新疆农业科学 ›› 2024, Vol. 61 ›› Issue (12): 3078-3088.DOI: 10.6048/j.issn.1001-4330.2024.12.023
王伟1,2(), 张仁福1, 刘海洋1, 丁瑞丰1, 梁革梅2(
), 姚举1(
)
收稿日期:
2024-05-05
出版日期:
2024-12-20
发布日期:
2025-01-16
通信作者:
姚举(1969-),男,山东人,研究员,硕士,研究方向为棉花有害生物防治,(E-mail)yaoju500@sohu.com;作者简介:
王伟(1982-),男,天津人,研究员,博士,研究方向为棉花有害生物防治,(E-mail)wlzforever2004@sina.com
基金资助:
WANG Wei1,2(), ZHANG Renfu1, LIU Haiyang1, DING Ruifeng1, LIANG Gemei2(
), YAO Ju1(
)
Received:
2024-05-05
Published:
2024-12-20
Online:
2025-01-16
Supported by:
摘要:
【目的】 研究不同抗性遗传背景棉蚜对氟啶虫胺腈和啶虫脒抗性机制差异。【方法】 利用Illumina高通量测序技术,分别对2个不同抗性遗传背景棉蚜(莎车县和精河县)的田间初始品系、啶虫脒抗性品系和氟啶虫胺腈抗性品系进行转录组测序,利用生物信息学方法比较分析2个不同抗性遗传背景棉蚜种群各品系差异表达基因。【结果】 莎车县氟啶虫胺腈抗性品系和啶虫脒抗性品系分别有806个和149个基因差异表达;精河县氟啶虫胺腈抗性品系和啶虫脒抗性品系与精河县的田间初始品系相比分别有233个和160个基因差异表达。在莎车县氟啶虫胺腈抗性品系和啶虫脒抗性品系中,CYP6CY59、CYP6DC1和CYP380C45均上调表达,CYP6CY12和CYP380C46均下调表达;在精河县氟啶虫胺腈抗性品系和啶虫脒抗性品系中,CYP380C46均上调表达,CYP6DC1均下调表达。此外,CYP380C45在莎车县氟啶虫胺腈抗性品系、精河县氟啶虫胺腈抗性品系和莎车县啶虫脒抗性品系中均上调表达;CYP6DC1在莎车县2个抗性品系中上调表达,但在精河县2个抗性品系中下调表达;相反,CYP380C46在精河县2个抗性品系中上调表达,但在莎车县2个抗性品系中下调表达。【结论】 有多个P450基因参与棉蚜对氟啶虫胺腈和啶虫脒的抗性。相同抗性遗传背景的棉蚜氟啶虫胺腈与啶虫脒抗性品系之间差异表达的P450基因存在差异,而且不同抗性遗传背景棉蚜的氟啶虫胺腈抗性品系之间以及啶虫脒抗性品系之间差异表达的P450基因也存在差异。
中图分类号:
王伟, 张仁福, 刘海洋, 丁瑞丰, 梁革梅, 姚举. 不同抗性遗传背景棉蚜氟啶虫胺腈及啶虫脒抗性品系转录组分析[J]. 新疆农业科学, 2024, 61(12): 3078-3088.
WANG Wei, ZHANG Renfu, LIU Haiyang, DING Ruifeng, LIANG Gemei, YAO Ju. Transcriptome analysis of Aphis gossypii sulfoxaflor and acetamiprid-resistant strains with different genetic backgrounds of resistance[J]. Xinjiang Agricultural Sciences, 2024, 61(12): 3078-3088.
样品 Samples | 筛选后序列数 Clean reads | 总碱基数 Clean bases (bp) | GC含量 GC (%) | 碱基质量 Q20 (%) | 碱基质量 Q30 (%) |
---|---|---|---|---|---|
Yarkant-FS1 | 20 459 252 | 6 117 404 890 | 40.12 | 98.4 | 94.94 |
Yarkant-FS2 | 19 525 238 | 5 841 367 886 | 40.46 | 98.21 | 94.37 |
Yarkant-FS3 | 21 591 363 | 6 460 913 442 | 40.21 | 98.36 | 94.82 |
Yarkant-SulR1 | 20 801 993 | 6 222 901 554 | 40.64 | 98.47 | 95.10 |
Yarkant-SulR2 | 19 984 476 | 5 979 120 056 | 43.18 | 98.28 | 94.75 |
Yarkant-SulR3 | 19 914 702 | 5 956 069 646 | 39.93 | 98.51 | 95.21 |
Yarkant-AceR1 | 21 542 227 | 6 444 271 438 | 39.76 | 98.46 | 95.04 |
Yarkant-AceR2 | 21 254 177 | 6 354 690 062 | 39.56 | 98.12 | 94.32 |
Yarkant-AceR3 | 20 547 090 | 6 148 349 870 | 41.21 | 98.21 | 94.46 |
Jinghe-FS1 | 19 777 253 | 5 811 422 018 | 39.54 | 97.60 | 93.37 |
Jinghe-FS2 | 22 433 482 | 6 626 850 734 | 39.68 | 97.58 | 93.34 |
Jinghe-FS3 | 21 619 014 | 6 361 974 154 | 40.86 | 97.54 | 93.26 |
Jinghe-SulR1 | 21 383 357 | 6 176 532 448 | 38.69 | 97.97 | 94.17 |
Jinghe-SulR2 | 20 753 424 | 6 135 658 884 | 39.86 | 97.52 | 93.15 |
Jinghe-SulR3 | 21 497 459 | 6 384 531 534 | 39.58 | 97.62 | 93.39 |
Jinghe-AceR1 | 21 500 476 | 6 355 105 294 | 39.37 | 97.58 | 93.33 |
Jinghe-AceR2 | 19 936 832 | 5 891 408 020 | 39.91 | 97.74 | 93.67 |
Jinghe-AceR3 | 21 625 765 | 6 290 882 412 | 39.90 | 97.57 | 93.40 |
表1 转录组测序数据评估
Tab.1 Evaluation of transcriptome sequencing data
样品 Samples | 筛选后序列数 Clean reads | 总碱基数 Clean bases (bp) | GC含量 GC (%) | 碱基质量 Q20 (%) | 碱基质量 Q30 (%) |
---|---|---|---|---|---|
Yarkant-FS1 | 20 459 252 | 6 117 404 890 | 40.12 | 98.4 | 94.94 |
Yarkant-FS2 | 19 525 238 | 5 841 367 886 | 40.46 | 98.21 | 94.37 |
Yarkant-FS3 | 21 591 363 | 6 460 913 442 | 40.21 | 98.36 | 94.82 |
Yarkant-SulR1 | 20 801 993 | 6 222 901 554 | 40.64 | 98.47 | 95.10 |
Yarkant-SulR2 | 19 984 476 | 5 979 120 056 | 43.18 | 98.28 | 94.75 |
Yarkant-SulR3 | 19 914 702 | 5 956 069 646 | 39.93 | 98.51 | 95.21 |
Yarkant-AceR1 | 21 542 227 | 6 444 271 438 | 39.76 | 98.46 | 95.04 |
Yarkant-AceR2 | 21 254 177 | 6 354 690 062 | 39.56 | 98.12 | 94.32 |
Yarkant-AceR3 | 20 547 090 | 6 148 349 870 | 41.21 | 98.21 | 94.46 |
Jinghe-FS1 | 19 777 253 | 5 811 422 018 | 39.54 | 97.60 | 93.37 |
Jinghe-FS2 | 22 433 482 | 6 626 850 734 | 39.68 | 97.58 | 93.34 |
Jinghe-FS3 | 21 619 014 | 6 361 974 154 | 40.86 | 97.54 | 93.26 |
Jinghe-SulR1 | 21 383 357 | 6 176 532 448 | 38.69 | 97.97 | 94.17 |
Jinghe-SulR2 | 20 753 424 | 6 135 658 884 | 39.86 | 97.52 | 93.15 |
Jinghe-SulR3 | 21 497 459 | 6 384 531 534 | 39.58 | 97.62 | 93.39 |
Jinghe-AceR1 | 21 500 476 | 6 355 105 294 | 39.37 | 97.58 | 93.33 |
Jinghe-AceR2 | 19 936 832 | 5 891 408 020 | 39.91 | 97.74 | 93.67 |
Jinghe-AceR3 | 21 625 765 | 6 290 882 412 | 39.90 | 97.57 | 93.40 |
样品 Samples | 总读数 Total reads | 比对读数 Mapped reads | 唯一比对读数 Unique Mapped Reads | 多位点比对读数 Multiple Map Reads |
---|---|---|---|---|
Yarkant-FS1 | 40 918 504 | 38 693 204 (94.56%) | 37 604 919 (91.90%) | 1 088 285 (2.66%) |
Yarkant-FS2 | 39 050 476 | 36 633 599 (93.81%) | 35 573 040 (91.10%) | 1 060 559 (2.72%) |
Yarkant-FS3 | 43 182 726 | 40 047 445 (92.74%) | 38 885 334 (90.05%) | 1 162 111 (2.69%) |
Yarkant-SulR1 | 41 603 986 | 39 985 012 (96.11%) | 38 825 128 (93.32%) | 1 159 884 (2.79%) |
Yarkant-SulR2 | 39 968 952 | 37 938 061 (94.92%) | 35 083 673 (87.78%) | 2 854 388 (7.14%) |
Yarkant-SulR3 | 39 829 404 | 38 129 610 (95.73%) | 37 015 482 (92.94%) | 1 114 128 (2.80%) |
Yarkant-AceR1 | 43 084 454 | 40 187 426 (93.28%) | 39 083 017 (90.71%) | 1 104 409 (2.56%) |
Yarkant-AceR2 | 42 508 354 | 40 515 296 (95.31%) | 39 379 379 (92.64%) | 1 135 917 (2.67%) |
Yarkant-AceR3 | 41 094 180 | 38 622 041 (93.98%) | 37 254 453 (90.66%) | 1 367 588 (3.33%) |
Jinghe-FS1 | 39 554 506 | 34 958 972 (88.38%) | 33 158 615 (83.83%) | 1 800 357 (4.55%) |
Jinghe-FS2 | 44 866 964 | 40 006 333 (89.17%) | 37 962 941 (84.61%) | 2 043 392 (4.55%) |
Jinghe-FS3 | 43 238 028 | 34 598 755 (80.02%) | 32 793 966 (75.85%) | 1 804 789 (4.17%) |
Jinghe-SulR1 | 42 766 714 | 38 685 130 (90.46%) | 36 662 189 (85.73%) | 2 022 941 (4.73%) |
Jinghe-SulR2 | 41 506 848 | 37 394 897 (90.09%) | 35 376 927 (85.23%) | 2 017 970 (4.86%) |
Jinghe-SulR3 | 42 994 918 | 38 689 166 (89.99%) | 36 664 856 (85.28%) | 2 024 310 (4.71%) |
Jinghe-AceR1 | 43 000 952 | 38 184 236 (88.80%) | 36 219 365 (84.23%) | 1 964 871 (4.57%) |
Jinghe-AceR2 | 39 873 664 | 35 434 894 (88.87%) | 33 533 163 (84.10%) | 1 901 731 (4.77%) |
Jinghe-AceR3 | 43 251 530 | 38 737 279 (89.56%) | 36 663 404 (84.77%) | 2 073 875 (4.79%) |
表2 转录组测序数据与棉蚜参考基因组数据的效率比对
Tab.2 Mapping rate of transcriptome sequencing data to the reference genome of A.gossypii
样品 Samples | 总读数 Total reads | 比对读数 Mapped reads | 唯一比对读数 Unique Mapped Reads | 多位点比对读数 Multiple Map Reads |
---|---|---|---|---|
Yarkant-FS1 | 40 918 504 | 38 693 204 (94.56%) | 37 604 919 (91.90%) | 1 088 285 (2.66%) |
Yarkant-FS2 | 39 050 476 | 36 633 599 (93.81%) | 35 573 040 (91.10%) | 1 060 559 (2.72%) |
Yarkant-FS3 | 43 182 726 | 40 047 445 (92.74%) | 38 885 334 (90.05%) | 1 162 111 (2.69%) |
Yarkant-SulR1 | 41 603 986 | 39 985 012 (96.11%) | 38 825 128 (93.32%) | 1 159 884 (2.79%) |
Yarkant-SulR2 | 39 968 952 | 37 938 061 (94.92%) | 35 083 673 (87.78%) | 2 854 388 (7.14%) |
Yarkant-SulR3 | 39 829 404 | 38 129 610 (95.73%) | 37 015 482 (92.94%) | 1 114 128 (2.80%) |
Yarkant-AceR1 | 43 084 454 | 40 187 426 (93.28%) | 39 083 017 (90.71%) | 1 104 409 (2.56%) |
Yarkant-AceR2 | 42 508 354 | 40 515 296 (95.31%) | 39 379 379 (92.64%) | 1 135 917 (2.67%) |
Yarkant-AceR3 | 41 094 180 | 38 622 041 (93.98%) | 37 254 453 (90.66%) | 1 367 588 (3.33%) |
Jinghe-FS1 | 39 554 506 | 34 958 972 (88.38%) | 33 158 615 (83.83%) | 1 800 357 (4.55%) |
Jinghe-FS2 | 44 866 964 | 40 006 333 (89.17%) | 37 962 941 (84.61%) | 2 043 392 (4.55%) |
Jinghe-FS3 | 43 238 028 | 34 598 755 (80.02%) | 32 793 966 (75.85%) | 1 804 789 (4.17%) |
Jinghe-SulR1 | 42 766 714 | 38 685 130 (90.46%) | 36 662 189 (85.73%) | 2 022 941 (4.73%) |
Jinghe-SulR2 | 41 506 848 | 37 394 897 (90.09%) | 35 376 927 (85.23%) | 2 017 970 (4.86%) |
Jinghe-SulR3 | 42 994 918 | 38 689 166 (89.99%) | 36 664 856 (85.28%) | 2 024 310 (4.71%) |
Jinghe-AceR1 | 43 000 952 | 38 184 236 (88.80%) | 36 219 365 (84.23%) | 1 964 871 (4.57%) |
Jinghe-AceR2 | 39 873 664 | 35 434 894 (88.87%) | 33 533 163 (84.10%) | 1 901 731 (4.77%) |
Jinghe-AceR3 | 43 251 530 | 38 737 279 (89.56%) | 36 663 404 (84.77%) | 2 073 875 (4.79%) |
基因 Gene | 莎车县氟啶虫胺腈 抗性品系 Yarkant-SulR | 莎车县啶虫脒 抗性品系 Yarkant-AceR | 精河县氟啶虫胺腈 抗性品系 Jinghe-SulR | 精河县啶虫脒 抗性品系 Jinghe-AceR | ||||
---|---|---|---|---|---|---|---|---|
log2 FC | 上调/下调 | log2 FC | 上调/下调 | log2 FC | 上调/下调 | log2 FC | 上调/下调 | |
CYP6CY13 | 1.72 | up | ||||||
CYP6CY20 | 1.72 | up | ||||||
CYP380C44 | 1.62 | up | ||||||
CYP6CY59 | 2.48 | up | 1.54 | up | ||||
CYP380C45 | 2.44 | up | 1.24 | up | 1.08 | up | ||
CYP6DC1 | 2.14 | up | 1.79 | up | -1.35 | down | -1.24 | down |
CYP6CY12 | -1.44 | down | -1.48 | down | ||||
CYP380C46 | -3.05 | down | -1.68 | down | 1.38 | up | 1.45 | up |
CYP18A1 | -1.24 | down | ||||||
CYP6CY24 | 1.09 | up | ||||||
CYP6CY9 | 1.14 | up |
表3 莎车县与精河县的抗性品系转录组中P450基因差异表达
Tab.3 Differential expression of P450 genes in the transcriptomes of the resistant strains in Yarkant and Jinghe
基因 Gene | 莎车县氟啶虫胺腈 抗性品系 Yarkant-SulR | 莎车县啶虫脒 抗性品系 Yarkant-AceR | 精河县氟啶虫胺腈 抗性品系 Jinghe-SulR | 精河县啶虫脒 抗性品系 Jinghe-AceR | ||||
---|---|---|---|---|---|---|---|---|
log2 FC | 上调/下调 | log2 FC | 上调/下调 | log2 FC | 上调/下调 | log2 FC | 上调/下调 | |
CYP6CY13 | 1.72 | up | ||||||
CYP6CY20 | 1.72 | up | ||||||
CYP380C44 | 1.62 | up | ||||||
CYP6CY59 | 2.48 | up | 1.54 | up | ||||
CYP380C45 | 2.44 | up | 1.24 | up | 1.08 | up | ||
CYP6DC1 | 2.14 | up | 1.79 | up | -1.35 | down | -1.24 | down |
CYP6CY12 | -1.44 | down | -1.48 | down | ||||
CYP380C46 | -3.05 | down | -1.68 | down | 1.38 | up | 1.45 | up |
CYP18A1 | -1.24 | down | ||||||
CYP6CY24 | 1.09 | up | ||||||
CYP6CY9 | 1.14 | up |
[1] |
热依汗古丽·阿布都热合曼, 艾合买提·吾斯曼, 魏新政, 等. 2019年新疆棉花主要病虫害发生概况[J]. 中国棉花, 2019, 46(11): 7-9.
DOI |
Reyihanguli Abudureheman, Aihemaiti Wusiman, WEI Xinzheng, et al. Overview of main cotton diseases and insect pests in Xinjiang in 2019[J]. China Cotton, 2019, 46(11): 7-9.
DOI |
|
[2] |
热依汗古丽·阿布都热合曼, 伊力亚尔·达吾提江, 艾合买提江·努力买买提, 等. 2020年新疆棉花主要病虫害发生概况[J]. 中国棉花, 2021, 48(2): 10-12, 16.
DOI |
Reyihanguli Abudureheman, Yiliyaer Dawutijiang, Aihemaitijiang Nulimaimaiti, et al. Overview of main cotton diseases and insect pests in Xinjiang in 2020[J]. China Cotton, 2021, 48(2): 10-12, 16.
DOI |
|
[3] | 帕提玛·乌木尔汗, 郭佩佩, 马少军, 等. 新疆地区棉蚜田间种群对10种杀虫剂的抗性[J]. 植物保护, 2019, 45(6): 273-278. |
Patima Wumuerhan, GUO Peipei, MA Shaojun, et al. Resistance of different field populations of Aphis gossypii to ten insecticides in Xinjiang[J]. Plant Protection, 2019, 45(6): 273-278. | |
[4] | 马康生, 王静慧, 解晓平, 等. 棉蚜对新烟碱类杀虫剂的抗性现状及其治理策略[J]. 植物保护学报, 2021, 48(5): 947-957. |
MA Kangsheng, WANG Jinghui, XIE Xiaoping, et al. Status and management strategies of neonicotinoid insecticide resistance in Aphis gossypii Glover[J]. Journal of Plant Protection, 2021, 48(5): 947-957. | |
[5] | Zhang H H, Yang H L, Dong W Y, et al. Mutations in the nAChR β1 subunit and overexpression of P 450 genes are associated with high resistance to thiamethoxam in melon aphid, Aphis gossypii Glover[J]. Comparative Biochemistry and Physiology Part B, Biochemistry & Molecular Biology, 2022, 258: 110682. |
[6] | Chen X W, Xia J, Shang Q L, et al. UDP-glucosyltransferases potentially contribute to imidacloprid resistance in Aphis gossypii glover based on transcriptomic and proteomic analyses[J]. Pesticide Biochemistry and Physiology, 2019, 159: 98-106. |
[7] | Pan Y O, Zeng X C, Wen S Y, et al. Multiple ATP-binding cassette transporters genes are involved in thiamethoxam resistance in Aphis gossypii glover[J]. Pesticide Biochemistry and Physiology, 2020, 167: 104558. |
[8] |
Bass C, Denholm I, Williamson M S, et al. The global status of insect resistance to neonicotinoid insecticides[J]. Pesticide Biochemistry and Physiology, 2015, 121: 78-87.
DOI PMID |
[9] | Hirata K, Jouraku A, Kuwazaki S, et al. The R81T mutation in the nicotinic acetylcholine receptor of Aphis gossypii is associated with neonicotinoid insecticide resistance with differential effects for cyano- and nitro-substituted neonicotinoids[J]. Pesticide Biochemistry and Physiology, 2017, 143: 57-65. |
[10] | Kim J I, Kwon M, Kim G H, et al. Two mutations in nAChR beta subunit is associated with imidacloprid resistance in the Aphis gossypii[J]. Journal of Asia-Pacific Entomology, 2015, 18(2): 291-296. |
[11] | Chen X W, Li F, Chen A Q, et al. Both point mutations and low expression levels of the nicotinic acetylcholine receptor β1 subunit are associated with imidacloprid resistance in an Aphis gossypii (Glover) population from a Bt cotton field in China[J]. Pesticide Biochemistry and Physiology, 2017, 141: 1-8. |
[12] | Shi X G, Zhu Y K, Xia X M, et al. The mutation in nicotinic acetylcholine receptor β1 subunit may confer resistance to imidacloprid in Aphis gossypii (Glover)[J]. Journal of Food, Agriculture and Environment, 2012, 10(2): 1227-1230. |
[13] | Koo H N, An J J, Park S E, et al. Regional susceptibilities to 12 insecticides of melon and cotton aphid, Aphis gossypii (Hemiptera: Aphididae) and a point mutation associated with imidacloprid resistance[J]. Crop Protection, 2014, 55: 91-97. |
[14] | Wei X, Pan Y O, Xin X C, et al. Cross-resistance pattern and basis of resistance in a thiamethoxam-resistant strain of Aphis gossypii Glover[J]. Pesticide Biochemistry and Physiology, 2017, 138: 91-96. |
[15] | IRAC. The IRAC mode of action classification online[J/OL] 2023, [2023-4-12]. https://irac-online.org/mode-of-action/classification-online. |
[16] |
Babcock J M, Gerwick C B, Huang J X, et al. Biological characterization of sulfoxaflor, a novel insecticide[J]. Pest Management Science, 2011, 67(3): 328-334.
DOI PMID |
[17] |
Cutler P, Slater R, Edmunds A J F, et al. Investigating the mode of action of sulfoxaflor: a fourth-generation neonicotinoid[J]. Pest Management Science, 2013, 69(5): 607-619.
DOI PMID |
[18] |
Kim D, Langmead B, Salzberg S L. HISAT: a fast spliced aligner with low memory requirements[J]. Nature Methods, 2015, 12(4): 357-360.
DOI PMID |
[19] |
Pertea M, Pertea G M, Antonescu C M, et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads[J]. Nature Biotechnology, 2015, 33(3): 290-295.
DOI PMID |
[20] |
Altschul S F, Madden T L, Schäffer A A, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs[J]. Nucleic Acids Research, 1997, 25(17): 3389-3402.
DOI PMID |
[21] | 邓泱泱, 荔建琦, 吴松锋, 等. nr数据库分析及其本地化[J]. 计算机工程, 2006, 32(5): 71-73, 76. |
DENG Yangyang, LI Jianqi, WU Songfeng, et al. Integrated nr database in protein annotation system and its localization[J]. Computer Engineering, 2006, 32(5): 71-73, 76. | |
[22] | The UniProt Consortium. UniProt: the universal protein knowledgebase[J]. Nucleic Acids Research, 2017, 45(D1): D158-D169. |
[23] |
Ashburner M, Ball C A, Blake J A, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium[J]. Nature Genetics, 2000, 25(1): 25-29.
DOI PMID |
[24] |
Tatusov R L, Galperin M Y, Natale D A, et al. The COG database: a tool for genome-scale analysis of protein functions and evolution[J]. Nucleic Acids Research, 2000, 28(1): 33-36.
DOI PMID |
[25] | Koonin E V, Fedorova N D, Jackson J D, et al. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes[J]. Genome Biology, 2004, 5(2): R7. |
[26] | Punta M, Coggill P C, Eberhardt R Y, et al. The Pfam protein families database[J]. Nucleic Acids Research, 2012, 40(Database issue): D290-D301. |
[27] | Kanehisa M, Goto S, Kawashima S, et al. The KEGG resource for deciphering the genome[J]. Nucleic Acids Research, 2004, 32(Database issue): D277-D280. |
[28] |
Huerta-Cepas J, Szklarczyk D, Heller D, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses[J]. Nucleic Acids Research, 2019, 47(D1): 309-314.
DOI PMID |
[29] | Florea L, Song L, Salzberg S L. Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues[J]. F1000Research, 2013,2: 188. |
[30] | Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12): 550. |
[31] | 赵鹏程, 李焱, 闫文静, 等. 新疆棉蚜不同地理种群对杀虫剂的敏感性[J]. 石河子大学学报(自然科学版), 2018, 36(2): 159-163. |
ZHAO Pengcheng, LI Yan, YAN Wenjing, et al. Sensitivity of different geographical populations of Aphis gossypii(Glover) in Xinjiang to different insecticides[J]. Journal of Shihezi University (Natural Science), 2018, 36(2): 159-163. | |
[32] |
Oliveira E E, Schleicher S, Büschges A, et al. Desensitization of nicotinic acetylcholine receptors in central nervous system neurons of the stick insect (Carausius morosus) by imidacloprid and sulfoximine insecticides[J]. Insect Biochemistry and Molecular Biology, 2011, 41(11): 872-880.
DOI PMID |
[33] | ffrench-Constant R H, Bass C. Does resistance really carry a fitness cost?[J]. Current Opinion in Insect Science, 2017, 21: 39-46. |
[34] |
Roush R T, McKenzie J A. Ecological genetics of insecticide and acaricide resistance[J]. Annual Review of Entomology, 1987, 32: 361-380.
PMID |
[35] |
Rivero A, Magaud A, Nicot A, et al. Energetic cost of insecticide resistance in Culex pipiens mosquitoes[J]. Journal of Medical Entomology, 2011, 48(3): 694-700.
PMID |
[36] | Wang W, Zhang R F, Liu H Y, et al. Resistance development, cross-resistance, and fitness costs associated with Aphis gossypii resistance towards sulfoxaflor and acetamiprid in different geographical regions[J]. Journal of Integrative Agriculture, 2024, 23(7): 2332-2345. |
[37] | Zhao L K, Wang C P, Gao X K, et al. Characterization of P450 monooxygenase gene family in the cotton aphid, Aphis gossypii Glover[J]. Journal of Asia-Pacific Entomology, 2022, 25(2): 101861. |
[38] | Wang L, Cui L, Wang Q Q, et al. Sulfoxaflor resistance in Aphis gossypii: resistance mechanism, feeding behavior and life history changes[J]. Journal of Pest Science, 2022, 95(2): 811-825. |
[39] | Pym A, Umina P A, Reidy-Crofts J, et al. Overexpression of UDP-glucuronosyltransferase and cytochrome P450 enzymes confers resistance to sulfoxaflor in field populations of the aphid, Myzus persicae[J]. Insect Biochemistry and Molecular Biology, 2022, 143: 103743. |
[40] | He C, Liang J J, Liu S N, et al. Molecular characterization of an NADPH cytochrome P450 reductase from Bemisia tabaci Q: potential involvement in susceptibility to imidacloprid[J]. Pesticide Biochemistry and Physiology, 2020, 162: 29-35. |
[41] | Cheng Y B, Li Y M, Li W R, et al. Inhibition of hepatocyte nuclear factor 4 confers imidacloprid resistance in Nilaparvata lugens via the activation of cytochrome P450 and UDP-glycosyltransferase genes[J]. Chemosphere, 2021, 263: 128269. |
[1] | 安哲, 牛瑞昌, 朱香镇, 王丽, 张开心, 李东阳, 姬继超, 牛林, 高雪珂, 雒珺瑜, 崔金杰, 马德英. 棉田不同菌型棉蚜体内微生物多样性分析[J]. 新疆农业科学, 2024, 61(9): 2277-2284. |
[2] | 何婉洁, 孟涵颖, 支梦婷, 陈静. 双斑长跗萤叶甲雌虫、雄虫触角转录组及差异表达基因分析[J]. 新疆农业科学, 2024, 61(4): 984-995. |
[3] | 何伟, 罗文芳, 周军辉, 甘中祥, 陈晓刚, 叶仙涛, 许建军. 瓜列当在3种寄主作物上的寄生规律及抗性评价[J]. 新疆农业科学, 2024, 61(2): 413-420. |
[4] | 于秋红, 许盼云, 郭春苗, 迪利夏提·哈斯木, 木巴热克·阿尤普. 扁桃耐旱砧木木质部解剖结构与栓塞特性的关系分析[J]. 新疆农业科学, 2024, 61(11): 2693-2704. |
[5] | 朱夏芬, 何伟, 罗文芳, 周军辉, 李克梅, 许建军. 基于防御酶与代谢组学分析贝莱斯芽孢杆菌JTB8-2诱导番茄拮抗瓜列当机制[J]. 新疆农业科学, 2024, 61(10): 2396-2407. |
[6] | 秦鹏亮, 周霄, 王爽, 李佳琪, 刘颖, 张娜, 杨文香. 小麦品种衡观35抗茎基腐病EMS突变及其鉴定[J]. 新疆农业科学, 2023, 60(9): 2231-2238. |
[7] | 薛正轩, 蔡志平, 张智健, 彭天祥, 黄志伟, 黄恩泽, 王佩玲, 陆宴辉. 基于铷元素标记技术分析多异瓢虫在甘草带与棉田间的迁移范围[J]. 新疆农业科学, 2023, 60(7): 1741-1747. |
[8] | 马清倩, 杨红兰, 魏鑫, 张大伟, 程利华, 张道远. 18份国外棉花种质黄萎病抗性鉴定与筛选[J]. 新疆农业科学, 2023, 60(2): 286-294. |
[9] | 宋金迪, 刘君, 孙玉芳, 优丽图孜·乃比, 陈宝强, 颉兵兵. 铜胁迫下的西瓜食酸菌转录组分析[J]. 新疆农业科学, 2023, 60(2): 389-398. |
[10] | 李耀发, 安静杰, 窦亚楠, 孙小诺, 张谦, 柳春红, 党志红, 高占林. 播期对黄河流域棉花苗蚜种群动态和棉花产量的影响[J]. 新疆农业科学, 2023, 60(10): 2496-2500. |
[11] | 王小丽, 韩睿, 张全成, 赵鹏程, 王俊刚. 不同地理种群棉蚜三种关键性酶活差异及其与抗性相关性[J]. 新疆农业科学, 2022, 59(8): 2007-2013. |
[12] | 宋吉坤, 辛玥, 李龙云, 刘国元, 裴文锋, 马建江, 曲延英, 于霁雯, 吴嫚. 利用基因芯片分析比较Giza75和SG747纤维发育差异表达基因[J]. 新疆农业科学, 2022, 59(6): 1312-1330. |
[13] | 林青, 史应武, 王娜, 华兰兰, 杨红梅, 楚敏, 曾军, 高雁, 霍向东. 加工番茄系统抗性诱导促生菌的筛选鉴定及其促生防病效果[J]. 新疆农业科学, 2022, 59(6): 1466-1474. |
[14] | 李艳兵, 郭小虎, 努尔什瓦克·阿达力别克, 帕提玛·乌木尔汗, 马德英. 人工助迁多异瓢虫和化防2种模式对棉蚜的防效及天敌种群动态影响[J]. 新疆农业科学, 2022, 59(5): 1173-1179. |
[15] | 丁新华, 宋子硕, 杨杰, 高国文, 付开赟, 贾尊尊, 吐尔逊·阿合买提, 郭文超. 玉米种质对腐霉茎腐病和镰孢茎腐病抗性鉴定与评价[J]. 新疆农业科学, 2022, 59(12): 3047-3056. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 11
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 87
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||