新疆农业科学 ›› 2023, Vol. 60 ›› Issue (3): 582-589.DOI: 10.6048/j.issn.1001-4330.2023.03.008

• 园艺特产·生理生化 • 上一篇    下一篇

核桃叶片氮元素含量的光谱预测模型

马文强1(), 刘佳1, 沈晓贺1, 陈中原2, 杨莉玲1(), 张漫3()   

  1. 1.新疆农业科学院农业机械化研究所,乌鲁木齐 830091
    2.新疆维吾尔自治区产品质量监督检验研究院,乌鲁木齐 830011
    3.中国农业大学现代精细农业系统集成研究教育部重点实验室, 北京 100083
  • 收稿日期:2022-07-30 出版日期:2023-03-20 发布日期:2023-04-18
  • 作者简介:马文强(1986-),新疆库车人,副研究员,博士,研究方向为林果智能化检测,(E-mail)mwq4530@163.com
  • 基金资助:
    自治区重点研发计划专项(2021B02004-4);新疆农业科学院科技创新重点培育专项(xjkcpy-004);自治区“人才引领林果业提质增效”试点工作项目

Prediction Model of Nitrogen Content in Walnut Leaves Based on Spectrum

MA Wenqiang1(), LIU Jia1, SHEN Xiaohe1, CHEN Zhongyuan2, YANG Liling1(), ZHANG Man3()   

  1. 1. Agricultural Mechanization Institute,Xinjiang Academy of Agricultural Sciences,Urumqi 830091, China
    2. Research Institute of Xinjiang Product Quality Supervision and Inspection,Urumqi 830011, China
    3. Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
  • Received:2022-07-30 Published:2023-03-20 Online:2023-04-18
  • Supported by:
    Major Scientific R & D Project of Xinjiang Uygur Autonomous Region(2021B02004-4);Key S & T Innovation Incubation Project of Xinjiang Academy of Agricultural Sciences(xjkcpy-004);Pilot Work Project of Xinjiang Uygur Autonomous Region "the Forestry and Fruit Industry to Improve the Quality and Efficiency of the Fruit Industry Led by Talents"

摘要:

【目的】分析325~1 075 nm范围内核桃叶片光谱与叶片氮元素含量的相关性,研究核桃叶片光谱数据预处理和特征波段筛选方法,建立核桃叶片氮元素含量的预测模型,为实现核桃生产中的快速施肥提供参考。【方法】建立多元散射校正 、Savitzky-Golay卷积平滑滤波和小波去噪的组合预处理方法;采用连续投影算法筛选出了特征波段;采用特征波段建立核桃叶片氮元素含量的偏最小二乘回归预测模型。【结果】建立的组合预处理方法对核桃叶片光谱去噪效果较好;采用特征波段建立的核桃叶片氮元素含量的预测模型,模型的验证集决定系数R2达到了0.875,均方根误差RMSE达到了0.697 3 mg/g。【结论】与全光谱数据相比,筛选出的特征波段降低了冗余数据和噪声的影响,提取出了有效成分相关的光谱信息,提高了建模质量。

关键词: 核桃; 光谱分析; 氮元素; 特征波段; 预测模型

Abstract:

【Objective】 This project aims to study the correlation between the walnut leaves spectrum of 325-1,075 nm and the content of nitrogen in walnut leaves and explore the walnut leaf spectral data pretreatment and characteristic band screening methods, and establish a prediction model for the nitrogen content of walnut leaves.In order to realize rapid fertilization guidance in walnut production.【Method】 First, a combined pretreatment method of multivariate scattering correction,Savitzky-Golay convolution smoothing filter and wavelet denoising were explored and established; then the feature bands were screened by the continuous projection algorithm; finally the predictive model of the nitrogen content in feature bands of walnut leaves were established by least squares regression.【Results】 The results showed that the established combined pretreatment method had a better denoising effect on walnut leaf spectrum; Using the predictive model of nitrogen content in walnut leaves established in feature bands, the model's validation set determination coefficient R2 reached 0.875, and the root mean square error RMSEP reached to 0.697,3 mg/g.【Conclusion】 Compared with the full spectrum data, this established model reduces the influence of redundant data and noise, extracts the spectral information related to the effective components, and improves the quality of modeling.

Key words: walnut; spectral analysis; nitrogen; feature band; prediction model

中图分类号: 


ISSN 1001-4330 CN 65-1097/S
邮发代号:58-18
国外代号:BM3342
主管:新疆农业科学院
主办:新疆农业科学院 新疆农业大学 新疆农学会

出版单位:《新疆农业科学》编辑部
地址:乌鲁木齐市南昌路403号新疆农业科学院
邮编:830091
电话:0991-4502046
E-mail:xjnykx-h@xaas.ac.cn


版权所有 © 《新疆农业科学》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发
总访问量:538197 今日访问:508 在线人数:4
网站
微信公众号
淘宝购买
微店购买