新疆农业科学 ›› 2024, Vol. 61 ›› Issue (11): 2713-2721.DOI: 10.6048/j.issn.1001-4330.2024.11.012
廖彩云(), 马贵(
), 周炎炎, 丁家富, 周悦, 毕可心, 孙蓉, 李有花
收稿日期:
2024-05-11
出版日期:
2024-11-20
发布日期:
2025-01-08
通信作者:
马贵(1982-),男,宁夏西吉人,副教授,硕士生导师,研究方向为新型污染物环境行为及生态效应,(E-mail)nxsfxymg@163.com作者简介:
廖彩云(1997-),女,江苏赣州人,硕士研究生,研究方向为环境毒理学,(E-mail)82007056@nxnu.edu.cn
基金资助:
LIAO Caiyun(), MA Gui(
), ZHOU Yanyan, DING Jiafu, ZHOU Yue, BI Kexin, SUN Rong, LI Youhua
Received:
2024-05-11
Published:
2024-11-20
Online:
2025-01-08
Supported by:
摘要:
【目的】研究微塑料作用下锌对玉米种子萌发与生长影响。【方法】以玉米种子为对象,研究锌(Zn)和3种微塑料[聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)]不同单一及复合处理对玉米种子萌发及其生长的影响。【结果】玉米种子发芽率、发芽指数、发芽势、活力指数、茎长和根长总体上均随Zn单一处理浓度升高呈现降低趋势。相比Zn,3种微塑料对玉米种子发芽和生长影响轻微。Zn和微塑料复合处理下,玉米发芽率、玉米发芽指数、发芽势和活力指数均大于相应Zn单一处理。在50 mg/L Zn+100 mg/L PE、50 mg/L Zn+100 mg/L PP、50 mg/L Zn+ 100 mg/L PVC处理下,玉米发芽率分别较50 mg/L Zn单一处理高14.29%、14.29%和9.52%。发芽指数、发芽势、活力指数在100 mg/L Zn+PE100 mg/L PE处理下分别较100 mg/L Zn处理高59.10%、76.91%和131.16%,在50 mg/L Zn+100 mg/L PVC下分别较50 mg/L Zn处理高15.76%、39.53%和15.47%。玉米种子茎和根长在50 mg/L Zn+PE 处理下随着PE浓度增加而增大。对于Zn+PP 处理,玉米茎长均低于相应Zn单一处理,根长在50 mg/L Zn+100 mg/L PE下较50 mg/L Zn高45.35%,在50 mg/L Zn+100 mg/L PP下较50 mg/L Zn高45.20%。在50 mg/L Zn+100 mg/L PVC下最大,较50 mg/L Zn高55.91%。【结论】添加较低浓度(100 mg/L)微塑料,能显著提高玉米种子对过量Zn的耐受性,促进种子发芽和生长。
中图分类号:
廖彩云, 马贵, 周炎炎, 丁家富, 周悦, 毕可心, 孙蓉, 李有花. 微塑料作用下锌对玉米种子萌发与生长影响[J]. 新疆农业科学, 2024, 61(11): 2713-2721.
LIAO Caiyun, MA Gui, ZHOU Yanyan, DING Jiafu, ZHOU Yue, BI Kexin, SUN Rong, LI Youhua. Effects of combined exposure of zinc and different microplastics on seed germination and growth of maize[J]. Xinjiang Agricultural Sciences, 2024, 61(11): 2713-2721.
微塑料及浓度 Microplastics and concentration (mg/L) | 发芽势 Germination potential(%) | 发芽指数 Germination index | 活力指数 Vitality index | ||||||
---|---|---|---|---|---|---|---|---|---|
Zn0 Zn0 Zn0 | Zn50 Zn50 Zn50 | Zn100 Zn100 Zn100 | |||||||
PE0 | 75 | 70.8 | 54.2 | 5.86 | 6.09 | 4.67 | 25.5 | 27.5 | 14.7 |
PE100 | 79.2 | 87.5 | 95.8 | 6.29 | 6.81 | 7.43 | 25.2 | 24.5 | 34 |
PE500 | 87.5 | 83.3 | 87.5 | 6.71 | 6.52 | 6.48 | 26.6 | 29.3 | 27.6 |
PE1000 | 91.7 | 83.3 | 58.3 | 7.06 | 7.05 | 4.86 | 40.2 | 37.1 | 9.1 |
PP0 | 75 | 70.8 | 54.2 | 5.86 | 6.09 | 4.67 | 25.5 | 27.5 | 14.7 |
PP100 | 83.3 | 91.7 | 75 | 6.71 | 7.1 | 5.9 | 22.97 | 29.21 | 15.66 |
PP500 | 75.2 | 83.3 | 79.2 | 6.48 | 6.62 | 5.9 | 22.61 | 23.17 | 17.76 |
PP1000 | 66.7 | 79.2 | 79.2 | 5.76 | 6.48 | 6.33 | 20.89 | 21.34 | 18.32 |
PVC0 | 75 | 70.8 | 54.2 | 5.86 | 6.09 | 4.67 | 25.5 | 27.5 | 14.7 |
PVC100 | 83.36 | 98.83 | 79.17 | 6.57 | 7.05 | 6.24 | 23.49 | 31.8 | 20.83 |
PVC500 | 70.83 | 83.33 | 66.67 | 5.88 | 6.57 | 6.05 | 19.7 | 18.72 | 16.15 |
PVC1000 | 79.17 | 75 | 83.33 | 6.05 | 5.71 | 6.24 | 22.63 | 18.93 | 24.75 |
表1 Zn和微塑料不同处理下玉米种子发芽特性的变化
Tab.1 Changes of germination characteristics of maize seeds under different treatments of Zn and microplastics
微塑料及浓度 Microplastics and concentration (mg/L) | 发芽势 Germination potential(%) | 发芽指数 Germination index | 活力指数 Vitality index | ||||||
---|---|---|---|---|---|---|---|---|---|
Zn0 Zn0 Zn0 | Zn50 Zn50 Zn50 | Zn100 Zn100 Zn100 | |||||||
PE0 | 75 | 70.8 | 54.2 | 5.86 | 6.09 | 4.67 | 25.5 | 27.5 | 14.7 |
PE100 | 79.2 | 87.5 | 95.8 | 6.29 | 6.81 | 7.43 | 25.2 | 24.5 | 34 |
PE500 | 87.5 | 83.3 | 87.5 | 6.71 | 6.52 | 6.48 | 26.6 | 29.3 | 27.6 |
PE1000 | 91.7 | 83.3 | 58.3 | 7.06 | 7.05 | 4.86 | 40.2 | 37.1 | 9.1 |
PP0 | 75 | 70.8 | 54.2 | 5.86 | 6.09 | 4.67 | 25.5 | 27.5 | 14.7 |
PP100 | 83.3 | 91.7 | 75 | 6.71 | 7.1 | 5.9 | 22.97 | 29.21 | 15.66 |
PP500 | 75.2 | 83.3 | 79.2 | 6.48 | 6.62 | 5.9 | 22.61 | 23.17 | 17.76 |
PP1000 | 66.7 | 79.2 | 79.2 | 5.76 | 6.48 | 6.33 | 20.89 | 21.34 | 18.32 |
PVC0 | 75 | 70.8 | 54.2 | 5.86 | 6.09 | 4.67 | 25.5 | 27.5 | 14.7 |
PVC100 | 83.36 | 98.83 | 79.17 | 6.57 | 7.05 | 6.24 | 23.49 | 31.8 | 20.83 |
PVC500 | 70.83 | 83.33 | 66.67 | 5.88 | 6.57 | 6.05 | 19.7 | 18.72 | 16.15 |
PVC1000 | 79.17 | 75 | 83.33 | 6.05 | 5.71 | 6.24 | 22.63 | 18.93 | 24.75 |
微塑料及浓度 Microplastics and concentration(mg/L) | 茎长 Stem length(cm) | 根长 Root length(cm) | ||||
---|---|---|---|---|---|---|
Zn0 | Zn50 | Zn100 | Zn0 | Zn50 | Zn100 | |
PE0 | 4.23 | 4.5 | 3.16 | 10.62 | 6.35 | 4.02 |
PE100 | 3.98 | 3.58 | 4.55 | 9.68 | 9.23 | 9.22 |
PE500 | 3.96 | 4.39 | 4.31 | 9.36 | 9.86 | 8.93 |
PE1000 | 5.68 | 5.24 | 1.86 | 14.21 | 11.93 | 5.94 |
PP0 | 4.23 | 4.5 | 3.16 | 10.62 | 6.35 | 4.02 |
PP100 | 3.37 | 4.12 | 2.67 | 7.67 | 9.22 | 5 |
PP500 | 3.51 | 3.45 | 3.05 | 8.95 | 7.69 | 8.11 |
PP1000 | 3.56 | 3.3 | 2.91 | 8.31 | 8.33 | 7.12 |
PVC0 | 4.23 | 4.5 | 3.16 | 10.62 | 6.35 | 4.02 |
PVC100 | 3.59 | 4.49 | 3.22 | 9.37 | 9.9 | 6.49 |
PVC500 | 3.35 | 2.85 | 2.65 | 7.58 | 6.52 | 4.59 |
PVC1000 | 3.71 | 3.29 | 3.95 | 8.34 | 6.48 | 7.79 |
表2 Zn和微塑料不同处理下玉米种子茎长和根长的变化
Tab.2 Changes of stem length and root length of maize seeds under different treatments of Zn and microplastics
微塑料及浓度 Microplastics and concentration(mg/L) | 茎长 Stem length(cm) | 根长 Root length(cm) | ||||
---|---|---|---|---|---|---|
Zn0 | Zn50 | Zn100 | Zn0 | Zn50 | Zn100 | |
PE0 | 4.23 | 4.5 | 3.16 | 10.62 | 6.35 | 4.02 |
PE100 | 3.98 | 3.58 | 4.55 | 9.68 | 9.23 | 9.22 |
PE500 | 3.96 | 4.39 | 4.31 | 9.36 | 9.86 | 8.93 |
PE1000 | 5.68 | 5.24 | 1.86 | 14.21 | 11.93 | 5.94 |
PP0 | 4.23 | 4.5 | 3.16 | 10.62 | 6.35 | 4.02 |
PP100 | 3.37 | 4.12 | 2.67 | 7.67 | 9.22 | 5 |
PP500 | 3.51 | 3.45 | 3.05 | 8.95 | 7.69 | 8.11 |
PP1000 | 3.56 | 3.3 | 2.91 | 8.31 | 8.33 | 7.12 |
PVC0 | 4.23 | 4.5 | 3.16 | 10.62 | 6.35 | 4.02 |
PVC100 | 3.59 | 4.49 | 3.22 | 9.37 | 9.9 | 6.49 |
PVC500 | 3.35 | 2.85 | 2.65 | 7.58 | 6.52 | 4.59 |
PVC1000 | 3.71 | 3.29 | 3.95 | 8.34 | 6.48 | 7.79 |
[1] | 高世杰. 我国玉米生产现状及发展趋势[J]. 农民致富之友, 2017,(22): 77. |
GAO Shijie. Present situation and development trend of maize production in China[J]. NONG MIN ZHI FU ZHI YOU, 2017,(22): 77. | |
[2] | 张孜璇, 于洪文, 孟龙月. 土壤中微塑料污染现状及其热点趋势可视化分析[J]. 中国农业大学学报, 2023, 28(6): 36-49. |
ZHANG Zixuan, YU Hongwen, MENG Longyue. Visualization analysis of the status and emerging trends of soil microplastics pollution[J]. Journal of China Agricultural University, 2023, 28(6): 36-49. | |
[3] | Zhang K, Hamidian A H, Tubiĉ A, et al. Understanding plastic degradation and microplastic formation in the environment: a review[J]. Environmental Pollution, 2021, 274: 116554. |
[4] | Xu B L, Liu F, Cryder Z, et al. Microplastics in the soil environment: Occurrence, risks, interactions and fate-A review[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(21): 2175-2222. |
[5] | 时馨竹, 孙丽娜, 李珍, 等. 沈阳周边农田土壤中微塑料组成与分布[J]. 农业环境科学学报, 2021, 40(7): 1498-1508. |
SHI Xinzhu, SUN Lina, LI Zhen, et al. Composition and distribution of microplastics in farmland soil around Shenyang[J]. Journal of Agro-Environment Science, 2021, 40(7): 1498-1508. | |
[6] | 张宇恺. 上海农田土壤中微塑料分布及对重金属吸附特征研究[D]. 上海: 上海第二工业大学, 2021. |
ZHANG Yukai. Distribution of Microplastics in Shanghai Farmland Soil and Its Adsorption Characteristics of Heavy Metals[D]. Shanghai: Shanghai Second Polytechnic University, 2021. | |
[7] | 马贵, 丁家富, 周悦, 等. 固原市农田土壤微塑料的分布特征及风险评估[J]. 环境科学, 2023, 44(9): 5055-5062. |
MA Gui, DING Jiafu, ZHOU Yue, et al. Distribution characteristics and risk assessment of microplastics in farmland soil in Guyuan[J]. Environmental Science, 2023, 44(9): 5055-5062. | |
[8] | 刘鑫蓓, 董旭晟, 解志红, 等. 土壤中微塑料的生态效应与生物降解[J]. 土壤学报, 2022, 59(2): 349-363. |
LIU Xinbei, DONG Xusheng, XIE Zhihong, et al. Ecological effects and biodegradation of microplastics in soils[J]. Acta Pedologica Sinica, 2022, 59(2): 349-363. | |
[9] | 李鹏飞, 侯德义, 王刘炜, 等. 农田中的(微)塑料污染:来源、迁移、环境生态效应及防治措施[J]. 土壤学报, 2021, 58(2): 314-330. |
LI Pengfei, HOU Deyi, WANG Liuwei, et al. (micro)plastics pollution in agricultural soils: sources, transportation, ecological effects and preventive strategies[J]. Acta Pedologica Sinica, 2021, 58(2): 314-330. | |
[10] | 许学慧, 胡海娜, 陈颖. 聚乙烯微塑料对大豆生长的影响[J]. 中国土壤与肥料, 2021,(6): 262-268. |
XU Xuehui, HU Haina, CHEN Ying. Study on the effect of polyethylene microplastics on soybean growth[J]. Soil and Fertilizer Sciences in China, 2021,(6): 262-268. | |
[11] | 王俊杰, 陈晓晨, 李权达, 等. 老化作用对微塑料吸附镉的影响及其机制[J]. 环境科学, 2022, 43(4): 2030-2038. |
WANG Junjie, CHEN Xiaochen, LI Quanda, et al. Effects of aging on the Cd adsorption by microplastics and the relevant mechanisms[J]. Environmental Science, 2022, 43(4): 2030-2038. | |
[12] | Fu Q M, Tan X F, Ye S J, et al. Mechanism analysis of heavy metal lead captured by natural-aged microplastics[J]. Chemosphere, 2021, 270: 128624. |
[13] | 冯天朕, 陈苏, 陈影, 等. 微塑料与Cd交互作用对小麦种子发芽的生态毒性研究[J]. 中国环境科学, 2022, 42(4): 1892-1900. |
FENG Tianzhen, CHEN Su, CHEN Ying, et al. Study on ecological toxicity of microplastics and cadmium interaction on wheat seed germination[J]. China Environmental Science, 2022, 42(4): 1892-1900. | |
[14] | 王晓晶, 杨毅哲, 曹阳, 等. 微塑料与镉及其复合对小麦种子发芽的影响[J]. 农业环境科学学报, 2023, 42(2): 263-273. |
WANG Xiaojing, YANG Yizhe, CAO Yang, et al. Effect of microplastics, cadmium, and their combination on wheat seed germination[J]. Journal of Agro-Environment Science, 2023, 42(2): 263-273. | |
[15] | 马贵, 廖彩云, 周悦, 等. 微塑料与铅复合污染对玉米种子萌发与生长的影响[J]. 环境科学, 2023, 44(8): 4458-4467. |
MA Gui, LIAO Caiyun, ZHOU Yue, et al. Effects of combined pollution of microplastics and lead on maize seed germination and growth[J]. Environmental Science, 2023, 44(8): 4458-4467. | |
[16] | 孙明飞, 朱杰, 李潞. 缺锌胁迫对‘天红2号/冀砧2号’苹果幼树生长、光合特性和内源激素含量的影响[J]. 植物营养与肥料学报, 2023, 29(3):544-552. |
SUN Mingfei, ZHU Jie, LI Lu, et al. Effects of zinc deficiency on growth, photosynthetic characteristics, and endogenous hormone content of apple sapling ‘Tianhong 2/Jizhen 2’[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(3):544-552. | |
[17] | 周武先, 李大荣, 龚丝雨, 等. 外源锌对白术种子萌发及幼苗生长的影响[J]. 北方园艺, 2022(3): 98-106. |
ZHOU Wuxian, LI Darong, GONG Siyu, et al. Effects of exogenous zinc on seed germination and seedling growth of Atractylodes macrocephala[J]. Northern Horticulture, 2022(3): 98-106. | |
[18] | BASIT A, GULSHAN A B, WAQAS M, et al. A Systematic Review on Heavy Metals Stress in Plants[J]. GU Journal of Phytosciences, 2022, 2(1):48-59. |
[19] | 黄荣, 姚博, 张宏, 等. CQ10-LPSp对紫花苜蓿幼苗抗氧化酶和防御酶的作用[J]. 草业科学, 2023, 40(2): 460-467. |
HUANG Rong, YAO Bo, ZHANG Hong, et al. Effects of CQ10-LPSp on antioxidative enzymes and defense enzymes of alfalfa seedlings[J]. Pratacultural Science, 2023, 40(2): 460-467. | |
[20] | 王泽正, 杨亮, 李婕, 等. 微塑料和镉及其复合对水稻种子萌发的影响[J]. 农业环境科学学报, 2021, 40(1): 44-53. |
WANG Zezheng, YANG Liang, LI Jie, et al. Single and combined effects of microplastics and cadmium on the germination characteristics of rice seeds[J]. Journal of Agro-Environment Science, 2021, 40(1): 44-53. | |
[21] | 赵玉红, 拉巴曲吉, 罗布, 等. 铜、镉、铅、锌对4种豆科植物种子萌发的影响[J]. 种子, 2017, 36(1): 22-28. |
ZHAO Yuhong, LA Baquji, LUO BU, et al. Effects of heavy metals copper, cadmium, lead and zinc on seed germination and seedling growth of leguminous species[J]. Seed, 2017, 36(1): 22-28. | |
[22] |
Bae J, Benoit D L, Watson A K. Effect of heavy metals on seed germination and seedling growth of common ragweed and roadside ground cover legumes[J]. Environmental Pollution, 2016, 213: 112-118.
DOI PMID |
[23] | Sperdouli I. Heavy metal toxicity effects on plants[J]. Toxics, 2022, 10(12): 715. |
[24] | Khalid N, Aqeel M, Noman A. Microplastics could be a threat to plants in terrestrial systems directly or indirectly[J]. Environmental Pollution, 2020, 267: 115653. |
[25] | Tan W J, Peralta-Videa J R, Gardea-Torresdey J L. Interaction of titanium dioxide nanoparticles with soil components and plants: current knowledge and future research needs-a critical review[J]. Environmental Science: Nano, 2018, 5(2): 257-278. |
[26] |
Bosker T, Bouwman L J, Brun N R, et al. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum[J]. Chemosphere, 2019, 226: 774-781.
DOI PMID |
[27] | Gao X, Hassan I, Peng Y T, et al. Behaviors and influencing factors of the heavy metals adsorption onto microplastics: a review[J]. Journal of Cleaner Production, 2021, 319: 128777. |
[28] | Lang M F, Yu X Q, Liu J H, et al. Fenton aging significantly affects the heavy metal adsorption capacity of polystyrene microplastics[J]. Science of the Total Environment, 2020, 722: 137762. |
[29] | Yu H, Hou J H, Dang Q L, et al. Decrease in bioavailability of soil heavy metals caused by the presence of microplastics varies across aggregate levels[J]. Journal of Hazardous Materials, 2020, 395: 122690. |
[30] | 陈春乐, 刘雅慧, 田甜. 几种典型微塑料对镉离子的吸附行为及其影响因素研究[J]. 安全与环境学报, 2023, 23(6): 2081-2089. |
CHEN Chunle, LIU Yahui, TIAN Tian. Study on the adsorption behaviors of cadmium ion by several typical microplastics and its influencing factors[J]. Journal of Safety and Environment, 2023, 23(6): 2081-2089. | |
[31] | 顾馨悦, 徐修媛, 咸泽禹, 等. 老化聚氯乙烯微塑料与镉对小麦的联合毒性[J]. 环境化学, 2021, 40(9): 2633-2639. |
GU Xinyue, XU Xiuyuan, XIAN Zeyu, et al. Joint toxicity of aged polyvinyl chloride microplastics and cadmium to the wheat plant[J]. Environmental Chemistry, 2021, 40(9): 2633-2639. | |
[32] | Cui Y Y, Zhang Q Y, Liu P, et al. Effects of polyethylene and heavy metal cadmium on the growth and development of Brassica chinensis var.chinensis[J]. Water, Air, & Soil Pollution, 2022, 233(10): 426. |
[1] | 郭文超, 贾尊尊, 丁新华, 叶晓琴, 付开赟, 吐尔逊·阿合买提, 王小武, 乔小燕, 孙建博. 新疆荒漠绿洲生态区亚洲玉米螟和欧洲玉米螟的种间竞争取代研究综述[J]. 新疆农业科学, 2024, 61(S1): 1-11. |
[2] | 孙健博, 吴莉莉, 贾尊尊, 叶晓琴, 丁新华, 付开赟, 吐尔逊·阿合买提, 王哲, 李亚文, 付文君, 艾尔肯娜依·买买提江, 安尼瓦尔·库尔班, 郭文超. 新疆伊犁河谷玉米主要害虫田间一喷多防药效评价[J]. 新疆农业科学, 2024, 61(S1): 12-18. |
[3] | 张帅, 高国文, 吴莉莉, 赵海燕, 王小武, 付开赟, 贾尊尊, 吐尔逊·阿合买提, 丁新华, 李克梅, 郭文超. 增效剂及微肥与种衣剂协同施用评价玉米茎腐病的防效[J]. 新疆农业科学, 2024, 61(S1): 19-27. |
[4] | 戴爱梅, 叶梦迪, 丁志梅, 王志慧, 乔晓燕, 王小武, 付开赟, 贾尊尊, 叶晓琴, 吐尔逊·阿合买提, 康健, 丁新华, 郭文超. 不同苯唑氟草酮施药方式防除玉米田杂草药效及安全性评价[J]. 新疆农业科学, 2024, 61(S1): 28-34. |
[5] | 袁梓涵, 赵雯慧, 王小武, 吐尔逊·阿合买提, 丁新华, 张帅, 付开赟, 贾尊尊, 郭文超. 玉米茎腐病生防菌的筛选及生防效果评价[J]. 新疆农业科学, 2024, 61(S1): 35-48. |
[6] | 巩雪花, 王小武, 付开赟, 贾尊尊, 吐尔逊·阿合买提, 乔小燕, 叶晓琴, 郭文超, 丁新华. 新疆绿洲灌区玉米田杂草种子库及环境因子对杂草种子萌发的影响[J]. 新疆农业科学, 2024, 61(S1): 49-59. |
[7] | 张磊, 孙诗仁, 谢小清, 王业建, 李冬, 唐怀君, 刘成. 额敏县玉米灌溉用水现状及节水灌溉策略[J]. 新疆农业科学, 2024, 61(S1): 81-84. |
[8] | 杨明花, 廖必勇, 刘强, 彭云承, 达吾来·杰克山, 冯国瑞, 唐式敏. 鲜食糯玉米籽粒营养品质的差异变化分析[J]. 新疆农业科学, 2024, 61(9): 2087-2093. |
[9] | 杨彩霞, 顾炜, 关媛, 瞿静涛, 党冬冬, 吴鹏昊, 郑洪建. 甜玉米基因Sugary1(Su1)序列的变异分析[J]. 新疆农业科学, 2024, 61(7): 1605-1614. |
[10] | 钟辉丽, 武均, 陆祥生. 甜玉米不同生育期施用改良剂组合对其产量及河西走廊次生盐碱化土壤性质的影响[J]. 新疆农业科学, 2024, 61(7): 1615-1625. |
[11] | 杨明花, 刘强, 冯国瑞, 廖必勇, 达吾来·杰克山, 彭云承, 布阿依夏木·那曼提, 陈艳萍. 鲜食糯玉米适宜采收期与籽粒含水量分析[J]. 新疆农业科学, 2024, 61(7): 1626-1630. |
[12] | 付浩, 张学军, 史增录, 程金鹏, 吴海峰, 于永良, 饶志强. 滴灌区玉米精量免耕播种机设计与试验[J]. 新疆农业科学, 2024, 61(5): 1094-1101. |
[13] | 刘婉琴, 易鸳鸯, 彭小武, 谢芳, 顾美英, 张志东. 头孢菌素菌渣有机肥对玉米土壤中耐药菌及相关抗性基因的影响[J]. 新疆农业科学, 2024, 61(4): 1003-1010. |
[14] | 朱韬, 雷庆元, 马亮. 不同水氮用量对复播玉米生长发育、产量及利用效率的影响和选优模型验证[J]. 新疆农业科学, 2024, 61(4): 835-844. |
[15] | 张磊, 姚梦瑶, 刘志刚, 李娟, 杨洋, 蔡大润, 陈果, 李波, 李晓荣, 陈勋基, 翟云龙. 基于无人机多光谱NDVI值估测玉米产量[J]. 新疆农业科学, 2024, 61(4): 845-851. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 15
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 72
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||