新疆农业科学 ›› 2024, Vol. 61 ›› Issue (11): 2693-2704.DOI: 10.6048/j.issn.1001-4330.2024.11.010
于秋红1(), 许盼云2, 郭春苗2, 迪利夏提·哈斯木1, 木巴热克·阿尤普1(
)
收稿日期:
2024-04-19
出版日期:
2024-11-20
发布日期:
2025-01-08
通信作者:
木巴热克·阿尤普(1981-),女,新疆莎车人,副研究员,博士,研究方向为果树逆境生理生态,(E-mail)mubarek@ms.xjb.ac.cn作者简介:
于秋红(1998-),女,河北沧州人,硕士研究生,研究方向为植物逆境生理,(E-mail)2074276722@qq.com
基金资助:
YU Qiuhong1(), XU Panyun2, GUO Chunmiao2, Dilixiati Hasimu1, Mubareke Ayoupu1(
)
Received:
2024-04-19
Published:
2024-11-20
Online:
2025-01-08
Supported by:
摘要:
【目的】基于茎木质部解剖结构与栓塞特性关系分析扁桃耐旱砧木资源对干旱胁迫环境的适应机理。【方法】以大巴旦(Amygdalus communis var.fragilis)(C1)、苦巴旦(A.communis var.amara)(C2)、甜仁桃巴旦[A.communis var.persicoides (West.) Rehd.](C3)和苦仁桃巴旦[A.communis var.persicoides (West.) Rehd.](C4)以及新疆毛桃(A.persica L.)(C5)等耐旱性程度不同5个扁桃砧木资源的当年生实生苗为材料,采用“外加压力”法,配套使用“XYLEM木质部导水率及栓塞测量系统”和“PMS空穴压力室”,测定在正常栽培条件下的茎自然栓塞程度以及栓塞脆弱性值(P50);测量和观察已栓塞枝条不同时段(30,80,130,180 min)的栓塞修复程度以及木质部解剖结构特征,探究耐旱性不同扁桃砧木资源的茎木质部解剖结构、栓塞抗性以及栓塞修复能力间的关系。【结果】(1) 扁桃不同砧木资源中大巴旦、甜仁桃巴旦、苦巴旦和普通桃的栓塞脆弱曲线为“s”形,苦仁桃巴旦的栓塞脆弱曲线为“r”形;(2) 茎木质部栓塞抗性(P50)平均值由大到小依次为大巴旦>甜仁桃巴旦>苦巴旦>苦仁桃巴旦>普通桃,其中大巴旦的抗栓塞能力最强;(3) 茎木质部栓塞修复能力由大到小依次为普通桃>甜仁桃巴旦>苦仁桃巴旦>苦巴旦>大巴旦;(4) 较耐旱砧木大巴旦、苦巴旦和甜仁桃巴旦的木质部导管及微孔直径小,木材密度、导管壁厚度及导管壁理论机械强度大,抗栓塞能力强,然而栓塞修复能力弱;‘普通桃’和苦仁桃巴旦的导管及微孔直径大,木材密度、导管壁厚度以及导管壁理论机械强度小,抗栓塞能力弱,但栓塞修复能力强。【结论】扁桃砧木资源木质部栓塞修复能力与栓塞抗性呈负相关,与木质部解剖结构中的导管及微孔直径呈正相关,与木材密度、导管壁厚度以及导管壁理论机械强度呈负相关。
中图分类号:
于秋红, 许盼云, 郭春苗, 迪利夏提·哈斯木, 木巴热克·阿尤普. 扁桃耐旱砧木木质部解剖结构与栓塞特性的关系分析[J]. 新疆农业科学, 2024, 61(11): 2693-2704.
YU Qiuhong, XU Panyun, GUO Chunmiao, Dilixiati Hasimu, Mubareke Ayoupu. Relationship between the anatomical structure of xylem and embolization characteristics of drought tolerant rootstocks of almond[J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2693-2704.
项目Items | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
株高 Plant height(cm) | 43.69±1.19bc | 53.60±1.52a | 49.80±3.93ab | 49.90±3.49ab | 52.82±3.59a |
基径 Stem diameter(mm) | 6.21±0.35b | 5.00±0.25de | 4.80±0.62de | 3.94±0.14e | 5.43±0.37cd |
侧枝长度 Lateral branch length(cm) | 14.01±0.66b | 25.66±2.89a | 18.62±3.40b | 29.41±3.65a | 18.58±1.21b |
侧枝直径 Lateral branch diameter(mm) | 2.15±0.06a | 2.26±0.17a | 1.97±0.21a | 1.99±0.16a | 2.11±0.47a |
单株叶片数 Leaf number per plant | 282±22ab | 156±28bc | 127±36bc | 98±11c | 180±39bc |
平均叶长 Average leaf length(cm) | 3.88±0.05c | 5.74±0.15b | 7.03±0.26a | 7.37±0.16a | 7.69±0.16a |
平均叶宽 Average leaf width(cm) | 1.21±0.02c | 1.92±0.09a | 1.75±0.04b | 2.04±0.05a | 1.71±0.03b |
平均叶柄长 Average petiole length(cm) | 0.59±0.01c | 0.78±0.06ab | 0.56±0.03cd | 0.76±0.05b | 0.30±0.03e |
表1 供试扁桃砧木资源当年生实生苗的基本生物学特征(平均值±标准误差)
Tab.1 Basic situation of samplings of almond rootstock seedlings (Mean ± SE)
项目Items | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
株高 Plant height(cm) | 43.69±1.19bc | 53.60±1.52a | 49.80±3.93ab | 49.90±3.49ab | 52.82±3.59a |
基径 Stem diameter(mm) | 6.21±0.35b | 5.00±0.25de | 4.80±0.62de | 3.94±0.14e | 5.43±0.37cd |
侧枝长度 Lateral branch length(cm) | 14.01±0.66b | 25.66±2.89a | 18.62±3.40b | 29.41±3.65a | 18.58±1.21b |
侧枝直径 Lateral branch diameter(mm) | 2.15±0.06a | 2.26±0.17a | 1.97±0.21a | 1.99±0.16a | 2.11±0.47a |
单株叶片数 Leaf number per plant | 282±22ab | 156±28bc | 127±36bc | 98±11c | 180±39bc |
平均叶长 Average leaf length(cm) | 3.88±0.05c | 5.74±0.15b | 7.03±0.26a | 7.37±0.16a | 7.69±0.16a |
平均叶宽 Average leaf width(cm) | 1.21±0.02c | 1.92±0.09a | 1.75±0.04b | 2.04±0.05a | 1.71±0.03b |
平均叶柄长 Average petiole length(cm) | 0.59±0.01c | 0.78±0.06ab | 0.56±0.03cd | 0.76±0.05b | 0.30±0.03e |
图1 扁桃不同砧木资源茎木质部栓塞脆弱性曲线 注:C1: 大巴旦;C2: 苦巴旦;C3: 甜仁桃巴旦;C4: 苦仁桃巴旦;C5:普通桃
Fig.1 Stem xylem embolism vulnerability curves of different germplasm resources of almond Notes: C1: Dabadan; C2: Kubadan; C3:Tianrentaobadan; C4: Kurentaobadan; C5:Peach
图2 扁桃不同砧木资源茎木质部栓塞脆弱性(平均值±标准误差) 注:C1: 大巴旦;C2: 苦巴旦;C3: 甜仁桃巴旦;C4: 苦仁桃巴旦;C5:普通桃;不同小写字母表示指标在不同种质资源间差异显著(P<0.05)
Fig.2 Vulnerability of stem xylem embolism in different rootstock resources of almond (Mean ± SE) Notes: C1: Dabadan; C2: Kubadan; C3: Tianrentaobadan; C4: Kurentaobadan; C5: Peach; Different lowercase letters indicate significant differences in the same index between different rootstock resources in the same group (P<0.05)
修复时间 Repair time(min) | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
30 | 9.75±0.36Ba | 12.05±0.76Ba | 14.62±0.26Ca | 12.30±1.24Ca | 10.88±2.17Ca |
80 | 12.61±1.53Bb | 25.25±5.72ABab | 21.26±5.44BCab | 24.92±1.24Bab | 29.50±5.90Ba |
130 | 24.81±3.76Ab | 32.35±6.72Ab | 29.53±4.82Bb | 46.07±2.41Aa | 54.46±1.57Ab |
180 | 30.73±5.68Ac | 40.28±5.65Abc | 52.01±0.65Aa | 49.79±1.16Aab | 59.52±0.53Aa |
表2 扁桃不同砧木资源茎木质部栓塞修复率(平均值 ± 标准误差)
Tab.2 Repair percentage of stem xylem embolism in different rootstock resources of almond (Mean ± SE) (%)
修复时间 Repair time(min) | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
30 | 9.75±0.36Ba | 12.05±0.76Ba | 14.62±0.26Ca | 12.30±1.24Ca | 10.88±2.17Ca |
80 | 12.61±1.53Bb | 25.25±5.72ABab | 21.26±5.44BCab | 24.92±1.24Bab | 29.50±5.90Ba |
130 | 24.81±3.76Ab | 32.35±6.72Ab | 29.53±4.82Bb | 46.07±2.41Aa | 54.46±1.57Ab |
180 | 30.73±5.68Ac | 40.28±5.65Abc | 52.01±0.65Aa | 49.79±1.16Aab | 59.52±0.53Aa |
项目 Items | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
导管直径 Vessel diameter(μm) | 16.65±0.26c | 18.27±0.63b | 16.58±0.44c | 19.66±0.51b | 22.45±0.52a |
连接导管壁厚度 Intervessel wall thickness(μm) | 5.84±0.26a | 6.37±0.32a | 4.87±0.20b | 6.11±0.41a | 4.66±0.26b |
单导管指数 Solitary vessel index | 0.73±0.01bc | 0.74±0.01b | 0.72±0.01bc | 0.83±0.01a | 0.70±0.01c |
导管密度 Vessel density(mm-2) | 354.50±23.22ab | 384.27±27.37a | 413.59±31.08a | 282.12±31.78b | 332.25±17.69ab |
导管组指数 Vessel grouping index | 1.40±0.02ab | 1.37±0.03b | 1.45±0.02a | 1.25±0.01c | 1.46±0.02a |
导管壁理论机械强度 Theoretical vessel implosion resistance | 0.13±0.01a | 0.13±0.02a | 0.09±0.01a | 0.10±0.02a | 0.04±0.01b |
导管水力直径 Hydraulic diameter of vessel(μm) | 18.48±0.42c | 20.80±0.80b | 18.26±0.38c | 21.87±0.52b | 24.68±0.71a |
木材密度 Wood density(g/cm3) | 0.73±0.01a | 0.69±0.01a | 0.64±0.02b | 0.60±0.02b | 0.51±0.02c |
纹孔膜面积 Pit membrane(μm2) | 11.82±3.18a | 17.69±1.44a | 19.49±3.18a | 14.55±3.96a | 14.94±3.15a |
纹孔膜直径 Pit membrane diameter(μm) | 3.81±0.50a | 4.73±0.19a | 4.96±0.39a | 4.22±0.59a | 4.32±0.50a |
微孔面积 Microporous area(nm2) | 494.85±66.75b | 499.76±24.51b | 647.11±75.07b | 632.35±38.55b | 962.32±86.81a |
微孔直径 Microporous diameter(nm) | 24.69±1.86b | 24.98±0.31b | 28.63±1.48b | 28.24±0.72b | 34.84±1.61a |
表3 扁桃不同砧木资源茎木质部解剖结构的差异(平均值 ± 标准误差)
Tab.3 Differences in the anatomical structure of the stem xylem of different rootstock resources of almond (Mean ± SE)
项目 Items | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
导管直径 Vessel diameter(μm) | 16.65±0.26c | 18.27±0.63b | 16.58±0.44c | 19.66±0.51b | 22.45±0.52a |
连接导管壁厚度 Intervessel wall thickness(μm) | 5.84±0.26a | 6.37±0.32a | 4.87±0.20b | 6.11±0.41a | 4.66±0.26b |
单导管指数 Solitary vessel index | 0.73±0.01bc | 0.74±0.01b | 0.72±0.01bc | 0.83±0.01a | 0.70±0.01c |
导管密度 Vessel density(mm-2) | 354.50±23.22ab | 384.27±27.37a | 413.59±31.08a | 282.12±31.78b | 332.25±17.69ab |
导管组指数 Vessel grouping index | 1.40±0.02ab | 1.37±0.03b | 1.45±0.02a | 1.25±0.01c | 1.46±0.02a |
导管壁理论机械强度 Theoretical vessel implosion resistance | 0.13±0.01a | 0.13±0.02a | 0.09±0.01a | 0.10±0.02a | 0.04±0.01b |
导管水力直径 Hydraulic diameter of vessel(μm) | 18.48±0.42c | 20.80±0.80b | 18.26±0.38c | 21.87±0.52b | 24.68±0.71a |
木材密度 Wood density(g/cm3) | 0.73±0.01a | 0.69±0.01a | 0.64±0.02b | 0.60±0.02b | 0.51±0.02c |
纹孔膜面积 Pit membrane(μm2) | 11.82±3.18a | 17.69±1.44a | 19.49±3.18a | 14.55±3.96a | 14.94±3.15a |
纹孔膜直径 Pit membrane diameter(μm) | 3.81±0.50a | 4.73±0.19a | 4.96±0.39a | 4.22±0.59a | 4.32±0.50a |
微孔面积 Microporous area(nm2) | 494.85±66.75b | 499.76±24.51b | 647.11±75.07b | 632.35±38.55b | 962.32±86.81a |
微孔直径 Microporous diameter(nm) | 24.69±1.86b | 24.98±0.31b | 28.63±1.48b | 28.24±0.72b | 34.84±1.61a |
图4 扁桃不同砧木资源茎木质部的横切面解剖结构 注:C1: 大巴旦;C2: 苦巴旦;C3: 甜仁桃巴旦;C4: 苦仁桃巴旦;C5:普通桃
Fig.4 Cross-sectional anatomical structure of stem xylem of different rootstock resources of almond Notes: C1: Dabadan; C2: Kubadan; C3: Tianrentaobadan; C4: Kurentaobadan; C5:Peach
图6 扁桃不同砧木资源茎抗栓塞能力与栓塞修复能力之间的关系
Fig.6 Relationship between stem resistance to embolism and embolism repair capacity of different rootstock resources of almond
图10 扁桃不同砧木资源茎栓塞修复能力与微孔直径之间的关系
Fig.10 Relationship between stem embolism repair capacity and micropore diameter in different rootstock resources of almond
[1] | 木巴热克·阿尤普,伊丽米努尔, 荆卫民. 不同水分处理下几种柽柳属植物幼株木质部栓塞及其解剖结构特征[J]. 北京林业大学学报, 2017, 39(10): 42-52. |
Mubareke Ayoupu, Yiliminuer, JING Weimin. Xylem anatomical features and native xylem embolism of several Tamarix spp.species seedlings under different water treatments[J]. Journal of Beijing Forestry University, 2017, 39(10): 42-52. | |
[2] | McDowell N G, Beerling D J, Breshears D D, et al. The interdependence of mechanisms underlying climate-driven vegetation mortality[J]. Trends in Ecology & Evolution, 2011, 26(10): 523-532. |
[3] |
Nardini A, Battistuzzo M, Savi T. Shoot desiccation and hydraulic failure in temperate woody angiosperms during an extreme summer drought[J]. New Phytologist, 2013, 200(2): 322-329.
DOI PMID |
[4] | Domec J C, Gartner B L. Cavitation and water storage capacity in Bole xylem segments of mature and young Douglas-fir trees[J]. Trees, 2001, 15(4): 204-214. |
[5] | Choat B, Jansen S, Brodribb T J, et al. Global convergence in the vulnerability of forests to drought[J]. Nature, 2012, 491(7426): 752-755. |
[6] | 党维. 耐旱树种木质部栓塞恢复状况的研究[D]. 杨凌: 西北农林科技大学, 2016. |
DANG Wei. The Refilling of Embolized Xylem of Drought-tolerant Tree Species[D]. Yangling: Northwest A & F University, 2016. | |
[7] | Awad H, Barigah T, Badel E, et al. Poplar vulnerability to xylem cavitation acclimates to drier soil conditions[J]. Physiologia Plantarum, 2010, 139(3): 280-288. |
[8] |
Ogasa M, Miki N H, Murakami Y, et al. Recovery performance in xylem hydraulic conductivity is correlated with cavitation resistance for temperate deciduous tree species[J]. Tree Physiology, 2013, 33(4): 335-344.
DOI PMID |
[9] |
Rolland V, Bergstrom D M, Lenné T, et al. Easy come, easy go: capillary forces enable rapid refilling of embolized primary xylem vessels[J]. Plant Physiology, 2015, 168(4): 1636-1647.
DOI PMID |
[10] | Love D M, Sperry J S. In situ embolism induction reveals vessel refilling in a natural aspen stand[J]. Tree Physiology, 2018, 38(7): 1006-1015. |
[11] | 孟凤. 七种槭树科植物木质部栓塞及其恢复与植物抗旱性的关系[D]. 杨凌: 西北农林科技大学, 2019. |
MENG Feng. The Relationship between Xylem Embolism and Embolism Recovery and Plant Drought Resistance in Seven Genus Acer[D]. Yangling: Northwest A & F University, 2019. | |
[12] |
McCulloh K A, Meinzer F C. Further evidence that some plants can lose and regain hydraulic function daily[J]. Tree Physiology, 2015, 35(7): 691-693.
DOI PMID |
[13] | Hacke U G, Jansen S. Embolism resistance of three boreal conifer species varies with pit structure[J]. The New Phytologist, 2009, 182(3): 675-686. |
[14] | Plavcová L, Hacke U G, Sperry J S. Linking irradiance-induced changes in pit membrane ultrastructure with xylem vulnerability to cavitation[J]. Plant, Cell & Environment, 2011, 34(3): 501-513. |
[15] |
Levionnois S, Kaack L, Heuret P, et al. Pit characters determine drought-induced embolism resistance of leaf xylem across 18 Neotropical tree species[J]. Plant Physiology, 2022, 190(1): 371-386.
DOI PMID |
[16] | Avila R T, Kane C N, Batz T A, et al. The relative area of vessels in xylem correlates with stem embolism resistance within and between Genera[J]. Tree Physiology, 2023, 43(1): 75-87. |
[17] | Christensen-Dalsgaard K K, Tyree M T. Frost fatigue and spring recovery of xylem vessels in three diffuse-porous trees in situ[J]. Plant, Cell & Environment, 2014, 37(5): 1074-1085. |
[18] | 党维, 姜在民, 李荣, 等. 6个树种1年生枝木质部的水力特征及与栓塞修复能力的关系[J]. 林业科学, 2017, 53(3): 49-59. |
DANG Wei, JIANG Zaimin, LI Rong, et al. Relationship between hydraulic traits and refilling of embolism in the xylem of one-year-old twigs of six tree species[J]. Scientia Silvae Sinicae, 2017, 53(3): 49-59. | |
[19] | 李美琦, 姜在民, 赵涵, 等. 加杨水力学与生理特性对不同土壤水分条件响应研究[J]. 植物生理学报, 2017, 53(4): 632-640. |
LI Meiqi, JIANG Zaimin, ZHAO Han, et al. Study on the adaptability of hydraulic and physiological characteristics to different soil moisture conditions in Populus x canadensis Moench[J]. Plant Physiology Journal, 2017, 53(4): 632-640. | |
[20] | 梁艳霞, 张亚楠, 王占和. 扁桃薄壳品种‘蒙特瑞’在山西中部地区的引种表现及栽培技术[J]. 果树资源学报, 2022, 3(6): 88-90. |
LIANG Yanxia, ZHANG Yanan, WANG Zhanhe. Introduction performance and cultivation technology of the thin-shelled variety 'Monterey' of lentil in central Shanxi[J]. Journal of Fruit Tree Resource, 2022, 3(6): 88-90. | |
[21] | 侯江涛, 张毅芳, 沈聪聪, 等. 扁桃引种栽培技术研究综述[J]. 林业科技通讯, 2020,(2): 11-14. |
HOU Jiangtao, ZHANG Yifang, SHEN Congcong, et al. Review on introduction and cultivation techniques of Amygdalus communis[J]. Forest Science and Technology, 2020,(2): 11-14. | |
[22] | 梁艳霞, 王占和, 张亚楠, 等. 扁桃特性及其丰产栽培技术[J]. 黑龙江粮食, 2021,(10): 108-109. |
LIANG Yanxia, WANG Zhanhe, ZHANG Yanan, et al. Characteristics of almond and its high-yield cultivation techniques[J]. Heilongjiang Grain, 2021,(10): 108-109. | |
[23] | 任哲, 贡翔, 张锐, 等. 扁桃优株叶片解剖结构与其抗旱性关系研究[J]. 农业与技术, 2022, 42(3): 10-14. |
REN Zhe, GONG Xiang, ZHANG Rui, et al. 扁桃优株叶片解剖结构与其抗旱性关系研究[J]. Agriculture and Technology, 2022, 42(3): 10-14. | |
[24] | Ayup M, Yang B, Gong P, et al. Evaluation of drought resistance of native almond-rootstock varieties in Xinjiang, China[J]. New Zealand Journal of Crop and Horticultural Science, 2022, 50(1): 48-68. |
[25] | 李荣. 耐旱树种木质部结构与耐旱性关系研究[D]. 杨凌: 西北农林科技大学, 2016. |
LI Rong. Relationships between Xylem Strucrure And Drought Tolerance of Drought Tolerant Tree Species[D]. Yangling: Northwest A & F University, 2016. | |
[26] | 木巴热克·阿尤普, 杨波, 艾沙江·买买提, 等. 基于当年生枝木质部解剖结构的扁桃品种栓塞抗性分析[J]. 西北林学院学报, 2021, 36(5): 99-105. |
Rebareke Ayoupu, YANG Bo, Ashajiang Maimaiti, et al. Xylem embolism resistance of different AlmondCultivars based on the xylem anatomical characteristics of current-year shoot[J]. Journal of Northwest Forestry University, 2021, 36(5): 99-105. | |
[27] |
Jansen S, Choat B, Pletsers A. Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms[J]. American Journal of Botany, 2009, 96(2): 409-419.
DOI PMID |
[28] |
Torres-Ruiz J M, Jansen S, Choat B, et al. Direct X-ray microtomography observation confirms the induction of embolism upon xylem cutting under tension[J]. Plant Physiology, 2015, 167(1): 40-43.
DOI PMID |
[29] | Sperry J S, Christman M A, Torres-Ruiz J M, et al. Vulnerability curves by centrifugation: is there an open vessel artefact, and are ‘r’ shaped curves necessarily invalid?[J]. Plant, Cell & Environment, 2012, 35(3): 601-610. |
[30] |
Cochard H, Barigah S T, Kleinhentz M, et al. Is xylem cavitation resistance a relevant criterion for screening drought resistance among Prunus species[J]. Journal of Plant Physiology, 2008, 165(9): 976-982.
PMID |
[31] | Tyree M T, Engelbrecht B M J, Vargas G, et al. Desiccation tolerance of five tropical seedlings in Panama.relationship to a field assessment of drought performance[J]. Plant Physiology, 2003, 132(3): 1439-1447. |
[32] | Cai J, Zhang S X, Tyree M T. A computational algorithm addressing how vessel length might depend on vessel diameter[J]. Plant, Cell & Environment, 2010: 33(7): 1234-1238. |
[33] | Markesteijn L, Poorter L, Paz H, et al. Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits[J]. Plant, Cell & Environment, 2011, 34(1): 137-148. |
[34] | Wheeler J K, Sperry J S, Hacke U G, et al. Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport[J]. Plant, Cell & Environment, 2005, 28(6): 800-812. |
[35] | Cochard H, Bréda N, Granier A, et al. Vulnerability to air embolism of three European oak species (Quercus petraea (Matt) Liebl, Q pubescens Willd, Q robur L)[J]. Annales Des Sciences Forestières, 1992, 49(3): 225-233. |
[36] |
Johnson D M, McCulloh K A, Woodruff D R, et al. Hydraulic safety margins and embolism reversal in stems and leaves: Why are conifers and angiosperms so different[J]. Plant Science, 2012, 195: 48-53.
DOI PMID |
[37] |
Hacke U G, Sperry J S, Pockman W T, et al. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure[J]. Oecologia, 2001, 126(4): 457-461.
DOI PMID |
[38] | 刘丽, 张立, 蔡靖, 等. 干旱胁迫及复水后84K杨栓塞修复及其他水力学特性的研究[J]. 北京林业大学学报, 2021, 43(7): 22-30. |
LIU Li, ZHANG Li, CAI Jing, et al. Hydraulic characteristics and embolism repair of Populus alba × P.glandulosa after drought stress and rehydration[J]. Journal of Beijing Forestry University, 2021, 43(7): 22-30. | |
[39] | 安锋, 蔡靖, 姜在民, 等. 八种木本植物木质部栓塞恢复特性及其与PV曲线水分参数的关系[J]. 西北农林科技大学学报(自然科学版), 2006, 34(1): 38-44. |
AN Feng, CAI Jing, JIANG Zaimin, et al. Refilling of embolism in the xylem of eight tree species and its relationship with Pressure-Volume parameters[J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry (Natural Science Edition), 2006, 34(1): 38-44. |
[1] | 唐茜茜, 木巴热克·阿尤普, 许盼云, 于秋红, 郭春苗, 张萍, 龚鹏. 扁桃不同砧木资源根系解剖结构对干旱胁迫的响应[J]. 新疆农业科学, 2023, 60(4): 897-907. |
[2] | 谢辉, 韩守安, 王敏, 张雯. 扁桃-冬小麦间作模式下不同树形对冬小麦产量和叶片光合能力的影响[J]. 新疆农业科学, 2021, 58(9): 1610-1623. |
[3] | 杨波, 郭春苗, 木巴热克·阿尤普, 龚鹏. 扁桃种质资源坚果数量性状遗传多样性和概率分级[J]. 新疆农业科学, 2021, 58(7): 1297-1305. |
[4] | 杨波, 郭春苗, 木巴热克·阿尤普, 肖丽, 许娟, 龚鹏, 徐叶挺. 扁桃果实发育过程内果皮中糖及木质素含量变化规律[J]. 新疆农业科学, 2021, 58(1): 23-29. |
[5] | 张雯, 周皓, 刘翠荣, 周玉梅, 谢辉. 不同树形对扁桃与冬小麦间作区域光环境的影响[J]. 新疆农业科学, 2020, 57(9): 1639-1649. |
[6] | 王敏, 李疆, 李鹏, 田嘉, 罗淑萍. 扁桃AcDHN1基因的克隆及原核表达分析[J]. 新疆农业科学, 2020, 57(12): 2221-2229. |
[7] | 孙泽昭, 张仁福, 王伟, 刘海洋, 姚举. 扁桃棉花间作对棉田主要害虫及捕食性天敌的影响[J]. 新疆农业科学, 2020, 57(11): 2044-2049. |
[8] | 张琦, 李鹏, 田嘉, 李疆. 转扁桃AcCBF1基因对烟草光合及叶绿素荧光特性的影响[J]. 新疆农业科学, 2019, 56(2): 267-277. |
[9] | 郭春苗, 朱正阳, 木巴热克·阿尤普, 许娟, 肖丽, 龚鹏, 杨波. 扁桃蔗糖合成酶对幼果生理脱落的响应研究[J]. 新疆农业科学, 2018, 55(11): 2012-2020. |
[10] | 张楚婕;李鹏;田嘉;罗淑萍;李疆. 野扁桃嫁接繁殖试验研究[J]. , 2017, 54(2): 272-280. |
[11] | 欧欢, 王绪春, 王振磊, 徐崇志, 王新建, 林敏娟. 自然越冬过程中扁桃枝条生理特性变化与抗寒性评价[J]. 新疆农业科学, 2017, 54(10): 1785-1795. |
[12] | 邵丽珊;李鹏;朱秋萍;罗淑萍;李疆. 新疆野扁桃生物学特性研究[J]. , 2016, 53(7): 1237-1244. |
[13] | 郭春苗;杨波;吐迪·麦麦提;李宁;唐亚萍;龚鹏;王继勋. 8个新疆扁桃S-基因多态性与生物信息学研究[J]. , 2016, 53(6): 1067-1073. |
[14] | 郭春苗;杨波;吐迪·麦麦提;唐亚萍;李宁;王继勋;龚鹏. 不同引物组合对新疆扁桃品种S-基因特异扩增效果比较[J]. , 2016, 53(4): 641-646. |
[15] | 张雯;谢辉;张平;杨磊;徐叶挺;龚鹏;钟海霞;张付春;卢春生. 南疆间作模式下扁桃树形差异对间作区域光环境及冬小麦相关产量指标的影响[J]. , 2016, 53(3): 411-419. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 14
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 67
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||