新疆农业科学 ›› 2023, Vol. 60 ›› Issue (6): 1372-1378.DOI: 10.6048/j.issn.1001-4330.2023.06.009
• 种质资源·耕作栽培·生理生化·土壤肥料·分子遗传学 • 上一篇 下一篇
邵盘霞(), 赵准, 邵武奎, 郝晓燕, 高升旗, 李建平, 胡文冉, 黄全生(
)
收稿日期:
2022-11-10
出版日期:
2023-06-20
发布日期:
2023-06-20
通信作者:
黄全生(1964-),男,新疆乌鲁木齐人,研究员,博士(后),研究方向为作物抗逆分子生物学,(E-mail) hquansheng@126.com作者简介:
邵盘霞(1996-),女,新疆乌鲁木齐人,研究方向为玉米抗逆分子生物学及新种质创制, (E-mail) 2655738862@qq.com
基金资助:
SHAO Panxia(), ZHAO Zhun, SHAO Wukui, HAO Xiaoyan, GAO Shengqi, LI Jianping, HU Wenran, HUANG Quansheng(
)
Received:
2022-11-10
Published:
2023-06-20
Online:
2023-06-20
Supported by:
摘要:
【目的】研究玉米ZmCDPK22基因的功能特征,分析该基因的编码序列,分析物种间的进化关系及蛋白互作及其功能,以叶片含水量作为干旱胁迫指标,研究ZmCDPK22在干旱胁迫下的表达特性。【方法】利用生物信息学手段分析该基因的基本特征,运用实时荧光定量(Quantitative Real-time PCR,qRT-PCR)技术分析该基因在干旱胁迫下的表达特性。【结果】该基因编码一个分子式为C2675H4217N779O798S21,分子量为60 731.91,氨基酸大小为539 aa,等电点为6.44的亲水性蛋白。该蛋白无跨膜结构以及信号肽,预测结果显示该蛋白定位于细胞核且与10个蛋白存在互作,属于PK_like亚家族;该基因启动区含有大量的光响应和多种激素响应等元件。在不同含水量情况下,ZmCDPK22的表达量不同,与叶片含水量87%相比,其相对表达量随着叶片含水量的降低而逐渐降低,在叶片含水量为78%时相对表达量最高,在含水量为33%时相对表达量最低。【结论】该基因在叶片不同含水量的表达量不同,该基因响应干旱胁迫,可能在干旱应答反应中发挥一定功能。
中图分类号:
邵盘霞, 赵准, 邵武奎, 郝晓燕, 高升旗, 李建平, 胡文冉, 黄全生. 玉米ZmCDPK22基因在干旱胁迫下的表达分析[J]. 新疆农业科学, 2023, 60(6): 1372-1378.
SHAO Panxia, ZHAO Zhun, SHAO Wukui, HAO Xiaoyan, GAO Shengqi, LI Jianping, HU Wenran, HUANG Quansheng. Expression analysis of ZmCDPK22 gene in maize under drought stress[J]. Xinjiang Agricultural Sciences, 2023, 60(6): 1372-1378.
元件 Element | 数量 Number | 功能 Function | 元件 Element | 数量 Number | 功能 Function |
---|---|---|---|---|---|
TATA-box | 30 | 核心启动元件 | GT1-motif | 1 | 光响应元件 |
CAAT-box | 26 | 核心启动元件 | G-box | 1 | 光响应元件 |
STRE | 6 | unknown | DRE core | 1 | unknown |
MYC | 5 | unknown | AT-rich element | 1 | 富含AT的DNA蛋白结合位点 |
as-1 | 3 | unknown | A-box | 1 | 顺式作用调控元件 |
CGTCA-motif | 3 | 茉莉酸甲酯响应元件 | W box | 1 | unknown |
TGACG-motif | 3 | 茉莉酸甲酯响应元件 | CCGTCC motif | 1 | unknown |
ARE | 3 | 厌氧诱导元件 | TCT-motif | 1 | 光响应元件 |
ABRE | 2 | 脱落酸响应元件 | Box 4 | 1 | 参与光反应 |
ACE | 2 | 光响应元件 | G-Box | 1 | 光响应元件 |
AAGAA-motif | 2 | unknown | WUN-motif | 1 | unknown |
Sp1 | 2 | 光响应元件 | H-box | 1 | unknown |
AT~TATA-box | 2 | unknown | ERE | 1 | unknown |
LTR | 1 | 低温响应元件 | CAT-box | 1 | 分生组织表达元件 |
CCGTCC-box | 1 | unknown | WRE3 | 1 | unknown |
Myc | 1 | unknown |
表1 ZmCDPK22启动子顺式作用元件
Tab.1 Cis-acting elements in the promoter of ZmCDPK22
元件 Element | 数量 Number | 功能 Function | 元件 Element | 数量 Number | 功能 Function |
---|---|---|---|---|---|
TATA-box | 30 | 核心启动元件 | GT1-motif | 1 | 光响应元件 |
CAAT-box | 26 | 核心启动元件 | G-box | 1 | 光响应元件 |
STRE | 6 | unknown | DRE core | 1 | unknown |
MYC | 5 | unknown | AT-rich element | 1 | 富含AT的DNA蛋白结合位点 |
as-1 | 3 | unknown | A-box | 1 | 顺式作用调控元件 |
CGTCA-motif | 3 | 茉莉酸甲酯响应元件 | W box | 1 | unknown |
TGACG-motif | 3 | 茉莉酸甲酯响应元件 | CCGTCC motif | 1 | unknown |
ARE | 3 | 厌氧诱导元件 | TCT-motif | 1 | 光响应元件 |
ABRE | 2 | 脱落酸响应元件 | Box 4 | 1 | 参与光反应 |
ACE | 2 | 光响应元件 | G-Box | 1 | 光响应元件 |
AAGAA-motif | 2 | unknown | WUN-motif | 1 | unknown |
Sp1 | 2 | 光响应元件 | H-box | 1 | unknown |
AT~TATA-box | 2 | unknown | ERE | 1 | unknown |
LTR | 1 | 低温响应元件 | CAT-box | 1 | 分生组织表达元件 |
CCGTCC-box | 1 | unknown | WRE3 | 1 | unknown |
Myc | 1 | unknown |
[1] |
Kuromori T, Fujita M, Takahashi F, et al. Inter‐tissue and inter‐organ signaling in drought stress response and phenotyping of drought tolerance[J]. The Plant Journal, 2022, 109(2):342-358.
DOI URL |
[2] |
Chen H, Dong J, Wang T. Autophagy in Plant Abiotic Stress Management[J]. International Journal of Molecular Sciences, 2021, 22(8):4075.
DOI URL |
[3] |
Kudla J, Batistiĉ O, Hashimoto K. Calcium Signals: The Lead Currency of Plant Information Processing[J]. The Plant Cell, 2012, 22(3):541-563.
DOI URL |
[4] |
Valmonte G R, Arthur K, Higgins C M, et al. Calcium-Dependent Protein Kinases in Plants: Evolution, Expression and Function[J]. Plant and Cell Physiology, 2014, 55(3):551-569.
DOI PMID |
[5] |
Zhu S, Yu X, Wang X, et al. Two Calcium-Dependent Protein Kinases, CPK4 and CPK11, Regulate Abscisic Acid Signal Transduction in Arabidopsis[J]. The Plant Cell, 2007, 19(10):3019-3036.
DOI URL |
[6] |
Zou J, Li X, Ratnasekera D, et al. Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 Function in Abscisic Acid-Mediated Signaling and H2O2 Homeostasis in Stomatal Guard Cells under Drought Stress[J]. The Plant Cell, 2015, 27(5):1445-1460.
DOI URL |
[7] |
Zou J, Wei F, Wang C, et al. Arabidopsis Calcium-Dependent Protein Kinase CPK10 Functions in Abscisic Acid- and Ca2+-Mediated Stomatal Regulation in Response to Drought Stress[J]. Plant Physiology, 2010, 154(3):1232-1243.
DOI URL |
[8] |
Campo S, Baldrich P, Messeguer J, et al. Overexpression of a Calcium-Dependent Protein Kinase Confers Salt and Drought Tolerance in Rice by Preventing Membrane Lipid Peroxidation?[J]. Plant Physiology, 2014, 165(2):688-704.
PMID |
[9] |
Wei S, Hu W, Deng X, et al. A rice calcium-dependent protein kinase OsCPK9 positively regulates drought stress tolerance and spikelet fertility[J]. BMC Plant Biol, 2014, 14:133.
DOI PMID |
[10] |
Vivek P J, Tuteja N, Soniya E V. CDPK1 from ginger promotes salinity and drought stress tolerance without yield penalty by improving growth and photosynthesis in Nicotiana tabacum[J]. PLoS One, 2013, 8(10):e76392.
DOI URL |
[11] |
Kong X, Lv W, Jiang S, et al. Genome-wide identification and expression analysis of calcium-dependent protein kinase in maize[J]. BMC Genomics, 2013, 14(1):433.
DOI |
[12] | Weckwerth P, Ehlert B, Romeis T. ZmCPK1, a calcium-independent kinase member of the Zea mays CDPK gene family, functions as a negative regulator in cold stress signalling[J]. Plant, Cell & Environment, 2015, 38(3):544-558. |
[13] |
Szczegielniak J, Borkiewicz L, Szurmak B, et al. Maize calcium-dependent protein kinase (ZmCPK11): local and systemic response to wounding, regulation by touch and components of jasmonate signalling[J]. Physiologia Plantarum, 2012, 146(1):1-14.
DOI URL |
[14] |
Li C, Wang M, Wu X, et al. THI1, a Thiamine Thiazole Synthase, Interacts with Ca2+-Dependent Protein Kinase CPK33 and Modulates the S-Type Anion Channels and Stomatal Closure in Arabidopsis?[J]. Plant Physiology, 2016, 170(2):1090-1104.
DOI URL |
[15] |
Huang K, Peng L, Liu Y, et al. Arabidopsis calcium-dependent protein kinase AtCPK1 plays a positive role in salt/drought-stress response[J]. Biochemical and Biophysical Research Communications, 2018, 498(1):92-98.
DOI PMID |
[16] |
Zhang H, Liu D, Yang B, et al. Arabidopsis CPK6 positively regulates ABA signaling and drought tolerance through phosphorylating ABA-responsive element-binding factors[J]. Journal of Experimental Botany, 2020, 71(1):188-203.
DOI URL |
[17] |
Zhao P, Liu Y, Kong W, et al. Genome-Wide Identification and Characterization of Calcium-Dependent Protein Kinase (CDPK) and CDPK-Related Kinase (CRK) Gene Families in Medicago truncatula[J]. International Journal of Molecular Sciences, 2021, 22(3):1044.
DOI URL |
[18] | 赵长江, 彭晶晶, 董洁静, 等. 玉米rboh基因家族鉴定及非生物逆境表达分析[J]. 玉米科学, 2021, 29(4):43-50. |
ZHAO Changjiang, PENG Jingjing, DONG Jiejing, et al. Analysis of abiotic stress expression of rboh gene family identified in maize genome[J]. Journal of Maize Sciences, 2021, 29(4):43-50. | |
[19] |
Cheng C, Xu X, Gao M, et al. Genome-Wide Analysis of Respiratory Burst Oxidase Homologs in Grape (Vitis vinifera L.)[J]. International Journal of Molecular Sciences, 2013, 14(12):24169-24186.
DOI PMID |
[20] | 张腾国, 赖晶, 李萍, 等. 不同处理下油菜RbohA、RbohD基因的表达特性分析[J]. 生态学杂志, 2019, 38(1):173-180. |
ZHANG Tengguo, LAI Jing, LI Ping, et al. Expression analysis of RbohA and RbohD genes in Brassica campestris under different treatments.[J]. Chinese Journal of Ecology, 2019, 38(1):173-180. | |
[21] |
Chehab E W, Patharkar O R, Hegeman A D, et al. Autophosphorylation and Subcellular Localization Dynamics of a Salt- and Water Deficit-Induced Calcium-Dependent Protein Kinase from Ice Plant[J]. Plant Physiology, 2004, 135(3):1430-1446.
DOI PMID |
[22] |
Xu J, Tian Y, Peng R, et al. AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis[J]. Planta, 2010, 231(6):1251-1260.
DOI PMID |
[23] |
Giammaria V, Grandellis C, Bachmann S, et al. StCDPK2 expression and activity reveal a highly responsive potato calcium-dependent protein kinase involved in light signalling[J]. Planta, 2011, 233(3):593-609.
DOI PMID |
[24] |
Lanteri M L, Pagnussat G C, Lamattina L. Calcium and calcium-dependent protein kinases are involved in nitric oxide- and auxin-induced adventitious root formation in cucumber[J]. Journal of Experimental Botany, 2006, 57(6):1341-1351.
PMID |
[25] |
足木热木·吐尔逊, 陈勋基, 陈果, 等. 玉米ZmCPK9基因在非生物胁迫下的表达分析[J]. 新疆农业科学, 2017, 54(9):1606-1612.
DOI |
Zumuremu Turxun, CHEN Xunji, CHEN Guo, et al. Expression Analysis of ZmCDPK9 Gene in Maize under Abiotic Stress[J]. Xinjiang Agricultural Sciences, 2017, 54(9):1606-1612.
DOI |
|
[26] |
李建平, 足木热木·吐尔逊, 常晓春, 等. 玉米钙依赖蛋白激酶38(ZmCDPK38)的生物信息学及表达特性分析[J]. 新疆农业科学, 2021, 58(1):49-55.
DOI |
LI Jianping, Zhumuremu Turxon, CHANG Xiaochun, et al. Expression Characteristics and Bioinformatics Analysis of ZmCDPK38 Gene in Maize[J]. Xinjiang Agricultural Sciences, 2021, 58(1):49-55.
DOI |
|
[27] | Yan S, Weng B, Jing L, et al. Effects of drought stress on water content and biomass distribution in summer maize(Zea mays L.)[J]. Frontiers in Plant Science, 2023, 14. |
[28] | 冯晓钰, 周广胜. 夏玉米叶片水分变化与光合作用和土壤水分的关系[J]. 生态学报, 2018, 38(1):177-185. |
FENG Xiaoyu, ZHOU Guangsheng. Relationship of leaf water content with photosynthesis and soil water content in summer maise[J]. Acta Ecologica Sinica, 2018, 38(1):177-185. |
[1] | 郭文超, 贾尊尊, 丁新华, 叶晓琴, 付开赟, 吐尔逊·阿合买提, 王小武, 乔小燕, 孙建博. 新疆荒漠绿洲生态区亚洲玉米螟和欧洲玉米螟的种间竞争取代研究综述[J]. 新疆农业科学, 2024, 61(S1): 1-11. |
[2] | 孙健博, 吴莉莉, 贾尊尊, 叶晓琴, 丁新华, 付开赟, 吐尔逊·阿合买提, 王哲, 李亚文, 付文君, 艾尔肯娜依·买买提江, 安尼瓦尔·库尔班, 郭文超. 新疆伊犁河谷玉米主要害虫田间一喷多防药效评价[J]. 新疆农业科学, 2024, 61(S1): 12-18. |
[3] | 张帅, 高国文, 吴莉莉, 赵海燕, 王小武, 付开赟, 贾尊尊, 吐尔逊·阿合买提, 丁新华, 李克梅, 郭文超. 增效剂及微肥与种衣剂协同施用评价玉米茎腐病的防效[J]. 新疆农业科学, 2024, 61(S1): 19-27. |
[4] | 戴爱梅, 叶梦迪, 丁志梅, 王志慧, 乔晓燕, 王小武, 付开赟, 贾尊尊, 叶晓琴, 吐尔逊·阿合买提, 康健, 丁新华, 郭文超. 不同苯唑氟草酮施药方式防除玉米田杂草药效及安全性评价[J]. 新疆农业科学, 2024, 61(S1): 28-34. |
[5] | 袁梓涵, 赵雯慧, 王小武, 吐尔逊·阿合买提, 丁新华, 张帅, 付开赟, 贾尊尊, 郭文超. 玉米茎腐病生防菌的筛选及生防效果评价[J]. 新疆农业科学, 2024, 61(S1): 35-48. |
[6] | 巩雪花, 王小武, 付开赟, 贾尊尊, 吐尔逊·阿合买提, 乔小燕, 叶晓琴, 郭文超, 丁新华. 新疆绿洲灌区玉米田杂草种子库及环境因子对杂草种子萌发的影响[J]. 新疆农业科学, 2024, 61(S1): 49-59. |
[7] | 张磊, 孙诗仁, 谢小清, 王业建, 李冬, 唐怀君, 刘成. 额敏县玉米灌溉用水现状及节水灌溉策略[J]. 新疆农业科学, 2024, 61(S1): 81-84. |
[8] | 杨明花, 廖必勇, 刘强, 彭云承, 达吾来·杰克山, 冯国瑞, 唐式敏. 鲜食糯玉米籽粒营养品质的差异变化分析[J]. 新疆农业科学, 2024, 61(9): 2087-2093. |
[9] | 曾婉盈, 耿洪伟, 程宇坤, 李思忠, 钱松廷, 高卫时, 张立明. 甜菜品系叶丛快速生长期抗旱性综合评价[J]. 新疆农业科学, 2024, 61(9): 2140-2151. |
[10] | 阿热孜姑·吐逊, 高杰. 干旱胁迫和播种密度对洋葱小鳞茎生理特性及产出鳞茎个数的影响[J]. 新疆农业科学, 2024, 61(9): 2211-2222. |
[11] | 杨彩霞, 顾炜, 关媛, 瞿静涛, 党冬冬, 吴鹏昊, 郑洪建. 甜玉米基因Sugary1(Su1)序列的变异分析[J]. 新疆农业科学, 2024, 61(7): 1605-1614. |
[12] | 钟辉丽, 武均, 陆祥生. 甜玉米不同生育期施用改良剂组合对其产量及河西走廊次生盐碱化土壤性质的影响[J]. 新疆农业科学, 2024, 61(7): 1615-1625. |
[13] | 杨明花, 刘强, 冯国瑞, 廖必勇, 达吾来·杰克山, 彭云承, 布阿依夏木·那曼提, 陈艳萍. 鲜食糯玉米适宜采收期与籽粒含水量分析[J]. 新疆农业科学, 2024, 61(7): 1626-1630. |
[14] | 马尚洁, 李生梅, 杨涛, 王红刚, 赵康, 庞博, 高文伟. 陆地棉GHWAT1-35基因的克隆及亚细胞定位[J]. 新疆农业科学, 2024, 61(6): 1310-1317. |
[15] | 鞠乐, 齐军仓, 牛银亭, 石培春, 宋瑞娇, 宋凌宇, 阴志刚, 陈培育, 强学兰. 基于RNA-seq的大麦苗期抗旱相关基因的挖掘与分析[J]. 新疆农业科学, 2024, 61(5): 1077-1084. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 71
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 183
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||