

新疆农业科学 ›› 2025, Vol. 62 ›› Issue (7): 1743-1754.DOI: 10.6048/j.issn.1001-4330.2025.07.019
罗幼洋1,2(
), 谢香文1,2(
), 杨鹏年2, 米力夏提·米那多拉1, 许咏梅1
收稿日期:2024-12-11
出版日期:2025-07-20
发布日期:2025-09-05
通信作者:
谢香文(1973-),男,甘肃民勤人,研究员,研究方向为农业水资源高效利用,(E-mail)xiexw2022@xaas.ac.cn作者简介:罗幼洋(1998-),男,重庆丰都人,硕士研究生,研究方向为农业节水,(E-mail)2036390097@qq.com
基金资助:
LUO Youyang1,2(
), XIE Xiangwen1,2(
), YANG Pengnian2, Milixiati Minadola1, XU Yongmei1
Received:2024-12-11
Published:2025-07-20
Online:2025-09-05
Supported by:摘要:
【目的】研究新疆北疆克拉玛依地区盐渍化棉田滴灌技术参数组合。【方法】设置2个灌水定额(W1:52.5 mm、W2:γh(S0-S1)/K mm),4个(滴头流量×间距)组合(T1:1.4 L/h×20 cm、T2:2.0 L/h×30 cm、T3:2.4 L/h×30 cm、T4:2.7 L/h×30 cm)。分析不同滴灌技术参数组合交互对棉花水盐、生长、产量多个指标的影响。采用AHP层次分析法和CRITIC权重法对3类因素11个指标进行多层赋权,运用博弈论的组合赋权法获得各单一指标最终权重,基于模糊物元模型建盐渍化棉田滴灌技术参数组合综合评价体系,并以控盐、高产为目标建立不同滴灌技术参数条件下的盐渍化棉田水盐交互响应数学模型。【结果】灌水定额和滴头流量对盐分淋洗效率、作物生长及产量影响显著(P<0.05)。增加淋洗定额可以有效提高根区含水率、盐分淋洗效率。各个指标最优处理均出现在 W2 灌水定额中,并随着滴头流量的增加呈现先增加后减小的趋势,其中 T2 处理仅在根区下层盐分淋洗效率、株高等指标上优于 T3 处理,在盐渍化棉田滴灌技术参数组合综合评价体系下, T3W2 为最优滴灌技术参数组合。【结论】最优灌水量、滴头流量分别为5 631 m3/hm2、2.3 L/h。
罗幼洋, 谢香文, 杨鹏年, 米力夏提·米那多拉, 许咏梅. 盐渍化棉田滴灌技术参数组合优选[J]. 新疆农业科学, 2025, 62(7): 1743-1754.
LUO Youyang, XIE Xiangwen, YANG Pengnian, Milixiati Minadola, XU Yongmei. Optimization of drip irrigation parameter combinations for salinized cotton fields[J]. Xinjiang Agricultural Sciences, 2025, 62(7): 1743-1754.
| 土层深度 Soil depth (cm) | 土壤颗粒含量Soil Particle Content(%) | 土壤质地 Soil texture | 土壤容重 Soil capacity (g/cm3) | 田间持水率 Fruit holding rate in field(%) | |||
|---|---|---|---|---|---|---|---|
| 粘粒 Clay (<0.002 mm) | 粉粒 Particle (0.002~0.05 mm) | 砂粒 Sand (0.05~2 mm) | |||||
| 0~20 | 24.08 | 32 | 43.92 | 壤土 | 1.51 | 21.11 | |
| 20~40 | 28.08 | 46 | 25.92 | 粘壤土 | 1.55 | 24.46 | |
| 40~60 | 28.08 | 58 | 13.92 | 粘壤土 | 1.55 | 27.57 | |
| 60~80 | 42.08 | 48 | 9.92 | 粉(沙)质粘土 | 1.48 | 27.24 | |
| 80~100 | 52.08 | 36 | 11.92 | 粘土 | 1.59 | 23.5 | |
表1 土壤物理性状
Tab.1 Soil Physical Properties
| 土层深度 Soil depth (cm) | 土壤颗粒含量Soil Particle Content(%) | 土壤质地 Soil texture | 土壤容重 Soil capacity (g/cm3) | 田间持水率 Fruit holding rate in field(%) | |||
|---|---|---|---|---|---|---|---|
| 粘粒 Clay (<0.002 mm) | 粉粒 Particle (0.002~0.05 mm) | 砂粒 Sand (0.05~2 mm) | |||||
| 0~20 | 24.08 | 32 | 43.92 | 壤土 | 1.51 | 21.11 | |
| 20~40 | 28.08 | 46 | 25.92 | 粘壤土 | 1.55 | 24.46 | |
| 40~60 | 28.08 | 58 | 13.92 | 粘壤土 | 1.55 | 27.57 | |
| 60~80 | 42.08 | 48 | 9.92 | 粉(沙)质粘土 | 1.48 | 27.24 | |
| 80~100 | 52.08 | 36 | 11.92 | 粘土 | 1.59 | 23.5 | |
| 处理 Treat- ments | 灌水定额 Irrigation quota (mm) | 滴头流量×滴头间距 Dropper flow× Dropper spacing (L/h)(cm) |
|---|---|---|
| T1W1 | 52.50 | 1.4×20 |
| T2W1 | 52.50 | 2.0×30 |
| T3W1 | 52.50 | 2.4×30 |
| T4W1 | 52.50 | 2.7×30 |
| T1W2 | W2=γh(S0-S1)/K | 1.4×20 |
| T2W2 | 2.0×30 | |
| T3W2 | 2.4×30 | |
| T4W2 | 2.7×30 |
表2 滴灌技术参数组合试验处理
Tab.2 Drip irrigation technical parameter combination test processing
| 处理 Treat- ments | 灌水定额 Irrigation quota (mm) | 滴头流量×滴头间距 Dropper flow× Dropper spacing (L/h)(cm) |
|---|---|---|
| T1W1 | 52.50 | 1.4×20 |
| T2W1 | 52.50 | 2.0×30 |
| T3W1 | 52.50 | 2.4×30 |
| T4W1 | 52.50 | 2.7×30 |
| T1W2 | W2=γh(S0-S1)/K | 1.4×20 |
| T2W2 | 2.0×30 | |
| T3W2 | 2.4×30 | |
| T4W2 | 2.7×30 |
| 生育期 Perild of duration | 灌水次数 Irrigation times | 灌水时段 Irrigation period (M/D) | W1 (mm) | W2 (mm) | 灌前平均 含盐率 Average salt content before irrgation(%) | 脱盐标准 Desalination standard (%) |
|---|---|---|---|---|---|---|
| 苗期 Seedling stage | 1 | 6/1~6/2 | 30.00 | 83.62 | 0.48 | 0.30 |
| 6/17~6/18 | 52.50 | 79.93 | 0.47 | 0.30 | ||
| 蕾期 Bud stage | 2 | 7/3~7/4 | 45.00 | 69.30 | 0.45 | 0.30 |
| 7/13~7/14 | 52.50 | 60.98 | 0.43 | 0.30 | ||
| 花铃期 Flowering and bolling stage | 4 | 7/22~7/24 | 52.50 | 82.70 | 0.48 | 0.30 |
| 7/31~8/1 | 52.50 | 67.91 | 0.45 | 0.30 | ||
| 8/12~8/12 | 52.50 | 59.14 | 0.43 | 0.30 | ||
| 8/28~8/29 | 52.50 | 59.60 | 0.43 | 0.30 | ||
| 合计Total | 8 | / | 412.50 | 563.18 |
表3 盐渍化棉田膜下滴灌灌溉制度
Tab.3 Drip irrigation system under plastic film for cotton fields in saline alkali soil
| 生育期 Perild of duration | 灌水次数 Irrigation times | 灌水时段 Irrigation period (M/D) | W1 (mm) | W2 (mm) | 灌前平均 含盐率 Average salt content before irrgation(%) | 脱盐标准 Desalination standard (%) |
|---|---|---|---|---|---|---|
| 苗期 Seedling stage | 1 | 6/1~6/2 | 30.00 | 83.62 | 0.48 | 0.30 |
| 6/17~6/18 | 52.50 | 79.93 | 0.47 | 0.30 | ||
| 蕾期 Bud stage | 2 | 7/3~7/4 | 45.00 | 69.30 | 0.45 | 0.30 |
| 7/13~7/14 | 52.50 | 60.98 | 0.43 | 0.30 | ||
| 花铃期 Flowering and bolling stage | 4 | 7/22~7/24 | 52.50 | 82.70 | 0.48 | 0.30 |
| 7/31~8/1 | 52.50 | 67.91 | 0.45 | 0.30 | ||
| 8/12~8/12 | 52.50 | 59.14 | 0.43 | 0.30 | ||
| 8/28~8/29 | 52.50 | 59.60 | 0.43 | 0.30 | ||
| 合计Total | 8 | / | 412.50 | 563.18 |
| 处理 Treatments | 单铃重 Single boll weight(g) | 有效铃数 Effective number of bells | 产量 Yield(kg/hm2) | IWUE |
|---|---|---|---|---|
| T1W1 | 5.18±0.08de | 6.23±0.09ab | 4 910.43±292.63de | 1.13±0.12abc |
| T2W1 | 5.21±0.12cde | 6.45±0.16ab | 5121.62±172.57cde | 1.26±0.06a |
| T3W1 | 5.36±0.08bcd | 6.53±0.08ab | 5 355.43±41.84bcd | 1.23±0.12ab |
| T4W1 | 5.15±0.06e | 6.17±0.4b | 4 800.36±281.04e | 1.01±0.04cd |
| T1W2 | 5.47±0.1ab | 6.74±0.39ab | 5 706.24±280.43ab | 0.98±0.06cd |
| T2W2 | 5.54±0.06ab | 6.83±0.51ab | 5 876.62±100.1ab | 0.97±0.04cd |
| T3W2 | 5.65±0.09a | 6.92±0.26a | 6175.59±283a | 1.05±0.06bcd |
| T4W2 | 5.4±0.06bc | 6.61±0.11ab | 5 500.55±290.54bc | 0.92±0.10d |
| T | * | NS | * | * |
| W | ** | ** | * | * |
| T*W | NS | NS | NS | NS |
表4 不同灌溉处理下棉花有效铃数、百铃质量、籽棉产量以及IWUE的变化
Tab.4 Changes of different irrigation treatments on cotton boll number、boll weight、seed cotton yield、and IWUE
| 处理 Treatments | 单铃重 Single boll weight(g) | 有效铃数 Effective number of bells | 产量 Yield(kg/hm2) | IWUE |
|---|---|---|---|---|
| T1W1 | 5.18±0.08de | 6.23±0.09ab | 4 910.43±292.63de | 1.13±0.12abc |
| T2W1 | 5.21±0.12cde | 6.45±0.16ab | 5121.62±172.57cde | 1.26±0.06a |
| T3W1 | 5.36±0.08bcd | 6.53±0.08ab | 5 355.43±41.84bcd | 1.23±0.12ab |
| T4W1 | 5.15±0.06e | 6.17±0.4b | 4 800.36±281.04e | 1.01±0.04cd |
| T1W2 | 5.47±0.1ab | 6.74±0.39ab | 5 706.24±280.43ab | 0.98±0.06cd |
| T2W2 | 5.54±0.06ab | 6.83±0.51ab | 5 876.62±100.1ab | 0.97±0.04cd |
| T3W2 | 5.65±0.09a | 6.92±0.26a | 6175.59±283a | 1.05±0.06bcd |
| T4W2 | 5.4±0.06bc | 6.61±0.11ab | 5 500.55±290.54bc | 0.92±0.10d |
| T | * | NS | * | * |
| W | ** | ** | * | * |
| T*W | NS | NS | NS | NS |
| 指标 Indexes | 目标层A Target Layer A | 准则层B1 Criterion layer B1 | 准则层B2 Criterion layer B2 | 准则层B3 Criterion layer B3 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 局部权重 Local weights | 0.593 | 0.157 | 0.249 | 0.411 | 0.120 | 0.361 | 0.106 | 0.142 | 0.428 | 0.428 | 0.562 | 0.120 | 0.182 | 0.135 |
| 最终权重 Final weight | 0.593 | 0.157 | 0.249 | 0.244 | 0.071 | 0.214 | 0.063 | 0.022 | 0.067 | 0.067 | 0.140 | 0.029 | 0.045 | 0.033 |
| 一致性检验 Consistency check | CR为0.027,<0.10 | CR为0.011,<0.10 | CR为0,<0.10 | CR为0.02,<0.10 | ||||||||||
表5 基于 AHP 法计算各指标的主观权重
Tab.5 Results of calculating the subjective weight of each index based on AHP
| 指标 Indexes | 目标层A Target Layer A | 准则层B1 Criterion layer B1 | 准则层B2 Criterion layer B2 | 准则层B3 Criterion layer B3 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 局部权重 Local weights | 0.593 | 0.157 | 0.249 | 0.411 | 0.120 | 0.361 | 0.106 | 0.142 | 0.428 | 0.428 | 0.562 | 0.120 | 0.182 | 0.135 |
| 最终权重 Final weight | 0.593 | 0.157 | 0.249 | 0.244 | 0.071 | 0.214 | 0.063 | 0.022 | 0.067 | 0.067 | 0.140 | 0.029 | 0.045 | 0.033 |
| 一致性检验 Consistency check | CR为0.027,<0.10 | CR为0.011,<0.10 | CR为0,<0.10 | CR为0.02,<0.10 | ||||||||||
| 处理 Treatments | 贴近度 Closeness | 归一化得分 Normalized score | 排序 Sort |
|---|---|---|---|
| T1W1 | 0.421 | 0.068 | 7 |
| T2W1 | 0.768 | 0.125 | 6 |
| T3W1 | 0.915 | 0.149 | 5 |
| T4W1 | 0.113 | 0.018 | 8 |
| T1W2 | 0.975 | 0.159 | 3 |
| T2W2 | 0.987 | 0.161 | 2 |
| T3W2 | 0.997 | 0.163 | 1 |
| T4W2 | 0.936 | 0.153 | 4 |
表6 欧式贴近度及其归一化得分排序
Tab.6 Euclidean closeness and its normalized score ranking
| 处理 Treatments | 贴近度 Closeness | 归一化得分 Normalized score | 排序 Sort |
|---|---|---|---|
| T1W1 | 0.421 | 0.068 | 7 |
| T2W1 | 0.768 | 0.125 | 6 |
| T3W1 | 0.915 | 0.149 | 5 |
| T4W1 | 0.113 | 0.018 | 8 |
| T1W2 | 0.975 | 0.159 | 3 |
| T2W2 | 0.987 | 0.161 | 2 |
| T3W2 | 0.997 | 0.163 | 1 |
| T4W2 | 0.936 | 0.153 | 4 |
| [1] | Zhang Y J, Li Y, Liang T T, et al. Field-grown cotton shows genotypic variation in agronomic and physiological responses to waterlogging[J]. Field Crops Research, 2023, 302: 109067. |
| [2] | 吕宁, 石磊, 戴昱余, 等. 新疆盐碱地治理利用研究回顾与启示[J]. 灌溉排水学报, 2024, 43(12): 1-10. |
| LYU Ning, SHI Lei, DAI Yuyu, et al. Reclamation of saline-alkali soils in Xinjiang: a review[J]. Journal of Irrigation and Drainage, 2024, 43(12): 1-10. | |
| [3] | 陶汪海, 邓铭江, 王全九, 等. 西北旱区农业高质量发展体系的生态农业内涵与路径[J]. 农业工程学报, 2023, 39(20): 221-232. |
| TAO Wanghai, DENG Mingjiang, WANG Quanjiu, et al. Ecological agriculture connotation and pathway of high-quality agricultural development system in Northwest arid region[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(20): 221-232. | |
| [4] | Yan F L, Zhang F C, Fan J L, et al. Optimization of irrigation and nitrogen fertilization increases ash salt accumulation and ions absorption of drip-fertigated sugar beet in saline-alkali soils[J]. Field Crops Research, 2021, 271: 108247. |
| [5] | Wang H D, Wu L F, Cheng M H, et al. Coupling effects of water and fertilizer on yield, water and fertilizer use efficiency of drip-fertigated cotton in northern Xinjiang, China[J]. Field Crops Research, 2018, 219: 169-179. |
| [6] | 赵玉, 赵嘉滨, 范雯婧, 等. 基于作物水分亏缺指数和盐分淋洗系数的新疆棉田节水控盐优化方法[J]. 农业工程学报, 2024, 40(12): 96-108. |
| ZHAO Yu, ZHAO Jiabin, FAN Wenjing, et al. Optimizing the water-saving and salt-regulating method for cotton field in Xinjiang of China based on plant water deficit index and salt leaching coefficient[J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(12): 96-108. | |
| [7] |
陈绪兰, 孙春梅, 刘萍. 棉花“干播湿出” 技术在新疆库尔勒推广实践[J]. 中国棉花, 2021, 48(5): 41-42, 45.
DOI |
|
CHEN Xulan, SUN Chunmei, LIU Ping. The practice of cotton “sowing drily and emerging wet” technology in Korla, Xinjiang[J]. China Cotton, 2021, 48(5): 41-42, 45.
DOI |
|
| [8] | Min W, Guo H J, Zhou G W, et al. Root distribution and growth of cotton as affected by drip irrigation with saline water[J]. Field Crops Research, 2014, 169: 1-10. |
| [9] | 冯棣, 张俊鹏, 孙池涛, 等. 不同生育阶段盐分胁迫对棉花生长和水分生理指标的影响[J]. 生态学杂志, 2014, 33(5): 1195-1199. |
| FENG Di, ZHANG Junpeng, SUN Chitao, et al. Responses of cotton growth and water physiological indices to salt stress at different growing stages[J]. Chinese Journal of Ecology, 2014, 33(5): 1195-1199. | |
| [10] | 崔永生, 王峰, 孙景生, 等. 南疆机采棉田灌溉制度对土壤水盐变化和棉花产量的影响[J]. 应用生态学报, 2018, 29(11): 3634-3642. |
| CUI Yongsheng, WANG Feng, SUN Jingsheng, et al. Effects of irrigation regimes on the variation of soil water and salt and yield of mechanically harvested cotton in Southern Xinjiang, China[J]. Chinese Journal of Applied Ecology, 2018, 29(11): 3634-3642. | |
| [11] | 宋喜山, 曹红霞, 何子建, 等. Aquacrop模型在北疆棉花生育期灌溉洗盐制度优化中的适用性[J]. 农业工程学报, 2023, 39(20): 111-122. |
| SONG Xishan, CAO Hongxia, HE Zijian, et al. Applicability of the Aquacrop model in optimization of irrigation and salt leaching schedule during the reproductive period of cotton in Northern Xinjiang of China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(20): 111-122. | |
| [12] | 宰松梅, 仵峰, 范永申, 等. 不同滴灌形式对棉田土壤理化性状的影响[J]. 农业工程学报, 2011, 27(12): 84-89. |
| ZAI Songmei, WU Feng, FAN Yongshen, et al. Effects of drip irrigation patterns on soil properties in cotton field[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(12): 84-89. | |
| [13] | 杨劲松, 姚荣江, 王相平, 等. 中国盐渍土研究: 历程、现状与展望[J]. 土壤学报, 2022, 59(1): 10-27. |
| YANG Jinsong, YAO Rongjiang, WANG Xiangping, et al. Research on salt-affected soils in China: history, status quo and prospect[J]. Acta Pedologica Sinica, 2022, 59(1): 10-27. | |
| [14] | Vories E, O’Shaughnessy S, Sudduth K, et al. Comparison of precision and conventional irrigation management of cotton and impact of soil texture[J]. Precision Agriculture, 2021, 22(2): 414-431. |
| [15] | Benouniche M, Errahj M, Kuper M. The seductive power of an innovation: enrolling non-conventional actors in a drip irrigation community in Morocco[J]. The Journal of Agricultural Education and Extension, 2016, 22(1): 61-79. |
| [16] | Che Z, Wang J, Li J S. Modeling strategies to balance salt leaching and nitrogen loss for drip irrigation with saline water in arid regions[J]. Agricultural Water Management, 2022, 274: 107943. |
| [17] | Liu X Q, Yan F L, Wu L F, et al. Leaching amount and timing modified the ionic composition of saline-alkaline soil and increased seed cotton yield under mulched drip irrigation[J]. Field Crops Research, 2023, 299: 108988. |
| [18] | Xiao C, Zhang F C, Li Y, et al. Optimal drip irrigation leaching amount and times enhance seed cotton yield and its stability by improving soil chemical environment and source-sink relationship[J]. Field Crops Research, 2024, 317: 109531. |
| [19] | Albayrak E, Erensal Y C. Using analytic hierarchy process (AHP) to improve human performance: an application of multiple criteria decision making problem[J]. Journal of Intelligent Manufacturing, 2004, 15(4): 491-503. |
| [20] | Diakoulaki D, Mavrotas G, Papayannakis L. Determining objective weights in multiple criteria problems: The critic method[J]. Computers & Operations Research, 1995, 22(7): 763-770. |
| [21] | 山成菊, 董增川, 樊孔明, 等. 组合赋权法在河流健康评价权重计算中的应用[J]. 河海大学学报(自然科学版), 2012, 40(6): 622-628. |
| SHAN Chengju, DONG Zengchuan, FAN Kongming, et al. Application of combination weighting method to weight calculation in river health evaluation[J]. Journal of Hohai University (Natural Sciences), 2012, 40(6): 622-628. | |
| [22] | 张斌, 雍歧东, 肖芳淳. 模糊物元分析[M]. 北京: 石油工业出版社, 1997. |
| ZHANG Bin, YONG Qidong, XIAO Fangchung. Fuzzy Object Element Analysis[M]. Beijing: Petroleum Industry Press, 1997. | |
| [23] | 衣若晨, 申孝军, 李松敏, 等. 豫北地区冬小麦滴灌灌水技术参数研究[J]. 水土保持学报, 2023, 37(2): 208-216. |
| YI Ruochen, SHEN Xiaojun, LI Songmin, et al. Research on drip irrigation technical parameters of winter wheat in northern Henan Province[J]. Journal of Soil and Water Conservation, 2023, 37(2): 208-216. | |
| [24] | 崔伟敏, 李明思, 代智光, 等. 滴灌条件下积水区特性的试验研究[J]. 灌溉排水学报, 2010, 29(2): 69-71, 84. |
| CUI Weimin, LI Mingsi, DAI Zhiguang, et al. Characteristics of water accumulated areas under drip irrigation[J]. Journal of Irrigation and Drainage, 2010, 29(2): 69-71, 84. | |
| [25] | 吴立峰, 张富仓, 周罕觅, 等. 不同滴灌施肥水平对北疆棉花水分利用率和产量的影响[J]. 农业工程学报, 2014, 30(20): 137-146. |
| WU Lifeng, ZHANG Fucang, ZHOU Hanmi, et al. Effect of drip irrigation and fertilizer application on water use efficiency and cotton yield in North of Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(20): 137-146. | |
| [26] | Wang R S, Kang Y H, Wan S Q, et al. Influence of different amounts of irrigation water on salt leaching and cotton growth under drip irrigation in an arid and saline area[J]. Agricultural Water Management, 2012, 110: 109-117. |
| [27] | 张迎春, 张富仓, 范军亮, 等. 滴灌技术参数对南疆棉花生长和土壤水盐的影响[J]. 农业工程学报, 2020, 36(24): 107-117. |
| ZHANG Yingchun, ZHANG Fucang, FAN Junliang, et al. Effects of drip irrigation technical parameters on cotton growth, soil moisture and salinity in Southern Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(24): 107-117. | |
| [28] | 苏里坦, 玉米提, 宋郁东. 滴头流量对干旱区膜下滴灌棉田土壤盐分变化的影响[J]. 干旱区地理, 2010, 33(6): 889-895. |
| Su litan, Yu miti, SONG Yudong. Effects of emitter discharge rate on soil salt dynamics in cotton field under drip irrigation with mulching condition in arid regions[J]. Arid Land Geography, 2010, 33(6): 889-895. | |
| [29] | 杨宗凯, 谭军利, 王西娜, 等. 滴头流量对压砂土壤水盐分布及西瓜生长、产量的影响[J]. 灌溉排水学报, 2023, 42(4): 30-37. |
| YANG Zongkai, TAN Junli, WANG Xina, et al. Effect of dripping rate on soil water and salt redistribution and growth and yield of watermelon in gravel-mulched field[J]. Journal of Irrigation and Drainage, 2023, 42(4): 30-37. | |
| [30] | 滕安国, 王泽义. 基于博弈论组合确权的模糊物元模型决策膜下滴灌向日葵调亏模式[J]. 灌溉排水学报, 2023, 42(4): 22-29. |
| TENG Anguo, WANG Zeyi. Using fuzzy matter-element model and weighted game theory to optimize deficit irrigation scheduling for sunflower[J]. Journal of Irrigation and Drainage, 2023, 42(4): 22-29. |
| [1] | 张天誉, 郑子漂, 魏鑫, 张大伟, 阿尔曼·阿不利米提, 武铭哲, 马君, 焦玚, 杨丽芸, 刘媛媛, 马清倩, 陈琴, 徐海江. 棉花种质资源萌发期耐盐性综合评价[J]. 新疆农业科学, 2025, 62(7): 1697-1708. |
| [2] | 陈静, 蒲胜海, 王则玉, 刘小利, 徐娟娟, 苟燕如, 许咏梅, 李宁, 马兴旺. 盐碱地膜下滴水春灌下土壤盐分淋洗机制[J]. 新疆农业科学, 2025, 62(7): 1720-1730. |
| [3] | 王治泽, 谭慧林, 朱友娟, 李娟, 牛贵洋, 张志东, 王丽玲. 不同酵母发酵对新疆毛桃果酒品质的影响[J]. 新疆农业科学, 2025, 62(7): 1784-1793. |
| [4] | 景彦强, 洪明, 于秋月, 衡通, 肖键, 张新乐. 新疆北疆膜下滴灌春油葵适宜土壤水分的下限分析[J]. 新疆农业科学, 2025, 62(6): 1344-1353. |
| [5] | 施俊杰, 侯献飞, 于月华, 李强, 苗昊翠, 贾东海, 顾元国, 胡凤仪, 高君, 崔福洋, 尚随腾. 高油酸花生全生育期耐盐性鉴定与品种筛选[J]. 新疆农业科学, 2025, 62(6): 1354-1364. |
| [6] | 王珊珊, 王晨瑜, 杨超沙, 蔡晓艺, 尹伟平, 尹庆珍. 优质多抗樱桃番茄亲本资源筛选[J]. 新疆农业科学, 2025, 62(5): 1139-1150. |
| [7] | 包艳丽, 王晓伟, 李琼诗, 张利召, 陈玉兰. 新疆主要棉区棉花高质量发展水平及差异分析[J]. 新疆农业科学, 2025, 62(4): 1032-1040. |
| [8] | 刘旭欢, 于姗, 刘跃, 石书兵. 不同品种春小麦种子萌发期耐低温性综合评价[J]. 新疆农业科学, 2025, 62(4): 820-828. |
| [9] | 焦润兴, 卜东升, 邵延慧, 张涛, 陈玲, 张冬冬. “干播湿出”对不同盐碱化土壤水盐分布、养分及棉花产量的影响[J]. 新疆农业科学, 2025, 62(3): 572-583. |
| [10] | 刘宜洋, 周鹏, 刘晶晶, 王晓敏, 胡新华, 付金军, 高艳明, 李建设. 103份番茄种质资源精简化栽培下遗传多样性分析及综合评价[J]. 新疆农业科学, 2025, 62(2): 324-334. |
| [11] | 张锦强, 杨湘, 苏学德, 王欢欢, 李铭, 李鹏程. 新疆北疆日光温室不同栽培模式下甜樱桃果实品质的差异性评价[J]. 新疆农业科学, 2025, 62(2): 446-453. |
| [12] | 陈慧, 张永强, 毕海燕, 谭军, 陈传信, 徐其江, 聂石辉, 于建新, 陆东, 雷钧杰. 不同春小麦品种在新疆旱作区产量形成的特征分析[J]. 新疆农业科学, 2025, 62(1): 13-20. |
| [13] | 杜亚隆, 付秋萍, 艾鹏睿, 马英杰, 祁通, 潘洋. 综合评价不同灌溉处理对长绒棉生长及产量的影响[J]. 新疆农业科学, 2025, 62(1): 161-173. |
| [14] | 刘晶, 杜明川, 张文婷, 鲍海娟, 景美玲, 杜文华. 青海不同地区小黑麦种质的筛选[J]. 新疆农业科学, 2024, 61(9): 2183-2190. |
| [15] | 刘慧杰, 王俊豪, 龚照龙, 梁亚军, 王俊铎, 李雪源, 郑巨云, 王冀川. 197份陆地棉品种萌发期耐盐性鉴定[J]. 新疆农业科学, 2024, 61(7): 1574-1581. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||