029 | |
| 反-KX3564 | KW7M14 | KW4M029 |
图2 玉米亲本及杂交种节长差异比较 注:M和F表示相同母本和父本,不同小写字母表示同一年品种之间在0.05水平显著差异,下同
Fig.2 Comparison of internode length between maize hybrids and their parents inbred lines Note: M and F represent the same female parent and male parent, and different lowercase letters represent significant differences between varieties in the same year at the level of 0.05, the same as below
| 类型 Type | 密度 Density | 杂交种 Hybrid | 节长Internode length | 节粗Internode diameter | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 超母优势 Super mother advantage (%) | 超父优势 Super father advantage (%) | 杂种优势指数 Index of heterosis (%) | 超母优势 Super mother advantage (%) | 超父优势 Super father advantage (%) | 杂种优势指数 Index of heterosis (%) | |||||||||
| 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |||
| 正交 Orthogonal | D1 | KX2564 | 10.1 | 56.2 | -4.3 | 35.7 | 102.4 | 145.2 | 0.8 | -0.9 | 13.2 | 10.1 | 106.6 | 104.3 |
| KX3564 | -5.7 | 44.5 | -3.1 | 51.8 | 95.6 | 148.1 | 2.4 | -1.5 | 22.1 | 20.8 | 111.4 | 108.6 | ||
| D2 | KX2564 | 14.3 | 46.6 | -10.3 | 23.3 | 100.5 | 134.0 | -6.9 | 0.2 | -0.3 | 3.6 | 96.3 | 101.8 | |
| KX3564 | -5.8 | 39.1 | -5.0 | 29.7 | 94.6 | 134.2 | -6.5 | -2.0 | 1.9 | 12.1 | 97.5 | 104.6 | ||
| D3 | KX2564 | 15.6 | 51.9 | -9.1 | 20.9 | 101.8 | 134.7 | -16.2 | -2.9 | -8.4 | 10.9 | 87.6 | 103.5 | |
| KX3564 | 9.6 | 47.9 | 7.2 | 33.6 | 108.4 | 140.4 | -7.0 | -4.5 | -0.6 | 14.0 | 96.1 | 103.9 | ||
| 反交 Reciprocal cross | D1 | 反-KX2564 | 36.8 | 57.5 | 146.4 | 8.1 | -2.7 | 102.4 | ||||||
| 反-KX3564 | 56.8 | 49.2 | 152.9 | 18.7 | -3.2 | 106.6 | ||||||||
| D2 | 反-KX2564 | 21.7 | 44.7 | 132.2 | 8.0 | 4.5 | 106.2 | |||||||
| 反-KX3564 | 28.6 | 37.8 | 133.1 | 15.7 | 1.2 | 108.0 | ||||||||
| D3 | 反-KX2564 | 22.2 | 53.6 | 136.1 | 14.1 | -0.1 | 106.5 | |||||||
| 反-KX3564 | 35.0 | 49.4 | 141.8 | 16.5 | -2.4 | 106.2 | ||||||||
表2 玉米杂交种茎秆基部节间形态杂种优势
Tab.2 Analysis of morphological heterosis for basal internode in maize hybrid
| 类型 Type | 密度 Density | 杂交种 Hybrid | 节长Internode length | 节粗Internode diameter | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 超母优势 Super mother advantage (%) | 超父优势 Super father advantage (%) | 杂种优势指数 Index of heterosis (%) | 超母优势 Super mother advantage (%) | 超父优势 Super father advantage (%) | 杂种优势指数 Index of heterosis (%) | |||||||||
| 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |||
| 正交 Orthogonal | D1 | KX2564 | 10.1 | 56.2 | -4.3 | 35.7 | 102.4 | 145.2 | 0.8 | -0.9 | 13.2 | 10.1 | 106.6 | 104.3 |
| KX3564 | -5.7 | 44.5 | -3.1 | 51.8 | 95.6 | 148.1 | 2.4 | -1.5 | 22.1 | 20.8 | 111.4 | 108.6 | ||
| D2 | KX2564 | 14.3 | 46.6 | -10.3 | 23.3 | 100.5 | 134.0 | -6.9 | 0.2 | -0.3 | 3.6 | 96.3 | 101.8 | |
| KX3564 | -5.8 | 39.1 | -5.0 | 29.7 | 94.6 | 134.2 | -6.5 | -2.0 | 1.9 | 12.1 | 97.5 | 104.6 | ||
| D3 | KX2564 | 15.6 | 51.9 | -9.1 | 20.9 | 101.8 | 134.7 | -16.2 | -2.9 | -8.4 | 10.9 | 87.6 | 103.5 | |
| KX3564 | 9.6 | 47.9 | 7.2 | 33.6 | 108.4 | 140.4 | -7.0 | -4.5 | -0.6 | 14.0 | 96.1 | 103.9 | ||
| 反交 Reciprocal cross | D1 | 反-KX2564 | 36.8 | 57.5 | 146.4 | 8.1 | -2.7 | 102.4 | ||||||
| 反-KX3564 | 56.8 | 49.2 | 152.9 | 18.7 | -3.2 | 106.6 | ||||||||
| D2 | 反-KX2564 | 21.7 | 44.7 | 132.2 | 8.0 | 4.5 | 106.2 | |||||||
| 反-KX3564 | 28.6 | 37.8 | 133.1 | 15.7 | 1.2 | 108.0 | ||||||||
| D3 | 反-KX2564 | 22.2 | 53.6 | 136.1 | 14.1 | -0.1 | 106.5 | |||||||
| 反-KX3564 | 35.0 | 49.4 | 141.8 | 16.5 | -2.4 | 106.2 | ||||||||
| 类型 Type | 密度 Density | 杂交种 Hybrid | 单位节长干重Dry weight per unit length | |||||
|---|---|---|---|---|---|---|---|---|
| 超母优势 Super mother advantage(%) | 超父优势 Super father advantage(%) | 杂种优势指数 Index of heterosis(%) | ||||||
| 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |||
| 正交 Orthogonal | D1 | KX2564 | -7.3 | -18.7 | 60.1 | 35.6 | 117.4 | 101.7 |
| KX3564 | 0.4 | -7.5 | 25.6 | 22.7 | 111.6 | 105.5 | ||
| D2 | KX2564 | -19.6 | -10.5 | 20.7 | 27.3 | 96.5 | 105.1 | |
| KX3564 | -10.8 | 0.0 | 6.6 | 25.2 | 97.1 | 111.2 | ||
| D3 | KX2564 | -44.5 | -17.0 | -16.2 | 46.9 | 66.8 | 106.1 | |
| KX3564 | -41.8 | -9.9 | -17.4 | 46.6 | 68.3 | 111.6 | ||
| 反交 Reciprocal cross | D1 | 反-KX2564 | 45.5 | -12.7 | 109.1 | |||
| 反-KX3564 | 37.2 | 3.5 | 118.0 | |||||
| D2 | 反-KX2564 | 29.9 | -8.6 | 107.3 | ||||
| 反-KX3564 | 36.8 | 9.3 | 121.5 | |||||
| D3 | 反-KX2564 | 49.5 | -15.5 | 107.9 | ||||
| 反-KX3564 | 47.0 | -9.7 | 111.9 | |||||
表3 玉米杂交种茎秆单位节长干重杂种优势
Tab.3 Analysis of hybrid advantage of maize hybrids for stalk dry weight per unit length
| 类型 Type | 密度 Density | 杂交种 Hybrid | 单位节长干重Dry weight per unit length | |||||
|---|---|---|---|---|---|---|---|---|
| 超母优势 Super mother advantage(%) | 超父优势 Super father advantage(%) | 杂种优势指数 Index of heterosis(%) | ||||||
| 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |||
| 正交 Orthogonal | D1 | KX2564 | -7.3 | -18.7 | 60.1 | 35.6 | 117.4 | 101.7 |
| KX3564 | 0.4 | -7.5 | 25.6 | 22.7 | 111.6 | 105.5 | ||
| D2 | KX2564 | -19.6 | -10.5 | 20.7 | 27.3 | 96.5 | 105.1 | |
| KX3564 | -10.8 | 0.0 | 6.6 | 25.2 | 97.1 | 111.2 | ||
| D3 | KX2564 | -44.5 | -17.0 | -16.2 | 46.9 | 66.8 | 106.1 | |
| KX3564 | -41.8 | -9.9 | -17.4 | 46.6 | 68.3 | 111.6 | ||
| 反交 Reciprocal cross | D1 | 反-KX2564 | 45.5 | -12.7 | 109.1 | |||
| 反-KX3564 | 37.2 | 3.5 | 118.0 | |||||
| D2 | 反-KX2564 | 29.9 | -8.6 | 107.3 | ||||
| 反-KX3564 | 36.8 | 9.3 | 121.5 | |||||
| D3 | 反-KX2564 | 49.5 | -15.5 | 107.9 | ||||
| 反-KX3564 | 47.0 | -9.7 | 111.9 | |||||
| 变异来源 Sources of variation | 穿刺强度 Rind puncture strength | 弯曲强度 Bending strength |
|---|---|---|
| 密度Density(D) | 38.5** | 87.4** |
| 正反交Reciprocal cross(Rec) | 0.0 | 5.7* |
| 母本Mother(M) | 26.5** | 15.7** |
| 父本Father(F) | 54.6** | 63.7** |
| D×Rec | 1.7 | 2.2 |
| D×M | 0.4 | 2.0 |
| D×F | 0.9 | 5.0* |
表4 玉米杂交种茎秆强度的方差(抽雄期)
Tab.4 Analysis of variance for stalk strength of maize hybrids (Tesseling stage)
| 变异来源 Sources of variation | 穿刺强度 Rind puncture strength | 弯曲强度 Bending strength |
|---|---|---|
| 密度Density(D) | 38.5** | 87.4** |
| 正反交Reciprocal cross(Rec) | 0.0 | 5.7* |
| 母本Mother(M) | 26.5** | 15.7** |
| 父本Father(F) | 54.6** | 63.7** |
| D×Rec | 1.7 | 2.2 |
| D×M | 0.4 | 2.0 |
| D×F | 0.9 | 5.0* |
| 类型 Type | 密度 Density | 杂交种 Hybrid | 穿刺强度Rind puncture strength | 弯曲强度Bending strength | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 超母优势 Super mother advantage (%) | 超父优势 Super father advantage (%) | 杂种优势指数 Index of heterosis (%) | 超母优势 Super mother advantage (%) | 超父优势 Super father advantage (%) | 杂种优势指数 Index of heterosis (%) | |||||||||
| 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |||
| 正交 Orthogonal | D1 | KX2564 | 1.4 | -10.1 | 47.1 | 33.6 | 120.1 | 107.5 | -11 | -19.4 | 43.8 | 39.9 | 109.9 | 102.3 |
| KX3564 | 8.8 | -2.2 | 22.4 | 23.7 | 115.2 | 109.2 | -1.3 | -4.1 | 38.9 | 55.5 | 115.4 | 118.6 | ||
| D2 | KX2564 | -1.1 | -8.8 | 76.4 | 72 | 126.8 | 119.2 | -20.2 | -18.4 | 42.5 | 70.3 | 102.3 | 110.3 | |
| KX3564 | 8.3 | 4.2 | 44.3 | 39.6 | 123.7 | 119.3 | -12.2 | -8.6 | 18.6 | 48.1 | 100.9 | 113.1 | ||
| D3 | KX2564 | -16.1 | -17.1 | 53.5 | 63.5 | 108.5 | 110 | -49.4 | -5.2 | 13.2 | 134.3 | 70 | 135 | |
| KX3564 | -3.6 | -7.1 | 31 | 26.5 | 111.1 | 107.2 | -27.5 | 4.4 | 28.8 | 69.2 | 92.8 | 129.1 | ||
| 反交 Reciprocal cross | D1 | 反-KX2564 | 34.6 | -9.5 | 108.2 | 61.3 | -7 | 118 | ||||||
| 反-KX3564 | 34.5 | 6.4 | 118.8 | 67.6 | 3.4 | 127.9 | ||||||||
| D2 | 反-KX2564 | 61.5 | -14.4 | 111.9 | 82.6 | 10.1 | 118.3 | |||||||
| 反-KX3564 | 29.9 | -3 | 111 | 48.7 | 15.5 | 113.5 | ||||||||
| D3 | 反-KX2564 | 64.2 | -16.7 | 110.5 | 140.8 | -2.6 | 138.7 | |||||||
| 反-KX3564 | 30.4 | -4.2 | 110.4 | 69 | 4.3 | 129 | ||||||||
表5 玉米杂交种茎秆强度杂种优势(抽雄期)
Tab.5 Analysis of stem strength heterosis of maize hybrids(Tesseling stage)
| 类型 Type | 密度 Density | 杂交种 Hybrid | 穿刺强度Rind puncture strength | 弯曲强度Bending strength | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 超母优势 Super mother advantage (%) | 超父优势 Super father advantage (%) | 杂种优势指数 Index of heterosis (%) | 超母优势 Super mother advantage (%) | 超父优势 Super father advantage (%) | 杂种优势指数 Index of heterosis (%) | |||||||||
| 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |||
| 正交 Orthogonal | D1 | KX2564 | 1.4 | -10.1 | 47.1 | 33.6 | 120.1 | 107.5 | -11 | -19.4 | 43.8 | 39.9 | 109.9 | 102.3 |
| KX3564 | 8.8 | -2.2 | 22.4 | 23.7 | 115.2 | 109.2 | -1.3 | -4.1 | 38.9 | 55.5 | 115.4 | 118.6 | ||
| D2 | KX2564 | -1.1 | -8.8 | 76.4 | 72 | 126.8 | 119.2 | -20.2 | -18.4 | 42.5 | 70.3 | 102.3 | 110.3 | |
| KX3564 | 8.3 | 4.2 | 44.3 | 39.6 | 123.7 | 119.3 | -12.2 | -8.6 | 18.6 | 48.1 | 100.9 | 113.1 | ||
| D3 | KX2564 | -16.1 | -17.1 | 53.5 | 63.5 | 108.5 | 110 | -49.4 | -5.2 | 13.2 | 134.3 | 70 | 135 | |
| KX3564 | -3.6 | -7.1 | 31 | 26.5 | 111.1 | 107.2 | -27.5 | 4.4 | 28.8 | 69.2 | 92.8 | 129.1 | ||
| 反交 Reciprocal cross | D1 | 反-KX2564 | 34.6 | -9.5 | 108.2 | 61.3 | -7 | 118 | ||||||
| 反-KX3564 | 34.5 | 6.4 | 118.8 | 67.6 | 3.4 | 127.9 | ||||||||
| D2 | 反-KX2564 | 61.5 | -14.4 | 111.9 | 82.6 | 10.1 | 118.3 | |||||||
| 反-KX3564 | 29.9 | -3 | 111 | 48.7 | 15.5 | 113.5 | ||||||||
| D3 | 反-KX2564 | 64.2 | -16.7 | 110.5 | 140.8 | -2.6 | 138.7 | |||||||
| 反-KX3564 | 30.4 | -4.2 | 110.4 | 69 | 4.3 | 129 | ||||||||
| 年份 Year | 类型 Type | 密度 Density | 品种 Cultivar | 杂交种 Hybrid | 母本 Female parent | 父本 Male parent |
|---|---|---|---|---|---|---|
| 2020 | 正交 | D1 | KX2564 | 0.6 | 0.7 | 0.8 |
| KX3564 | 0.0 | 0.7 | 1.0 | |||
| D2 | KX2564 | 1.0 | 1.1 | 2.0 | ||
| KX3564 | 0.4 | 1.1 | 1.3 | |||
| D3 | KX2564 | 2.3 | 1.1 | 2.9 | ||
| KX3564 | 0.5 | 1.1 | 1.4 | |||
| 2021 | 正交 | D1 | KX2564 | 0.0 | 0.0 | 0.0 |
| KX3564 | 0.0 | 0.0 | 1.1 | |||
| D2 | KX2564 | 0.0 | 0.0 | 7.8 | ||
| KX3564 | 0.0 | 0.0 | 1.1 | |||
| D3 | KX2564 | 0.8 | 0.0 | 0.4 | ||
| KX3564 | 0.0 | 0.0 | 2.1 | |||
| 反交 | D1 | 反-KX2564 | 0.0 | 0.0 | 0.0 | |
| 反-KX3564 | 0.0 | 1.1 | 0.0 | |||
| D2 | 反-KX2564 | 0.0 | 7.8 | 0.0 | ||
| 反-KX3564 | 0.0 | 1.1 | 0.0 | |||
| D3 | 反-KX2564 | 0.0 | 0.4 | 0.0 | ||
| 反-KX3564 | 0.0 | 2.1 | 0.0 |
表6 玉米亲本与杂交种倒伏率比较
Tab.6 Comparison of lodging rates between maize hybrids and their parents
| 年份 Year | 类型 Type | 密度 Density | 品种 Cultivar | 杂交种 Hybrid | 母本 Female parent | 父本 Male parent |
|---|---|---|---|---|---|---|
| 2020 | 正交 | D1 | KX2564 | 0.6 | 0.7 | 0.8 |
| KX3564 | 0.0 | 0.7 | 1.0 | |||
| D2 | KX2564 | 1.0 | 1.1 | 2.0 | ||
| KX3564 | 0.4 | 1.1 | 1.3 | |||
| D3 | KX2564 | 2.3 | 1.1 | 2.9 | ||
| KX3564 | 0.5 | 1.1 | 1.4 | |||
| 2021 | 正交 | D1 | KX2564 | 0.0 | 0.0 | 0.0 |
| KX3564 | 0.0 | 0.0 | 1.1 | |||
| D2 | KX2564 | 0.0 | 0.0 | 7.8 | ||
| KX3564 | 0.0 | 0.0 | 1.1 | |||
| D3 | KX2564 | 0.8 | 0.0 | 0.4 | ||
| KX3564 | 0.0 | 0.0 | 2.1 | |||
| 反交 | D1 | 反-KX2564 | 0.0 | 0.0 | 0.0 | |
| 反-KX3564 | 0.0 | 1.1 | 0.0 | |||
| D2 | 反-KX2564 | 0.0 | 7.8 | 0.0 | ||
| 反-KX3564 | 0.0 | 1.1 | 0.0 | |||
| D3 | 反-KX2564 | 0.0 | 0.4 | 0.0 | ||
| 反-KX3564 | 0.0 | 2.1 | 0.0 |
| 年份 Year | 类型 Type | 密度 Density | 杂交种 Hybrid | 收获穗数 Ears(104) | 单穗粒数 Grains per ear | 千粒重 Grain weight (g) | 理论产量 Yield (kg/hm2) |
|---|---|---|---|---|---|---|---|
| 2020 | 正交 | D1 | KX2564 | 4.5±0.4a | 672±15.9b | 370±19.1a | 11 749±293b |
| KX3564 | 4.5±0.4a | 732±22.7a | 374±11.1a | 12 712±138a | |||
| D2 | KX2564 | 8.5±0.4a | 561±6.2b | 306±7.2b | 15 191±644b | ||
| KX3564 | 8.5±0.0a | 629±4.3a | 342±9.9a | 18 806±377a | |||
| D3 | KX2564 | 13.0±0.4a | 454±19.7b | 316±16.5a | 18 575±320b | ||
| KX3564 | 13.0±0.4a | 493±6.2a | 332.7±6.0a | 21 575±587a | |||
| 2021 | 正交 | D1 | KX2564 | 4.3±0.2a | 781±11.7a | 359.±0.3b | 12 237±102b |
| KX3564 | 4.5±0.2a | 725±7.8b | 378±2.2a | 12 876±298a | |||
| D2 | KX2564 | 8.7±0.2b | 581±29.5a | 315±0.4b | 17 122±842b | ||
| KX3564 | 9.2±0.1a | 566±18.5a | 343±0.1a | 19 100±647a | |||
| D3 | KX2564 | 13.4±0.1a | 455±5.9b | 294±15.2b | 19 232±264b | ||
| KX3564 | 12.8±0.2b | 502±5.2a | 345±0.5a | 22 767±662a | |||
| 反交 | D1 | 反-KX2564 | 4.6±0.0a | 781±9.8b | 367±5.0a | 13 289±88.7a | |
| 反-KX3564 | 4.2±0.1b | 835±10.7a | 358±0.8a | 13 173±252a | |||
| D2 | 反-KX2564 | 8.8±0.1a | 583±4.8a | 317±6.5a | 17 450±439b | ||
| 反-KX3564 | 9.1±0.2a | 595±6.6a | 332±4.6a | 19 226±766a | |||
| D3 | 反-KX2564 | 13.1±0.2a | 478±14.5b | 324±6.2a | 20 648±246b | ||
| 反-KX3564 | 13.1±0.2a | 506±0.6a | 327±3.2a | 22 686±376a |
表7 玉米杂交种产量差异比较
Tab.7 Comparison of yield difference between maize hybrids
| 年份 Year | 类型 Type | 密度 Density | 杂交种 Hybrid | 收获穗数 Ears(104) | 单穗粒数 Grains per ear | 千粒重 Grain weight (g) | 理论产量 Yield (kg/hm2) |
|---|---|---|---|---|---|---|---|
| 2020 | 正交 | D1 | KX2564 | 4.5±0.4a | 672±15.9b | 370±19.1a | 11 749±293b |
| KX3564 | 4.5±0.4a | 732±22.7a | 374±11.1a | 12 712±138a | |||
| D2 | KX2564 | 8.5±0.4a | 561±6.2b | 306±7.2b | 15 191±644b | ||
| KX3564 | 8.5±0.0a | 629±4.3a | 342±9.9a | 18 806±377a | |||
| D3 | KX2564 | 13.0±0.4a | 454±19.7b | 316±16.5a | 18 575±320b | ||
| KX3564 | 13.0±0.4a | 493±6.2a | 332.7±6.0a | 21 575±587a | |||
| 2021 | 正交 | D1 | KX2564 | 4.3±0.2a | 781±11.7a | 359.±0.3b | 12 237±102b |
| KX3564 | 4.5±0.2a | 725±7.8b | 378±2.2a | 12 876±298a | |||
| D2 | KX2564 | 8.7±0.2b | 581±29.5a | 315±0.4b | 17 122±842b | ||
| KX3564 | 9.2±0.1a | 566±18.5a | 343±0.1a | 19 100±647a | |||
| D3 | KX2564 | 13.4±0.1a | 455±5.9b | 294±15.2b | 19 232±264b | ||
| KX3564 | 12.8±0.2b | 502±5.2a | 345±0.5a | 22 767±662a | |||
| 反交 | D1 | 反-KX2564 | 4.6±0.0a | 781±9.8b | 367±5.0a | 13 289±88.7a | |
| 反-KX3564 | 4.2±0.1b | 835±10.7a | 358±0.8a | 13 173±252a | |||
| D2 | 反-KX2564 | 8.8±0.1a | 583±4.8a | 317±6.5a | 17 450±439b | ||
| 反-KX3564 | 9.1±0.2a | 595±6.6a | 332±4.6a | 19 226±766a | |||
| D3 | 反-KX2564 | 13.1±0.2a | 478±14.5b | 324±6.2a | 20 648±246b | ||
| 反-KX3564 | 13.1±0.2a | 506±0.6a | 327±3.2a | 22 686±376a |
| 类型 Type | 密度 Density | 杂交种 Hybrid | 单穗粒数Grains per ear | 千粒重 1 000-grain weight | 理论产量Yield | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 超母 优势 Super mother advantage (%) | 超父 优势 Super father advantage (%) | 杂种 优势 指数 Index of heterosis (%) | 超母 优势 Super mother advantage (%) | 超父 优势 Super father advantage (%) | 杂种 优势 指数 Index of heterosis (%) | 超母 优势 Super mother advantage (%) | 超父 优势 Super father advantage (%) | 杂种 优势 指数 Index of heterosis (%) | |||
| 正交 Orthogonal | D1 | KX2564 | 75.9 | 105.4 | 189.5 | 20.6 | 8.4 | 114.2 | 112.6 | 118.9 | 215.7 |
| KX3564 | 63.3 | 63.7 | 163.5 | 27.1 | 23.0 | 125.0 | 123.7 | 99.4 | 210.9 | ||
| D2 | KX2564 | 44.6 | 70.4 | 156.5 | 18.2 | 4.0 | 110.6 | 78.4 | 77.7 | 178.0 | |
| KX3564 | 40.9 | 49.5 | 145.1 | 28.8 | 16.3 | 122.2 | 99.0 | 86.6 | 192.6 | ||
| D3 | KX2564 | 37.4 | 42.0 | 139.7 | 11.9 | -4.9 | 102.8 | 66.7 | 38.3 | 151.2 | |
| KX3564 | 51.8 | 76.8 | 163.4 | 31.5 | 21.6 | 126.4 | 97.4 | 86.7 | 191.9 | ||
| 反交 Reciprocal cross | D1 | 反-KX2564 | 105.3 | 75.8 | 189.4 | 11.0 | 23.5 | 116.9 | 137.8 | 130.9 | 234.3 |
| 反-KX3564 | 88.5 | 88.0 | 188.2 | 16.3 | 20.3 | 118.3 | 104.0 | 128.9 | 215.7 | ||
| D2 | 反-KX2564 | 70.9 | 45.0 | 156.9 | 4.5 | 18.8 | 111.2 | 81.1 | 81.8 | 181.5 | |
| 反-KX3564 | 57.0 | 48.0 | 152.4 | 12.3 | 24.4 | 118.0 | 87.8 | 100.3 | 193.8 | ||
| D3 | 反-KX2564 | 49.2 | 44.4 | 146.7 | 4.7 | 23.2 | 113.2 | 48.5 | 79.0 | 162.3 | |
| 反-KX3564 | 78.0 | 52.8 | 164.4 | 15.3 | 24.6 | 119.8 | 86.0 | 96.7 | 191.2 | ||
表8 玉米杂交种产量及构成因素杂种优势
Tab.8 Analysis of hybrid advantage of maize hybrids in terms of yield and constituent factors
| 类型 Type | 密度 Density | 杂交种 Hybrid | 单穗粒数Grains per ear | 千粒重 1 000-grain weight | 理论产量Yield | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 超母 优势 Super mother advantage (%) | 超父 优势 Super father advantage (%) | 杂种 优势 指数 Index of heterosis (%) | 超母 优势 Super mother advantage (%) | 超父 优势 Super father advantage (%) | 杂种 优势 指数 Index of heterosis (%) | 超母 优势 Super mother advantage (%) | 超父 优势 Super father advantage (%) | 杂种 优势 指数 Index of heterosis (%) | |||
| 正交 Orthogonal | D1 | KX2564 | 75.9 | 105.4 | 189.5 | 20.6 | 8.4 | 114.2 | 112.6 | 118.9 | 215.7 |
| KX3564 | 63.3 | 63.7 | 163.5 | 27.1 | 23.0 | 125.0 | 123.7 | 99.4 | 210.9 | ||
| D2 | KX2564 | 44.6 | 70.4 | 156.5 | 18.2 | 4.0 | 110.6 | 78.4 | 77.7 | 178.0 | |
| KX3564 | 40.9 | 49.5 | 145.1 | 28.8 | 16.3 | 122.2 | 99.0 | 86.6 | 192.6 | ||
| D3 | KX2564 | 37.4 | 42.0 | 139.7 | 11.9 | -4.9 | 102.8 | 66.7 | 38.3 | 151.2 | |
| KX3564 | 51.8 | 76.8 | 163.4 | 31.5 | 21.6 | 126.4 | 97.4 | 86.7 | 191.9 | ||
| 反交 Reciprocal cross | D1 | 反-KX2564 | 105.3 | 75.8 | 189.4 | 11.0 | 23.5 | 116.9 | 137.8 | 130.9 | 234.3 |
| 反-KX3564 | 88.5 | 88.0 | 188.2 | 16.3 | 20.3 | 118.3 | 104.0 | 128.9 | 215.7 | ||
| D2 | 反-KX2564 | 70.9 | 45.0 | 156.9 | 4.5 | 18.8 | 111.2 | 81.1 | 81.8 | 181.5 | |
| 反-KX3564 | 57.0 | 48.0 | 152.4 | 12.3 | 24.4 | 118.0 | 87.8 | 100.3 | 193.8 | ||
| D3 | 反-KX2564 | 49.2 | 44.4 | 146.7 | 4.7 | 23.2 | 113.2 | 48.5 | 79.0 | 162.3 | |
| 反-KX3564 | 78.0 | 52.8 | 164.4 | 15.3 | 24.6 | 119.8 | 86.0 | 96.7 | 191.2 | ||
| 性状 Traits | 节长 Internode length | 节粗 Internode diameter | 单位节长干重 Dry weight per unit length | 穿刺强度 Rind puncture strength | 弯曲强度 Bending strength |
|---|---|---|---|---|---|
| 穿刺强度 Rind puncture strength | -0.709** | 0.532** | 0.719** | 1 | 0.758** |
| 弯曲强度 Bending strength | -0.603** | 0.822** | 0.946** | 0.758** | 1 |
表9 玉米杂交种茎秆抗倒伏性状的相关性
Tab.9 Correlation of lodging resistance traits of stem of maize hybrids
| 性状 Traits | 节长 Internode length | 节粗 Internode diameter | 单位节长干重 Dry weight per unit length | 穿刺强度 Rind puncture strength | 弯曲强度 Bending strength |
|---|---|---|---|---|---|
| 穿刺强度 Rind puncture strength | -0.709** | 0.532** | 0.719** | 1 | 0.758** |
| 弯曲强度 Bending strength | -0.603** | 0.822** | 0.946** | 0.758** | 1 |
| [1] | 田保明, 杨光圣, 曹刚强, 等. 农作物倒伏及其评价方法[J]. 中国农学通报, 2005, 21(7):111-114. |
| TIAN Baoming, YANG Guangsheng, CAO Gangqiang, et al. The performance of lodging and developing a standard test for lodging resistance in crops[J]. Chinese Agricultural Science Bulletin, 2005, 21(7):111-114. | |
| [2] | 刘鑫, 谢瑞芝, 牛兴奎, 等. 种植密度对东北地区不同年代玉米生产主推品种抗倒伏性能的影响[J]. 作物杂志, 2012,(5):126-130. |
| LIU Xin, XIE Ruizhi, NIU Xingkui, et al. Effects of planting density on lodging resistance performance of maize varieties of different eras in north-east china[J]. Crops, 2012,(5):126-130. | |
| [3] |
徐田军, 吕天放, 陈传永, 等. 种植密度和植物生长调节剂对玉米茎秆性状的影响及调控[J]. 中国农业科学, 2019, 52(4):629-638.
DOI |
|
XU Tianjun, LYU Tianfang, CHEN Chuanyong, et al. Effects of plant density and plant growth regulator on stalk traits of maize and their regulation[J]. Scientia Agricultura Sinica, 2019, 52(4):629-638.
DOI |
|
| [4] |
Zhang Y, Wang Y, Ye D, et al. Ethephon improved stalk strength of maize (Zea Mays L. )mainly through altering internode morphological traits to modulate mechanical properties under field conditions[J]. Agronomy, 2019, 9(4):186.
DOI URL |
| [5] | 谷利敏, 乔江方, 张美微, 等. 种植密度对不同耐密夏玉米品种茎秆性状与抗倒伏能力的影响[J]. 玉米科学, 2017, 25(5):91-97. |
| GU Limin, QIAO Jiangfang, ZHANG Meiwei, et al. Effect of planting density on stalk characteristics and lodging-resistant capacity of different density-resistant summer maize varieties[J]. Journal of Maize Sciences, 2017, 25(5):91-97. | |
| [6] |
Xue Jun, Xie Ruizhi, Zhang Wangfeng, et al. Research progress on reduced lodging of high-yield and-density maize[J]. Journal of Integrative Agriculture, 2017, 16(12):2717-2725.
DOI URL |
| [7] |
Robertson D, Smith S, Gardunia B, et al. An improved method for accurate phenotyping of corn stalk strength[J]. Crop Science, 2014, 54(5):2038-2044.
DOI URL |
| [8] | 黄海, 常莹, 吴春胜, 等. 群体密度对玉米茎秆强度及相关生理指标的影响[J]. 西北农林科技大学学报(自然科学版), 2014, 42(4):81-87,101. |
| HUANG Hai, CHANG Ying, WU Chunsheng, et al. Effects of population density on strength and related physiological indexes of maize stalk[J]. Journal of Northwest A&F University (Natural Science Ed.), 2014, 42(4):81-87,101. | |
| [9] | 梁文科. 热带温带玉米群体育种价值评估及光周期反应敏感性指标研究[D]. 武汉: 华中农业大学, 2008. |
| LIANG Wenke. Assessment on Potential of Tropical & Temperate Maize Populations and Indes Analysis of Photoperiod Sensitivity[D]. Wuhan: Huazhong Agricultural University, 2008. | |
| [10] | 燕树锋, 刘海芳, 孙书库, 等. 玉米抗茎秆倒伏相关因素的影响[J]. 分子植物育种, 2017, 15(6):2353-2358. |
| YAN Shufeng, LIU Haifang, SUN Shuku, et al. The effects of correlative factors on stem lodging resistance in maize[J]. Molecular Plant Breeding, 2017, 15(6):2353-2358. | |
| [11] | 王永学, 张战辉, 刘宗华. 玉米抗倒伏性状的配合力效应及通径分析[J]. 河南农业大学学报, 2011, 45 (1):1-6. |
| WANG Yongxue, ZHANG Zhanhui, LIU Zonghua. Combining ability and path analysis of lodging resistance traits in maize[J]. Journal of Henan Agricultural University, 2011, 45 (1):1-6. | |
| [12] | 李碧霞, 祁炳琴, 朱丽斌, 等. 玉米杂交种及其亲本自交系抗倒伏特性的研究[J]. 西北农业学报, 2020, 29(1):28-34. |
| LI Bixia, QI Bingqin, ZHU Libin, et al. Study on lodging resistance characteristics of maize hybrids and its parent inbred lines[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2020, 29(1):28-34. | |
| [13] | 柴孟竹. 乙烯利对不同基因型玉米茎秆抗倒伏性的调控效应[D]. 哈尔滨: 东北农业大学, 2018. |
| CHAI Mengzhu. Effect of Ethephon on Lodging Resistance of Different Genotype Maize Stem[D]. Harbin: Northeat Agricultural University, 2018. | |
| [14] |
Tang Z, Yang Z, Hu Z, et al. Cytonuclear epistatic quantitative trait locus mapping for plant height and ear height in maize[J]. Molecular Breeding, 2013, 31(1):1-14.
DOI URL |
| [15] | 马青美, 裴玉贺, 葛兆鹏, 等. 玉米茎秆抗推力的遗传效应分析[J]. 西南农业学报, 2017, 30(11):2425-2428. |
| MA Qingmei, PEI Yuhe, GE Zhaopeng, et al. Genetic effect of maize stalk anti-thrust[J]. Southwest China Journal of Agricultural Sciences, 2017, 30(11):2425-2428. | |
| [16] |
Jumbo M B, Carena M J. Combining ability, maternal, and reciprocal effects of elite early-maturing maize population hybrids[J]. Euphytica, 2008, 162(3):325-333.
DOI URL |
| [17] | 高鑫, 高聚林, 于晓芳, 等. 高密植对不同类型玉米品种茎秆抗倒特性及产量的影响[J]. 玉米科学, 2012, 20(4):69-73. |
| GAO Xin, GAO Julin, YU Xiaofang, et al. Stalks lodging-resistance characteristics and yield traits among different maize varieties under high close planting[J]. Journal of Maize Sciences, 2012, 20(4):69-73. | |
| [18] | 孙世贤, 戴俊英, 顾慰连. 氮、磷、钾肥对玉米倒伏及其产量的影响[J]. 中国农业科学, 1989, 22(3):28-33,96-97. |
| SUN Shixian, DAI Junying, GU Weilian. Effect of nitrogen, phosphate and potash fertilizers on lodging and yield of Maize[J]. Scientia Agricultura Sinica, 1989, 22(3):28-33,96-97. | |
| [19] | Chen S, Chen H, Shen X, et al. Effects of planting density and nitrogen amount on stalk lodging-resistance and yield of summer maize in Sichuan basin[J]. Agricultural Science & Technology, 2012, 13(10):2147-2151. |
| [20] | 朱丽斌. 玉米杂交种木质素积累对茎秆强度形成的影响及其杂种优势分析[D]. 石河子: 石河子大学, 2020. |
| ZHU Libin. Effects of Lignin Accumulation on Stalk Strength Formation and Its Heterosis Analysis in Maize Hybrids[D]. Shihezi: Shihezi University, 2020. | |
| [21] | 侯延荣, 曹修才, 张桂阁, 等. 玉米杂交种主要性状的杂交优势分析[J]. 玉米科学, 1997, 5(1):30-31,71. |
| HOU Yanrong, CAO Xiucai, ZHANG Guige, et al. Analysis of hybrid superiority of main characters in maize hybrids[J]. Journal of Maize Sciences, 1997, 5(1):30-31,71. | |
| [22] | 梁晓杰. 玉米自交系的聚类分析及其与杂交种的遗传关系研究[D]. 郑州: 河南农业大学, 2014. |
| LIANG Xiaojie. The Cluster Analysis of Maize Inbred Liner and Study on Genetic Correlation between Parents and their Hybrids[D]. Zhengzhou: Henan Agricultural University, 2014. | |
| [23] | 杨锦越, 宋碧, 罗英舰, 等. 种植密度对不同玉米品种抗倒力学特性的影响[J]. 西南农业学报, 2018, 31(8):1584-1590. |
| YANG Jinyue, SONG Bi, LOU Yingjian, et al. Effects of planting density on resistance mechanical properties of different maize varieties[J]. Southwest China Journal of Agricultural Sciences, 2018, 31(8):1584-1590. | |
| [24] | 刘胜群, 宋凤斌, 朱先灿, 等. 玉米穗下节间与抗倒性相关的某些性状对增加密度的响应[J]. 土壤与作物, 2013, 2(4):145-149. |
| LIU Shengqun, SONG Fengbin, ZHU Xiancan, et al. Responses of internodes below ear and lodging-related traits to increased planting density in maize[J]. Soils and Crops, 2013, 2(4):145-149. |
| [1] | 郭文超, 贾尊尊, 丁新华, 叶晓琴, 付开赟, 吐尔逊·阿合买提, 王小武, 乔小燕, 孙建博. 新疆荒漠绿洲生态区亚洲玉米螟和欧洲玉米螟的种间竞争取代研究综述[J]. 新疆农业科学, 2024, 61(S1): 1-11. |
| [2] | 孙健博, 吴莉莉, 贾尊尊, 叶晓琴, 丁新华, 付开赟, 吐尔逊·阿合买提, 王哲, 李亚文, 付文君, 艾尔肯娜依·买买提江, 安尼瓦尔·库尔班, 郭文超. 新疆伊犁河谷玉米主要害虫田间一喷多防药效评价[J]. 新疆农业科学, 2024, 61(S1): 12-18. |
| [3] | 张帅, 高国文, 吴莉莉, 赵海燕, 王小武, 付开赟, 贾尊尊, 吐尔逊·阿合买提, 丁新华, 李克梅, 郭文超. 增效剂及微肥与种衣剂协同施用评价玉米茎腐病的防效[J]. 新疆农业科学, 2024, 61(S1): 19-27. |
| [4] | 戴爱梅, 叶梦迪, 丁志梅, 王志慧, 乔晓燕, 王小武, 付开赟, 贾尊尊, 叶晓琴, 吐尔逊·阿合买提, 康健, 丁新华, 郭文超. 不同苯唑氟草酮施药方式防除玉米田杂草药效及安全性评价[J]. 新疆农业科学, 2024, 61(S1): 28-34. |
| [5] | 袁梓涵, 赵雯慧, 王小武, 吐尔逊·阿合买提, 丁新华, 张帅, 付开赟, 贾尊尊, 郭文超. 玉米茎腐病生防菌的筛选及生防效果评价[J]. 新疆农业科学, 2024, 61(S1): 35-48. |
| [6] | 巩雪花, 王小武, 付开赟, 贾尊尊, 吐尔逊·阿合买提, 乔小燕, 叶晓琴, 郭文超, 丁新华. 新疆绿洲灌区玉米田杂草种子库及环境因子对杂草种子萌发的影响[J]. 新疆农业科学, 2024, 61(S1): 49-59. |
| [7] | 张磊, 孙诗仁, 谢小清, 王业建, 李冬, 唐怀君, 刘成. 额敏县玉米灌溉用水现状及节水灌溉策略[J]. 新疆农业科学, 2024, 61(S1): 81-84. |
| [8] | 杨明花, 廖必勇, 刘强, 彭云承, 达吾来·杰克山, 冯国瑞, 唐式敏. 鲜食糯玉米籽粒营养品质的差异变化分析[J]. 新疆农业科学, 2024, 61(9): 2087-2093. |
| [9] | 杨彩霞, 顾炜, 关媛, 瞿静涛, 党冬冬, 吴鹏昊, 郑洪建. 甜玉米基因Sugary1(Su1)序列的变异分析[J]. 新疆农业科学, 2024, 61(7): 1605-1614. |
| [10] | 钟辉丽, 武均, 陆祥生. 甜玉米不同生育期施用改良剂组合对其产量及河西走廊次生盐碱化土壤性质的影响[J]. 新疆农业科学, 2024, 61(7): 1615-1625. |
| [11] | 杨明花, 刘强, 冯国瑞, 廖必勇, 达吾来·杰克山, 彭云承, 布阿依夏木·那曼提, 陈艳萍. 鲜食糯玉米适宜采收期与籽粒含水量分析[J]. 新疆农业科学, 2024, 61(7): 1626-1630. |
| [12] | 付浩, 张学军, 史增录, 程金鹏, 吴海峰, 于永良, 饶志强. 滴灌区玉米精量免耕播种机设计与试验[J]. 新疆农业科学, 2024, 61(5): 1094-1101. |
| [13] | 刘婉琴, 易鸳鸯, 彭小武, 谢芳, 顾美英, 张志东. 头孢菌素菌渣有机肥对玉米土壤中耐药菌及相关抗性基因的影响[J]. 新疆农业科学, 2024, 61(4): 1003-1010. |
| [14] | 朱韬, 雷庆元, 马亮. 不同水氮用量对复播玉米生长发育、产量及利用效率的影响和选优模型验证[J]. 新疆农业科学, 2024, 61(4): 835-844. |
| [15] | 张磊, 姚梦瑶, 刘志刚, 李娟, 杨洋, 蔡大润, 陈果, 李波, 李晓荣, 陈勋基, 翟云龙. 基于无人机多光谱NDVI值估测玉米产量[J]. 新疆农业科学, 2024, 61(4): 845-851. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||