新疆农业科学 ›› 2024, Vol. 61 ›› Issue (12): 2872-2882.DOI: 10.6048/j.issn.1001-4330.2024.12.002
• 种质资源·分子遗传学·耕作栽培·生理生化·微生物 • 上一篇 下一篇
卢红琴1,2(), 白云岗2(
), 柴仲平1, 卢震林2, 刘洪波2, 郑明2, 肖军2
收稿日期:
2024-05-09
出版日期:
2024-12-20
发布日期:
2025-01-16
通信作者:
白云岗(1974-),男,新疆奇台人,教授级高级工程师,博士,研究方向为农业水土工程,(E-mail)xjbaiyg@sina.com作者简介:
卢红琴(1997-),女,新疆伊犁人,硕士研究生,研究方向为作物资源高效利用,(E-mail)luhongqin2023@126.com
基金资助:
LU Hongqin1,2(), BAI Yungang2(
), CHAI Zhongping1, LU Zhenlin2, LIU Hongbo2, ZHENG Ming2, XIAO Jun2
Received:
2024-05-09
Published:
2024-12-20
Online:
2025-01-16
Supported by:
摘要:
【目的】 研究拱棚栽培措施下“干播湿出”对棉花出苗率、生育进程及生长机制的影响。【方法】 于2023年在新疆阿克苏地区沙雅县海楼镇进行田间试验,设播种时间和拱棚栽培2个因素,常规“干播湿出”为对照,共4个处理,播种时间分别为4月7日与4月13日(4月13日是当地大田播种日期),同一播种时间采用“干播湿出”+拱棚、常规“干播湿出”2种栽培方式。分析不同处理下空气温度、土壤水-热-盐、棉花出苗率、生长指标与生理特性的响应特征。【结果】 “干播湿出”+拱棚处理下棚内温度高于大气温度,0~40 cm土层内,随着土层加深,拱棚增温效果逐步减缓,“干播湿出”+拱棚处理较常规“干播湿出”处理灌溉出苗水后0~20 cm土层平均土壤含水率提高1.57%~2.16%,20~40 cm土层平均土壤含水率提高0.46%~2.11%,且“干播湿出”+拱棚处理0~40 cm各层土壤电导率均低于“干播湿出”处理。“干播湿出”+拱棚处理棉花株高、茎粗、地上部干物质积累量显著高于“干播湿出”处理( P<0.05),“干播湿出”+拱棚处理棉花叶绿素含量、净光合速率较“干播湿出”处理分别高12.11%~14.29%、32.74%~41.68%。【结论】 拱棚处理可以使表层土壤增温,提高土壤保水能力,降低土壤盐分含量,提高棉花出苗率,促进棉花株高、茎粗、地上部干物质积累量及叶面积指数的生长,有利于棉花光合作用,且适宜早播对棉花生长的促进作用显著。
中图分类号:
卢红琴, 白云岗, 柴仲平, 卢震林, 刘洪波, 郑明, 肖军. 拱棚环境下“干播湿出”棉田保苗技术效果评价[J]. 新疆农业科学, 2024, 61(12): 2872-2882.
LU Hongqin, BAI Yungang, CHAI Zhongping, LU Zhenlin, LIU Hongbo, ZHENG Ming, XIAO Jun. Research on the effect of "dry sowing and wet discharge" cotton field seedling preservation technology in an arched shed environment[J]. Xinjiang Agricultural Sciences, 2024, 61(12): 2872-2882.
灌水时间 (月/日) Irrigation time (M/D) | 灌水定额 Irrigation quota(m3/hm2) | |||
---|---|---|---|---|
A1B1 | A1B2 | A2B1 | A2B2 | |
4/13 | 675 | 675 | 0 | 0 |
4/19 | 0 | 0 | 675 | 675 |
5/10 | 225 | 225 | 0 | 0 |
5/16 | 0 | 0 | 225 | 225 |
合计Total | 900 | 900 | 900 | 900 |
表1 “干播湿出”棉花灌溉试验设计
Tab.1 Design of Irrigation Experiment for “Dry Sowing and Wet Production” of Cotton
灌水时间 (月/日) Irrigation time (M/D) | 灌水定额 Irrigation quota(m3/hm2) | |||
---|---|---|---|---|
A1B1 | A1B2 | A2B1 | A2B2 | |
4/13 | 675 | 675 | 0 | 0 |
4/19 | 0 | 0 | 675 | 675 |
5/10 | 225 | 225 | 0 | 0 |
5/16 | 0 | 0 | 225 | 225 |
合计Total | 900 | 900 | 900 | 900 |
处理 Treat- ments | 播种日期 Sowing date (月/日) (M/D) | 第一株苗 出苗时间 First seedling emergence time (月/日) (M/D) | 播种后出 苗天数 Days of emergence after sowing (d) | 出苗率 Emergence rate(%) |
---|---|---|---|---|
A1B1 | 4/7 | 4/14 | 7 | 87.33±0.85a |
A1B2 | 4/7 | 4/18 | 11 | 73.61±1.0c |
A2B1 | 4/13 | 4/18 | 5 | 86.67±0.69a |
A2B2 | 4/13 | 4/21 | 8 | 77.20±0.12b |
表2 不同处理下棉花出苗率的变化
Tab.2 Changes of cotton emergence rate under different treatments
处理 Treat- ments | 播种日期 Sowing date (月/日) (M/D) | 第一株苗 出苗时间 First seedling emergence time (月/日) (M/D) | 播种后出 苗天数 Days of emergence after sowing (d) | 出苗率 Emergence rate(%) |
---|---|---|---|---|
A1B1 | 4/7 | 4/14 | 7 | 87.33±0.85a |
A1B2 | 4/7 | 4/18 | 11 | 73.61±1.0c |
A2B1 | 4/13 | 4/18 | 5 | 86.67±0.69a |
A2B2 | 4/13 | 4/21 | 8 | 77.20±0.12b |
处理 Treat- ments | 干物质积累量 Dry mass(g) | 地上部干 物质积累量 Mass of aboveground dry matter (g/株) | |
---|---|---|---|
叶 Leaf | 茎 Stem | ||
A1B1 | 4.49±0.85a | 4.14±0.97a | 8.63±0.21a |
A1B2 | 0.42±0.10c | 0.14±0.05b | 0.56±0.15c |
A2B1 | 3.17±0.12b | 3.38±0.62a | 6.55±0.28b |
A2B2 | 0.37±0.04c | 0.12±0.04b | 0.49±0.07c |
表3 不同处理下植株各器官干物质量的变化
Tab.3 Changes of different treatments on dry matter quality of plant organs
处理 Treat- ments | 干物质积累量 Dry mass(g) | 地上部干 物质积累量 Mass of aboveground dry matter (g/株) | |
---|---|---|---|
叶 Leaf | 茎 Stem | ||
A1B1 | 4.49±0.85a | 4.14±0.97a | 8.63±0.21a |
A1B2 | 0.42±0.10c | 0.14±0.05b | 0.56±0.15c |
A2B1 | 3.17±0.12b | 3.38±0.62a | 6.55±0.28b |
A2B2 | 0.37±0.04c | 0.12±0.04b | 0.49±0.07c |
因素 Factors | 出苗率 Emergence rate | 株高 Height | 茎粗 Stem diameter |
---|---|---|---|
棚内温度 Temperature inside the shed | 0.963* | 0.961* | 0.958* |
土壤温度 Temperature | 0.978* | 0.947 | 0.940 |
宽行含水率 Wide row moisture content | 0.948 | 0.853 | 0.834 |
窄行含水率 Narrow row moisture content | 0.955* | 0.865 | 0.847 |
宽行电导率 Wide row conductivity | -0.939 | -0.994** | -0.997** |
窄行电导率 Narrow row conductivity | -0.955* | -0.997** | -0.998** |
表4 不同因素下棉花出苗率及棉花生长的相关性
Tab.4 Correlation Analysis of Different Factors on Cotton Seedling Rate and Cotton Growth
因素 Factors | 出苗率 Emergence rate | 株高 Height | 茎粗 Stem diameter |
---|---|---|---|
棚内温度 Temperature inside the shed | 0.963* | 0.961* | 0.958* |
土壤温度 Temperature | 0.978* | 0.947 | 0.940 |
宽行含水率 Wide row moisture content | 0.948 | 0.853 | 0.834 |
窄行含水率 Narrow row moisture content | 0.955* | 0.865 | 0.847 |
宽行电导率 Wide row conductivity | -0.939 | -0.994** | -0.997** |
窄行电导率 Narrow row conductivity | -0.955* | -0.997** | -0.998** |
处理 Treatments | 净光合速率 Net photosynthetic rate (μmol/(m2·s)) | 蒸腾速率 Transpiration rate (mmol/(m2·s)) | 叶片气孔导度 Leaf stomatal conductance (mmol/(m2·s)) | 胞间CO2浓度 Intercellular CO2 concentration(μmol/mol) |
---|---|---|---|---|
A1B1 | 24.13±0.32a | 6.50±0.17a | 452±7.6a | 282±12.5c |
A1B2 | 17.03±0.29c | 4.37±0.15b | 296±4.7c | 327±4.4a |
A2B1 | 22.57±0.64b | 6.30±0.26a | 433±5.5b | 296±2.5b |
A2B2 | 16.40±0.40c | 4.23±0.21b | 277±9.1d | 331±3.2a |
表5 不同处理下苗期光合参数的变化
Tab.5 Changes effects of Different Treatments on Photosynthetic Parameters during Seedling Stage
处理 Treatments | 净光合速率 Net photosynthetic rate (μmol/(m2·s)) | 蒸腾速率 Transpiration rate (mmol/(m2·s)) | 叶片气孔导度 Leaf stomatal conductance (mmol/(m2·s)) | 胞间CO2浓度 Intercellular CO2 concentration(μmol/mol) |
---|---|---|---|---|
A1B1 | 24.13±0.32a | 6.50±0.17a | 452±7.6a | 282±12.5c |
A1B2 | 17.03±0.29c | 4.37±0.15b | 296±4.7c | 327±4.4a |
A2B1 | 22.57±0.64b | 6.30±0.26a | 433±5.5b | 296±2.5b |
A2B2 | 16.40±0.40c | 4.23±0.21b | 277±9.1d | 331±3.2a |
[1] | 董海波, 陈小平, 冯绍元, 等. 模拟气候变化对极端干旱区棉花产量和水分利用效率的影响[J]. 灌溉排水学报, 2022, 41(9): 23-32, 51. |
DONG Haibo, CHEN Xiaoping, FENG Shaoyuan, et al. Effects of climate change on seed yield and water use efficiency of cotton in arid regions: a simulation study[J]. Journal of Irrigation and Drainage, 2022, 41(9): 23-32, 51. | |
[2] | Tao F L, Zhang Z. Impacts of climate change as a function of global mean temperature: maize productivity and water use in China[J]. Climatic Change, 2011, 105(3): 409-432. |
[3] | 徐海量, 陈亚宁. 塔里木盆地风沙灾害危险性评价[J]. 自然灾害学报, 2003, 12(2): 35-39. |
XU Hailiang, CHEN Yaning. Hazard assessment of wind sand disaster in Tarim Basin[J]. Journal of Natural Disasters, 2003, 12(2): 35-39. | |
[4] | 吐尔逊·哈斯木, 石丽, 韩桂红, 等. 塔里木河下游植被和沙漠化对输水前后地下水变化的响应分析[J]. 中国沙漠, 2008, 28(6): 1033-1038. |
Tuerxun Hasimu, SHI Li, HAN Guihong, et al. Response of vegetation and desertification to groundwater change due to emergency water supply in lower reaches of Tarim River[J]. Journal of Desert Research, 2008, 28(6): 1033-1038. | |
[5] | 宗望远, 杨漫, 黄丹. 风沙流体对棉花幼苗破坏作用试验研究[J]. 塔里木大学学报, 2017, 29(1): 91-99. |
ZONG Wangyuan, YANG Man, HUANG Dan. The experimental study on the damage to cotton seedlings by windy and dusty[J]. Journal of Tarim University, 2017, 29(1): 91-99. | |
[6] | 王振华, 杨培岭, 郑旭荣, 等. 膜下滴灌系统不同应用年限棉田根区盐分变化及适耕性[J]. 农业工程学报, 2014, 30(4): 90-99. |
WANG Zhenhua, YANG Peiling, ZHENG Xurong, et al. Soil salinity changes of root zone and arable in cotton field with drip irrigation under mulch for different years[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(4): 90-99. | |
[7] | 热苏力·阿不拉, 牛生杰, 玉素甫·阿不拉, 等. 1970—2013年南疆渭干河-库车河流域绿洲冰雹时空变化特征和棉花受灾分析[J]. 冰川冻土, 2014, 36(6): 1556-1564. |
Resuli Abula, NIU Shengjie, Yusufu Abula, et al. Analysis of the spatial and temporal variation characteristics of hail events and damaged cotton in the Ogan-Kuchar River oases of southern Xinjiang during 1970-2013[J]. Journal of Glaciology and Geocryology, 2014, 36(6): 1556-1564.
DOI |
|
[8] |
席育贤, 张小建, 李金秀, 等. 2021年新疆阿克苏地区棉花减产原因及对策[J]. 中国棉花, 2022, 49(6): 44-46.
DOI |
XI Yuxian, ZHANG Xiaojian, LI Jinxiu, et al. Reasons and countermeasures of cotton production reduction in Aksu Prefecture of Xinjiang in 2021[J]. China Cotton, 2022, 49(6): 44-46.
DOI |
|
[9] | 李慧琴, 王潭刚, 胡宝, 等. 新疆南疆棉田苗期自然灾害的预防和应对措施[J]. 中国棉花, 2019, 46(6): 40, 46. |
LI Huiqin, WANG Tangang, HU Bao, et al. Prevention and response measures for natural disasters during the seedling stage of cotton fields in southern Xinjiang[J]. China Cotton, 2019, 46(6): 40, 46. | |
[10] |
史莲梅, 赵智鹏, 王旭. 1961—2014年新疆冰雹灾害时空分布特征[J]. 冰川冻土, 2015, 37(4): 898-904.
DOI |
SHI Lianmei, ZHAO Zhipeng, WANG Xu. Temporal and spatial distribution features of hail disaster in Xinjiang from 1961 to 2014[J]. Journal of Glaciology and Geocryology, 2015, 37(4): 898-904.
DOI |
|
[11] | 张萌原, 韩忠玲, 程勇翔, 等. 新疆棉花春季冷害风险评估[J]. 江苏农业科学, 2020, 48(10): 102-108. |
ZHANG Mengyuan, HAN Zhongling, CHENG Yongxiang, et al. Risk assessment of cotton cold damage in spring in Xinjiang area[J]. Jiangsu Agricultural Sciences, 2020, 48(10): 102-108. | |
[12] | 陆吐布拉·依明. 南疆近60a来风灾时空变化特征及其对农业生产的影响研究[D]. 乌鲁木齐: 新疆师范大学, 2011. |
Lutubula Yiming. Study on the spatiotemporal variation characteristics of wind disasters in southern Xinjiang over the past 60 years and their impact on agricultural production[D]. Urumqi: Xinjiang Normal University, 2011. | |
[13] | 马骏. 甘肃敦煌棉花小拱棚垄作栽培的探讨[J]. 江西棉花, 2011, 33(3): 38-40. |
MA Jun. Discussion on the cultivation of cotton in small arched greenhouse ridge cultivation in Dunhuang, Gansu[J]. Jiangxi Cotton, 2011, 33(3): 38-40. | |
[14] | 金若成, 郑楠, 袁小伟, 等. 棉花小拱棚机械化播种对比试验[J]. 新疆农机化, 2023,(2): 26-28. |
JIN Ruocheng, ZHENG Nan, YUAN Xiaowei, et al. Comparative test of mechanized cotton seeding in small arch shed[J]. Xinjiang Agricultural Mechanization, 2023,(2): 26-28. | |
[15] |
陈绪兰, 孙春梅, 刘萍. 棉花“干播湿出” 技术在新疆库尔勒推广实践[J]. 中国棉花, 2021, 48(5): 41-42, 45.
DOI |
CHEN Xulan, SUN Chunmei, LIU Ping. The practice of cotton “sowing drily and emerging wet” technology in Korla, Xinjiang[J]. China Cotton, 2021, 48(5): 41-42, 45.
DOI |
|
[16] | 吴楚鹏. 新疆沙雅县棉田土壤质量评价及其障碍因素分析[D]. 乌鲁木齐: 新疆农业大学, 2022. |
WU Chupeng. Evaluation of Cotton Field Soil Quality and Analysis of Obstacle Factors in Shaya County Xinjiang[D]. Urumqi: Xinjiang Agricultural University, 2022. | |
[17] | 陈文娟, 胡晓棠, 李清林, 等. 翻耕深度对膜下滴灌棉花生长和冠层小气候的影响[J]. 干旱地区农业研究, 2022, 40(4): 77-87. |
CHEN Wenjuan, HU Xiaotang, LI Qinglin, et al. Effects of tillage depth on cotton growth and canopymicroclimate under mulched drip irrigation[J]. Agricultural Research in the Arid Areas, 2022, 40(4): 77-87. | |
[18] |
娄善伟, 赵强, 高云光, 等. 密度对棉花冠层小气候影响及其与棉花相关生理特征和纤维品质的关系[J]. 棉花学报, 2010, 22(3): 260-266.
DOI |
LOU Shanwei, ZHAO Qiang, GAO Yunguang, et al. The effect of different density to canopy-microclimate and quality of cotton[J]. Cotton Science, 2010, 22(3): 260-266. | |
[19] |
任锋潇, 孙红春, 张永江, 等. 不同冠层结构对棉田小气候及蕾铃脱落和产量的影响[J]. 棉花学报, 2016, 28(4): 361-368.
DOI |
REN Fengxiao, SUN Hongchun, ZHANG Yongjiang, et al. Effects of different canopy structures on boll abscission, yield, and field microclimate of cotton[J]. Cotton Science, 2016, 28(4): 361-368. | |
[20] | 徐新霞, 雷建峰, 高丽丽, 等. 不同机采棉行距配置对棉花生长发育及光合物质生产的影响[J]. 干旱地区农业研究, 2017, 35(2): 51-56. |
XU Xinxia, LEI Jianfeng, GAO Lili, et al. Effects of different row spacing patterns on growth and photosynthetic production of machine-harvested cotton[J]. Agricultural Research in the Arid Areas, 2017, 35(2): 51-56. | |
[21] |
牛媛, 杨相昆, 张占琴, 等. 揭膜种植方式下不同灌水量对棉花干物质积累及产量的影响[J]. 新疆农业科学, 2022, 59(2): 291-301.
DOI |
NIU Yuan, YANG Xiangkun, ZHANG Zhanqin, et al. Effects of different irrigation amounts on dry matter accumulation of cotton under film uncovering cultivation[J]. Xinjiang Agricultural Sciences, 2022, 59(2): 291-301.
DOI |
|
[22] | Kasirajan S, Ngouajio M. Polyethylene and biodegradable mulches for agricultural applications: a review[J]. Agronomy for Sustainable Development, 2012, 32(2): 501-529. |
[23] | 王东旺, 吕廷波, 何新林, 等. 不同覆膜宽度对棉花土壤水分及地温的影响研究[J]. 节水灌溉, 2018,(12): 33-37, 43. |
WANG Dongwang, Lyu Tingbo, HE Xinlin, et al. Effects of different film width on soil moisture and soil temperature of cotton[J]. Water Saving Irrigation, 2018,(12): 33-37, 43. | |
[24] | 李俊霞, 杨俐苹, 白由路, 等. 不同品种玉米氮含量与叶片光谱反射率及SPAD值的相关性[J]. 中国土壤与肥料, 2015,(3): 34-39, 119. |
LI Junxia, YANG Liping, BAI Youlu, et al. The correlation of total nitrogen content with leaf spectral reflectance and SPAD values in different maize varieties[J]. Soil and Fertilizer Sciences in China, 2015,(3): 34-39, 119. | |
[25] | 王芳, 马云珍, 徐文修, 等. 叶绿素含量和叶柄硝酸盐含量对棉花氮素营养诊断的比较研究[J]. 新疆农业大学学报, 2021, 44(1): 8-13. |
WANG Fang, MA Yunzhen, XU Wenxiu, et al. Comparison of SPAD value and petiole nitrate content in diagnosis of cotton nitrogen nutrition[J]. Journal of Xinjiang Agricultural University, 2021, 44(1): 8-13. | |
[26] | 张金珠, 王振华, 虎胆·吐马尔白. 干旱区秸秆覆盖对滴灌棉花生长及产量的影响[J]. 排灌机械工程学报, 2014, 32(4): 350-355. |
ZHANG Jinzhu, WANG Zhenhua, Hudan Tumaerbai. Effect of straw mulching on growth and yield of cotton under drip irrigation in arid area[J]. Journal of Drainage and Irrigation Machinery Engineering, 2014, 32(4): 350-355. | |
[27] | Yao H S, Zhang Y L, Yi X P, et al. Cotton responds to different plant population densities by adjusting specific leaf area to optimize canopy photosynthetic use efficiency of light and nitrogen[J]. Field Crops Research, 2016, 188: 10-16. |
[28] | Yao H S, Zhang Y L, Yi X P, et al. Characters in light-response curves of canopy photosynthetic use efficiency of light and N in responses to plant density in field-grown cotton[J]. Field Crops Research, 2017, 203: 192-200. |
[29] | Dai J L, Li W J, Tang W, et al. Manipulation of dry matter accumulation and partitioning with plant density in relation to yield stability of cotton under intensive management[J]. Field Crops Research, 2015, 180: 207-215. |
[30] |
Wang S H, Mao L L, Shi J L, et al. Effects of plant density and nitrogen rate on cotton yield and nitrogen use in cotton stubble retaining fields[J]. Journal of Integrative Agriculture, 2021, 20(8): 2090-2099.
DOI |
[31] | 张金龙. 两种密度下不同熟性棉花品种生长发育及产量品质研究[D]. 阿拉尔: 塔里木大学, 2017. |
ZHANG Jinlong. Study on the Growth, Development, Yield, and Quality of Cotton Varieties with Different Matures under Two Density Conditions[D]. Aral: Tarim University, 2017. | |
[32] | 周建, 杨立峰, 郝峰鸽, 等. 低温胁迫对广玉兰幼苗光合及叶绿素荧光特性的影响[J]. 西北植物学报, 2009, 29(1): 136-142. |
ZHOU Jian, YANG Lifeng, HAO Fengge, et al. Photosynthesis and chlorophyll-fluorescence of Magnolia grandiflora seedlings under low temperature stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2009, 29(1): 136-142. |
[1] | 苗红萍, 王晓伟, 田聪华, 李志, 张玉新, 戴俊生. 塔里木河流域棉花生产与布局演变特征及驱动因素分析[J]. 新疆农业科学, 2024, 61(S1): 217-226. |
[2] | 王俊铎, 崔豫疆, 梁亚军, 龚照龙, 郑巨云, 李雪源. 新疆棉花生产优势区域分析[J]. 新疆农业科学, 2024, 61(S1): 60-69. |
[3] | 郑巨云, 龚照龙, 梁亚军, 耿世伟, 孙丰磊, 阳妮, 李雪源, 王俊铎. 新疆机采棉花生产关键技术模式[J]. 新疆农业科学, 2024, 61(S1): 70-74. |
[4] | 李杰, 刘佳, 王亮, 张娜, 杨延龙, 郑子漂, 魏鑫, 王萌, 周子馨, 阳妮, 龚照龙, 侯献飞, 黄启秀, 阿不都卡地尔·库尔班, 张济鹏, 张鹏忠. “棉、油、糖”科技成果转化现状及应用分析[J]. 新疆农业科学, 2024, 61(S1): 89-94. |
[5] | 扁青永, 付彦博, 祁通, 黄建, 蒲胜海, 孟阿静, 哈丽哈什·依巴提. 新疆南疆盐碱地棉花出苗影响因素及保苗措施分析[J]. 新疆农业科学, 2024, 61(S1): 95-100. |
[6] | 李永泰, 高阿香, 李艳军, 张新宇. 脱叶剂对不同敏感性棉花品种生理特性的影响[J]. 新疆农业科学, 2024, 61(9): 2094-2102. |
[7] | 张泽华, 叶含春, 王振华, 李文昊, 李海强, 刘健. 等氮配施脲酶抑制剂对滴灌棉花生长发育和产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2103-2111. |
[8] | 陈瑞杰, 罗林毅, 阮向阳, 冶军. 腐植酸对滴灌棉田土壤养分和棉花产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2112-2121. |
[9] | 黄铂轩, 李鹏程, 郑苍松, 孙淼, 邵晶晶, 冯卫娜, 庞朝友, 徐文修, 董合林. 不同氮素抑制剂对棉花生长发育、氮素利用与产量的影响[J]. 新疆农业科学, 2024, 61(9): 2122-2131. |
[10] | 王超, 徐文修, 李鹏程, 郑苍松, 孙淼, 冯卫娜, 邵晶晶, 董合林. 棉花苗期生长发育对土壤速效钾水平的响应[J]. 新疆农业科学, 2024, 61(9): 2132-2139. |
[11] | 张庭军, 李字辉, 崔豫疆, 孙孝贵, 陈芳. 微生物菌剂对棉花生长及土壤理化性质的影响[J]. 新疆农业科学, 2024, 61(9): 2269-2276. |
[12] | 董志多, 徐菲, 付秋萍, 黄建, 祁通, 孟阿静, 付彦博, 开赛尔·库尔班. 不同类型盐碱胁迫对棉花种子萌发的影响[J]. 新疆农业科学, 2024, 61(8): 1831-1844. |
[13] | 赖成霞, 杨延龙, 李春平, 玛依拉·玉素音, 王燕, 杨栋, 阳妮, 葛风伟, 汪鹏龙, 马君. 落叶型棉花黄萎病的生物学特征及药剂防治分析[J]. 新疆农业科学, 2024, 61(8): 2034-2042. |
[14] | 刘慧杰, 王俊豪, 龚照龙, 梁亚军, 王俊铎, 李雪源, 郑巨云, 王冀川. 197份陆地棉品种萌发期耐盐性鉴定[J]. 新疆农业科学, 2024, 61(7): 1574-1581. |
[15] | 高君, 侯献飞, 苗昊翠, 贾东海, 顾元国, 汪天玲, 黄奕, 陈晓露, 李强. 棉花-花生轮作模式对花生干物质积累量分配及产量的影响[J]. 新疆农业科学, 2024, 61(7): 1648-1656. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 43
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 104
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||