新疆农业科学 ›› 2022, Vol. 59 ›› Issue (1): 20-29.DOI: 10.6048/j.issn.1001-4330.2022.01.003
• 作物遗传育种·分子遗传学·耕作栽培·种质资源 • 上一篇 下一篇
李军宏1(), 李文静1, 王远远1, 时晓娟1, 郝先哲1, 刘萍2(
)
收稿日期:
2021-02-14
出版日期:
2022-01-20
发布日期:
2022-02-18
通信作者:
刘萍(1979 - ),女,新疆库尔勒人,副研究员,硕士,研究方向为棉花育种,(E-mail) 51729665@qq.com作者简介:
李军宏(1996 - ),男,新疆昌吉人,硕士,研究方向为作物高产生理与节水栽培,(E-mail) 1181634049@qq.com
基金资助:
LI Junhong1(), LI Wenjing1, WANG Yuanyuan1, SHI Xiaojuan1, HAO Xianzhe1, LIU Ping2(
)
Received:
2021-02-14
Published:
2022-01-20
Online:
2022-02-18
Supported by:
摘要:
【目的】研究耐旱性不同的棉花品种根系生长及水分利用效率对干旱的响应机制,为棉花抗逆栽培和耐旱性品种选育提供理论依据。【方法】以不耐旱性品种新陆早17号和耐旱型品种新陆早22号为试材,设常规灌溉(CK)、轻度干旱(W1)和中度干旱(W2)处理,测定不同处理下棉花产量形成期0~120 cm 土层根长密度、根体积密度、根重密度及水分利用效率。【结果】干旱处理下,0~20 cm土层内,2品种根重密度、根体积密度、根长密度均显著低于CK;80~120 cm土层内,新陆早22号随干旱胁迫程度的增强而增加,新陆早17号则降低。W1、W2处理的水分利用效率分别比CK高15.18%、21.91%。品种间,新陆早22号根长密度在40~80 cm土层的分布比例显著高于新陆早17号,80~120 cm土层的分布比例显著低于新陆早17号。新陆早22号耗水量比新陆早17号低6.30%,但水分利用效率比新陆早17号高40.95%,差异显著。新陆早22号在80~120 cm 土层根体积密度与生物学水分利用效率呈显著正相关。【结论】耐旱型棉花品种通过增加深土层根系分布比例延伸其在干旱下汲取水分空间,保证地上部生长,实现有限水分高效吸收与利用。
中图分类号:
李军宏, 李文静, 王远远, 时晓娟, 郝先哲, 刘萍. 不同耐旱性棉花品种根系生长及水分利用效率对干旱的响应机制[J]. 新疆农业科学, 2022, 59(1): 20-29.
LI Junhong, LI Wenjing, WANG Yuanyuan, SHI Xiaojuan, HAO Xianzhe, LIU Ping. Response of Root Growth and Water Use Efficiency to Drought in Different Drought Tolerant Cotton Varieties[J]. Xinjiang Agricultural Sciences, 2022, 59(1): 20-29.
水分利用效率 Water use efficiency | 品种 Variety | 土层Layer (cm) | ||||
---|---|---|---|---|---|---|
0~20 | 20~40 | 40~60 | 60~80 | 80~120 | ||
根长密度 Root lengthdensity(m/m3) | ||||||
营养器官 Vegetative organs | 新陆早17号 | -0.888 | -0.977 | -0.983 | -0.916 | -0.966 |
新陆早22号 | 0.132 | 0.938 | -0.163 | -0.664 | 0.743 | |
生殖器官 Reproductive organs | 新陆早17号 | -0.392 | -0.890 | -0.640 | -0.962 | -0.581 |
新陆早22号 | -0.953 | -0.176 | -1. | -0.853 | 0.789 | |
生物学 Total | 新陆早17号 | -0.757 | -1. | -0.913 | -0.984 | -0.88 |
新陆早22号 | -0.791 | 0.172 | -0.935 | -0.980 | 0.952 | |
根重密度 Root weight density(m/m3) | ||||||
营养器官 Vegetative organs | 新陆早17号 | -0.768 | -0.935 | 0.521 | 0.440 | -0.970 |
新陆早22号 | -0.296 | 0.009 | -0.522 | -0.618 | 0.518 | |
生殖器官 Reproductive organs | 新陆早17号 | -0.186 | -0.496 | -0.141 | 0.911 | -0.594 |
新陆早22号 | -0.992* | -0.983 | 0.748 | -0.882 | 0.933 | |
生物学 Total | 新陆早17号 | -0.600 | -0.828 | 0.309 | 0.636 | -0.888 |
新陆早22号 | -0.975 | -0.86 | 0.476 | -0.990* | 1.000 | |
根体积密度 Root volume density(m/m3) | ||||||
营养器官 Vegetative organs | 新陆早17号 | -0.891 | -0.971 | -0.17 | 0.145 | -0.997* |
新陆早22号 | -0.074 | -0.47 | 0.064 | -0.925 | 0.575 | |
生殖器官 Reproductive organs | 新陆早17号 | -0.400 | -0.596 | 0.496 | 0.741 | -0.716 |
新陆早22号 | -0.995* | -0.951 | -0.971 | -0.536 | 0.906 | |
生物学 Total | 新陆早17号 | -0.763 | -0.889 | 0.062 | 0.369 | -0.95 |
新陆早22号 | -0.900 | -0.999* | -0.831 | -0.793 | 0.996* |
表1 棉花根系形态与水分利用效率的相关系数
Table 1 Correlation coefficients between root morphology and water use efficiency of cotton
水分利用效率 Water use efficiency | 品种 Variety | 土层Layer (cm) | ||||
---|---|---|---|---|---|---|
0~20 | 20~40 | 40~60 | 60~80 | 80~120 | ||
根长密度 Root lengthdensity(m/m3) | ||||||
营养器官 Vegetative organs | 新陆早17号 | -0.888 | -0.977 | -0.983 | -0.916 | -0.966 |
新陆早22号 | 0.132 | 0.938 | -0.163 | -0.664 | 0.743 | |
生殖器官 Reproductive organs | 新陆早17号 | -0.392 | -0.890 | -0.640 | -0.962 | -0.581 |
新陆早22号 | -0.953 | -0.176 | -1. | -0.853 | 0.789 | |
生物学 Total | 新陆早17号 | -0.757 | -1. | -0.913 | -0.984 | -0.88 |
新陆早22号 | -0.791 | 0.172 | -0.935 | -0.980 | 0.952 | |
根重密度 Root weight density(m/m3) | ||||||
营养器官 Vegetative organs | 新陆早17号 | -0.768 | -0.935 | 0.521 | 0.440 | -0.970 |
新陆早22号 | -0.296 | 0.009 | -0.522 | -0.618 | 0.518 | |
生殖器官 Reproductive organs | 新陆早17号 | -0.186 | -0.496 | -0.141 | 0.911 | -0.594 |
新陆早22号 | -0.992* | -0.983 | 0.748 | -0.882 | 0.933 | |
生物学 Total | 新陆早17号 | -0.600 | -0.828 | 0.309 | 0.636 | -0.888 |
新陆早22号 | -0.975 | -0.86 | 0.476 | -0.990* | 1.000 | |
根体积密度 Root volume density(m/m3) | ||||||
营养器官 Vegetative organs | 新陆早17号 | -0.891 | -0.971 | -0.17 | 0.145 | -0.997* |
新陆早22号 | -0.074 | -0.47 | 0.064 | -0.925 | 0.575 | |
生殖器官 Reproductive organs | 新陆早17号 | -0.400 | -0.596 | 0.496 | 0.741 | -0.716 |
新陆早22号 | -0.995* | -0.951 | -0.971 | -0.536 | 0.906 | |
生物学 Total | 新陆早17号 | -0.763 | -0.889 | 0.062 | 0.369 | -0.95 |
新陆早22号 | -0.900 | -0.999* | -0.831 | -0.793 | 0.996* |
[1] | 李腾宇, 汤孟玲, 曹跃芬, 等. 棉花抗旱研究进展[J]. 江苏农业科学, 2019, 47(20):64-69. |
LI Tengyu, TANG Mengling, CAO Yuefen, et al. Research progress of cotton drought resistance[J]. Jiangsu Agricultural Sciences, 2019, 47(20):64-69. | |
[2] | 王凯丽, 高彦钊, 李姗, 等. 短期干旱胁迫下棉花气孔表现及光合特征研究[J]. 中国生态农业学报(中英文), 2019, 27(6):901-907. |
WANG Kaili, GAO Yanzhao, LI Shan, et al. Response of leaf stomata and photosynthetic parameters to short-term drought stress in cotton (Gossypium hirsutum L.)[J]. Chinese Journal of Eco-Agriculture, 2019, 27(6):901-907. | |
[3] | 陈民志, 杨延龙, 王宇轩, 等. 新疆早熟陆地棉品种更替过程中的株型特征及主要经济性状的演变[J]. 中国农业科学, 2019, 52(19):3279-3290. |
CHEN Minzhi, YANG Yanlong, WANG Yuxuan, et al. Plant type characteristics and evolution of main economic characters in early maturing upland cotton cultivar replacement in Xinjiang[J]. Scientia Agricultura Sinica, 2019, 52(19):3279-3290. | |
[4] | 汪恕诚. 人与自然和谐相处—中国水资源问题及对策[J]. 北京师范大学学报(自然科学版), 2009, 45(Z1):441-445. |
WANG Shucheng. Man and nature in harmony—China's water resources problems and countermeasures[J]. Journal of Beijing Normal University (Natural Science Ed.), 2009, 45(Z1):441-445. | |
[5] | 段爱旺, 张寄阳. 中国灌溉农田粮食作物水分利用效率的研究[J]. 农业工程学报, 2000,(4):41-44. |
DUAN Aiwang, ZHANG Jiyang. Water use efficiency of grain crops in irrigated farmland in China[J]. Transactions of the CSAE, 2000,(4):41-44. | |
[6] | 潘晓迪, 张颖, 邵萌, 等. 作物根系结构对干旱胁迫的适应性研究进展[J]. 中国农业科技导报, 2017, 19(2):51-58. |
PAN Xiaodi, ZHANG Ying, SHAO Meng, et al. Research progress on adaptive responses of crop root structure to drought stress[J]. Journal of Agricultural Science and Technology, 2017, 19(2):51-58. | |
[7] | 张均, 梁振凯, 王学平, 等. 锌肥对干旱胁迫下冬小麦根系生长发育及产量的影响[J]. 华北农学报, 2019, 34(5):126-136. |
ZHANG Jun, LIANG Zhenkai, WANG Xueping, et al. Effects of zinc fertilizer on root growth and yield of winter wheat under drought stress[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(5):126-136. | |
[8] | Blum A, Sullivan C Y. The effect of plant size on wheat response to agents of drought stress.Ⅰ. Root drying[J]. Australian Journal of Plant Physiology, 1997, 24(1):35-41. |
[9] |
Songsri P, Jogloy S, Vorasoot N, et al. Root distribution of drought-resistant peanut genotypes in response to drought[J]. Journal of Agronomy and Crop Science, 2008, 194(2):92-103.
DOI URL |
[10] |
Henry A, Gowda V R, Torres R O, et al. Variation in root system architecture and drought response in rice (Oryzasativa):Phenotyping of the Oryza SNP panel in rainfed lowland fields[J]. Field Crops Res, 2011, 120(2):205-214.
DOI URL |
[11] |
Pantalone V R, Rebetzke G J, Burton J W, et al. Soybean PI416937 root system contributes to biomass accumulation in reciprocal grafts[J]. Agronomy Journal, 1999, 91(5):840-844.
DOI URL |
[12] |
Henry A, Cal A J, Batoto T C, et al. Root attributes affecting water uptake of rice (Oryza sativa) under drought[J]. Journal of Experimental Botany, 2012, 63(13):4751-4763.
DOI URL |
[13] | 张翠梅, 师尚礼, 吴芳. 干旱胁迫对不同抗旱性苜蓿品种根系生长及生理特性影响[J]. 中国农业科学, 2018, 51(5):868-882. |
ZHANG Cuimei, SHI Shangli, WU Fang. Effects of drought stress on root and physiological responses of different drought-tolerant alfalfa varieties[J]. Scientia Agricultura Sinica, 2018, 51(5):868-882. | |
[14] |
何飞, 雍晓宇, 高宏云, 等. 不同抗旱性棉花品种蜡质含量与水分利用效率的关系[J]. 新疆农业科学, 2018, 55(8):1392-1399.
DOI |
HE Fei, YONG Xiaoyu, GAO Hongyun, et al. Changes in epicuticular wax content of cotton cultivars with different drought-resistances and its relationship with water use efficiency[J]. Xinjiang Agricultural Sciences, 2018, 55(8):1392-1399.
DOI |
|
[15] | 王远远. 不同耐旱性棉花品种根系生物学特性对干旱的响应[D]. 石河子:石河子大学, 2019. |
WANG Yuanyuan. Response of root biological characteristics of different drought tolerant cotton varieties to water stress[D]. Shihezi: Shihezi University, 2019. | |
[16] |
Luo H H, Tao X P, Hu Y Y, et al. Response of cotton root growth and yield to root restriction under various water and nitrogen regimes[J]. Journal of Plant Nutrition and Soil Science, 2015, 178:384-392.
DOI URL |
[17] | 陈宗奎. 水肥调控棉花根系生长提高水分养分利用效率的研究[D]. 石河子:石河子大学, 2017. |
CHEN Zongkui, Research on regulation of various water-nutrients on root system of cotton to promote water-nutrient use efficiency[D]. Shihezi: Shihezi University, 2017. | |
[18] |
Luo H, Zhang H Z, Han H Y, et al. Effect of water storage in deeper soil layers on growth yield and water productivity of cotton(Gossypium hirsutun L.)in arid areas of northwestern China[J]. Irrigation and Drainage, 2014, 63(1):59-70.
DOI URL |
[19] |
Lynch J P. Root architecture and plant productivity[J]. Plant Physiology, 1995, 109(1):7-13.
PMID |
[20] | Yang L W, Zhang Y Q. Developing patterns of root systems of four cereal crops planted in dryland areas[J]. Scientia Agricultura Sinica, 2011, 44(11):2244-2251. |
[21] | Li J F, Huo H Z, Wan C Y, et al. Study on root system morphology of different Chinese pear varieties[J]. Acta Agriculturae Jiangxi, 2010, 22(10):33-35. |
[22] |
Songsri P, Jogloy S, Vorasoot N, et al. Root distribution of drought-resistant peanut genotypes in response to drought[J]. Journal of Agronomy and Crop Science, 2008, 194(2):92-103.
DOI URL |
[23] |
Kato Y, Okami M. Root growth dynamics and stomatal behaviour of rice (Oryza sativa L.) grown under aerobic and flooded conditions[J]. Field Crops Research, 2010, 117(1):9-17.
DOI URL |
[24] | 丁红, 张智猛, 戴良香, 等. 干旱胁迫对花生生育中后期根系生长特征的影响[J]. 中国生态农业学报, 2013, 21(12):1477-1483. |
DING Hong, ZHANG Zhimeng, DAI Liangxiang, et al. Effects of drought stress on root growth characteristics of peanut during mid-to-late growth stages[J]. Chinese Journal of Eco-Agriculture, 2013, 21(12):1477-1483. | |
[25] |
Ray I M, Townsend M S, Muncy C M. Heritabilities and interrelationships of water-use efficiency and agronomic traits in irrigated alfalfa[J]. Crop Science, 1999, 39(4):1088-1092.
DOI URL |
[26] | 孙学凯, 范志平, 王红, 等. 科尔沁沙地复叶槭等 3 个阔叶树种的光合特性及其水分利用效率[J]. 干旱区资源与环境, 2008, 22(10):188-194. |
SUN Xuekai, FAN Zhipin, WANG Hong, et al. Photosynthetic characteristics and water use efficiency of three broad-leaved tree species in the horqin sandland[J]. Journal of Arid Land Resources and Environment, 2008, 22(10):188-194. | |
[27] |
Jaleel C A, Gopi R, Sankar B, et al. Differential responses in water use efficiency in two varieties of catharanthus roseus under drought stress[J]. Comptes Rendus Biologies, 2008, 331(1):42-47.
DOI URL |
[28] | 张海燕, 解备涛, 段文学, 等. 不同时期干旱胁迫对甘薯光合效率和耗水特性的影响[J]. 应用生态学报, 2018, 29(6):1943-1950. |
ZHANG Haiyan, XIE Beitao, DUAN Wenxue, et al. Effects of drought stress at different growth stages on photosynthetic efficiency and water consumption characteristics in sweet potato[J]. Chinese Journal of Applied Ecology, 2018, 29(6):1943-1950. | |
[29] | Hund A, Ruta N, Liedgens M. Rooting depth and water use efficiency of tropical maize inbred lines differing in drought tolerance[J]. Plant and Soil, 2009,(318):311-325. |
[30] | Luo Y Y, Zhao X Y, Huang Y X, et al. Research progress on plant water use efficiency and its measuring methods[J]. Journal of Desert Research, 2009, 29(4):648-655. |
[31] | 王一, 曹敏建, 李春红, 等. 模拟干旱对不同耐性玉米自交系幼苗根系和水分利用效率的影响[J]. 作物杂志, 2011(6):50-52. |
WANG Yi, CAO Mingjian, LI Chunhong, et al. Effects of simulated drought on root and WUE of maize inbred lines with different tolerance[J]. Crops, 2011(6):50-52. | |
[32] | Mu Z X, Zhang S Q, Hao W F, et al. The effect of root morphological traits and spatial distribution on WUE in maize[J]. Acta Ecologica Sinica, 2005, 25(11):2895-2900. |
[33] | 李文娆, 张岁岐, 丁圣彦, 等. 干旱胁迫下紫花苜蓿根系形态变化及与水分利用的关系[J]. 生态学报, 2010, 30(19):5140-5150. |
LI Wenxiao, ZHANG Suiqi, DING Shengyan, et al. Root morphological variation and water use in alfalfa under drought stress[J]. Acta Ecologica Sinica, 2010, 30(19):5140-5150. |
[1] | 苗红萍, 王晓伟, 田聪华, 李志, 张玉新, 戴俊生. 塔里木河流域棉花生产与布局演变特征及驱动因素分析[J]. 新疆农业科学, 2024, 61(S1): 217-226. |
[2] | 王俊铎, 崔豫疆, 梁亚军, 龚照龙, 郑巨云, 李雪源. 新疆棉花生产优势区域分析[J]. 新疆农业科学, 2024, 61(S1): 60-69. |
[3] | 郑巨云, 龚照龙, 梁亚军, 耿世伟, 孙丰磊, 阳妮, 李雪源, 王俊铎. 新疆机采棉花生产关键技术模式[J]. 新疆农业科学, 2024, 61(S1): 70-74. |
[4] | 李杰, 刘佳, 王亮, 张娜, 杨延龙, 郑子漂, 魏鑫, 王萌, 周子馨, 阳妮, 龚照龙, 侯献飞, 黄启秀, 阿不都卡地尔·库尔班, 张济鹏, 张鹏忠. “棉、油、糖”科技成果转化现状及应用分析[J]. 新疆农业科学, 2024, 61(S1): 89-94. |
[5] | 扁青永, 付彦博, 祁通, 黄建, 蒲胜海, 孟阿静, 哈丽哈什·依巴提. 新疆南疆盐碱地棉花出苗影响因素及保苗措施分析[J]. 新疆农业科学, 2024, 61(S1): 95-100. |
[6] | 李永泰, 高阿香, 李艳军, 张新宇. 脱叶剂对不同敏感性棉花品种生理特性的影响[J]. 新疆农业科学, 2024, 61(9): 2094-2102. |
[7] | 张泽华, 叶含春, 王振华, 李文昊, 李海强, 刘健. 等氮配施脲酶抑制剂对滴灌棉花生长发育和产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2103-2111. |
[8] | 陈瑞杰, 罗林毅, 阮向阳, 冶军. 腐植酸对滴灌棉田土壤养分和棉花产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2112-2121. |
[9] | 黄铂轩, 李鹏程, 郑苍松, 孙淼, 邵晶晶, 冯卫娜, 庞朝友, 徐文修, 董合林. 不同氮素抑制剂对棉花生长发育、氮素利用与产量的影响[J]. 新疆农业科学, 2024, 61(9): 2122-2131. |
[10] | 王超, 徐文修, 李鹏程, 郑苍松, 孙淼, 冯卫娜, 邵晶晶, 董合林. 棉花苗期生长发育对土壤速效钾水平的响应[J]. 新疆农业科学, 2024, 61(9): 2132-2139. |
[11] | 张庭军, 李字辉, 崔豫疆, 孙孝贵, 陈芳. 微生物菌剂对棉花生长及土壤理化性质的影响[J]. 新疆农业科学, 2024, 61(9): 2269-2276. |
[12] | 董志多, 徐菲, 付秋萍, 黄建, 祁通, 孟阿静, 付彦博, 开赛尔·库尔班. 不同类型盐碱胁迫对棉花种子萌发的影响[J]. 新疆农业科学, 2024, 61(8): 1831-1844. |
[13] | 赖成霞, 杨延龙, 李春平, 玛依拉·玉素音, 王燕, 杨栋, 阳妮, 葛风伟, 汪鹏龙, 马君. 落叶型棉花黄萎病的生物学特征及药剂防治分析[J]. 新疆农业科学, 2024, 61(8): 2034-2042. |
[14] | 刘慧杰, 王俊豪, 龚照龙, 梁亚军, 王俊铎, 李雪源, 郑巨云, 王冀川. 197份陆地棉品种萌发期耐盐性鉴定[J]. 新疆农业科学, 2024, 61(7): 1574-1581. |
[15] | 高君, 侯献飞, 苗昊翠, 贾东海, 顾元国, 汪天玲, 黄奕, 陈晓露, 李强. 棉花-花生轮作模式对花生干物质积累量分配及产量的影响[J]. 新疆农业科学, 2024, 61(7): 1648-1656. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 134
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 409
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||