新疆农业科学 ›› 2023, Vol. 60 ›› Issue (3): 574-581.DOI: 10.6048/j.issn.1001-4330.2023.03.007
吕齐1,2(), 蒋宇1, 赵丰云1(
), 雷叶3, 于坤1, 姚东东1, 李旭娇1, 沙日叶1, 王芳霞1
收稿日期:
2022-08-09
出版日期:
2023-03-20
发布日期:
2023-04-18
作者简介:
吕齐(1997-),男,新疆人,硕士研究生,研究方向为果树栽培生理与水肥,(E-mail)1549993076@qq.com
基金资助:
LYU Qi1,2(), JIANG Yu1, ZHAO Fengyun1(
), LEI Ye3, YU Kun1, YAO Dongdong1, LI Xujiao1, SHA Riye1, WANG Fangxia1
Received:
2022-08-09
Published:
2023-03-20
Online:
2023-04-18
Supported by:
摘要:
【目的】盐胁迫条件下,研究施加生物炭对无花果植株生物量、叶绿素荧光参数及离子分配的影响。【方法】以2年生无花果布兰瑞克和日本紫果的扦插苗为试材,在0.6%(102 mmol/L)NaCl胁迫处理下,设置2个生物炭水平(非生物炭为对照和50 g/kg生物炭土壤),测定其生物量、叶绿素荧光参数及元素和离子含量。【结果】生物炭处理的布兰瑞克、日本紫果的叶片、叶柄、细根、粗根部位干重与对照相比显著增加;叶绿素荧光参数到第6 d第3片真叶最大荧光Fm布兰瑞克和日本紫果分别下降了34.0%、14.5%和52.7%、43.8%且布兰瑞克大于日本紫果;PSⅡ最大光化学效率Fv/Fm分别下降了30.3%、21.9%和31.6%、28.0%且布兰瑞克大于日本紫果;生物炭处理的植株与对照相比叶片根部毒害离子Na +、Cl-含量显著降低了,相反K+、Ca2+呈现显著增加趋势。【结论】施加生物炭减少了盐胁迫下对无花果植株毒害离子的吸收,以及叶绿素荧光参数下降幅度减少并保持较高值,维持了离子分配平衡,显著提高了其根部、叶部的生物量,促进其对营养矿物质的吸收。
中图分类号:
吕齐, 蒋宇, 赵丰云, 雷叶, 于坤, 姚东东, 李旭娇, 沙日叶, 王芳霞. 施加生物炭对盐胁迫下无花果生物量叶绿素荧光参数及离子分配的影响[J]. 新疆农业科学, 2023, 60(3): 574-581.
LYU Qi, JIANG Yu, ZHAO Fengyun, LEI Ye, YU Kun, YAO Dongdong, LI Xujiao, SHA Riye, WANG Fangxia. Effects of Biochar on Biomass, Chlorophyll Fluorescence Parameters and Ion Distribution of FIG under Salt Stress[J]. Xinjiang Agricultural Sciences, 2023, 60(3): 574-581.
处理 Treatment | 新叶 New leaf (g) | 新叶柄 New petiole (g) | 细根(<2 mm) Fine root (g) | 粗根(>2 mm) Thick root (g) |
---|---|---|---|---|
布兰瑞克+CK Brunswick+CK | 1.92±0.18b | 0.20±0.04b | 3.31±0.86ab | 6.83±0.97a |
布兰瑞克+生物炭 Brunswick+Biochar | 3.13±0.419a | 0.27±0.06a | 3.86±0.91a | 7.44±1.09a |
日本紫果+CK Violette Solise+CK | 1.80±0.12b | 0.18±0.05b | 2.45±0.24b | 6.42±0.75a |
日本紫果+生物炭 Violette Solise+Biochar | 2.94±0.35a | 0.25±0.02a | 3.09±0.45ab | 6.71±1.23a |
表1 盐胁迫施加生物炭下无花果植株生物量变化
Tab.1 Effect of applying biochar under salt stress on the biomass of fig plant
处理 Treatment | 新叶 New leaf (g) | 新叶柄 New petiole (g) | 细根(<2 mm) Fine root (g) | 粗根(>2 mm) Thick root (g) |
---|---|---|---|---|
布兰瑞克+CK Brunswick+CK | 1.92±0.18b | 0.20±0.04b | 3.31±0.86ab | 6.83±0.97a |
布兰瑞克+生物炭 Brunswick+Biochar | 3.13±0.419a | 0.27±0.06a | 3.86±0.91a | 7.44±1.09a |
日本紫果+CK Violette Solise+CK | 1.80±0.12b | 0.18±0.05b | 2.45±0.24b | 6.42±0.75a |
日本紫果+生物炭 Violette Solise+Biochar | 2.94±0.35a | 0.25±0.02a | 3.09±0.45ab | 6.71±1.23a |
部位 Position | 处理 Treatment | C(mg/kg) | N(mg/kg) | C/N |
---|---|---|---|---|
叶Leaf | 布兰瑞克+CK | 2.440±0.44a | 0.156±0.03ab | 15.66±0.03b |
布兰瑞克+生物炭 | 2.366±0.75a | 0.167±0.03a | 14.14±0.07b | |
日本紫果+CK | 2.356±0.43a | 0.113±0.06b | 20.84±0.13a | |
日本紫果+生物炭 | 2.595±0.20a | 0.164±0.02a | 15.84±0.22b | |
细根Fine root | 布兰瑞克+CK | 2.600±0.34a | 0.056±0.09c | 46.20±0.63a |
布兰瑞克+生物炭 | 2.576±0.53a | 0.064±0.06b | 40.18±0.43b | |
日本紫果+CK | 2.457±0.72a | 0.079±0.02a | 31.38±0.71c | |
日本紫果+生物炭 | 2.582±0.12a | 0.063±0.02b | 40.55±0.91b |
表2 盐胁迫施加生物炭下无花果植株C、N吸收变化
Tab.2 Effects of biochar on absorption of C, N in FIG plants under brackish water irrigation
部位 Position | 处理 Treatment | C(mg/kg) | N(mg/kg) | C/N |
---|---|---|---|---|
叶Leaf | 布兰瑞克+CK | 2.440±0.44a | 0.156±0.03ab | 15.66±0.03b |
布兰瑞克+生物炭 | 2.366±0.75a | 0.167±0.03a | 14.14±0.07b | |
日本紫果+CK | 2.356±0.43a | 0.113±0.06b | 20.84±0.13a | |
日本紫果+生物炭 | 2.595±0.20a | 0.164±0.02a | 15.84±0.22b | |
细根Fine root | 布兰瑞克+CK | 2.600±0.34a | 0.056±0.09c | 46.20±0.63a |
布兰瑞克+生物炭 | 2.576±0.53a | 0.064±0.06b | 40.18±0.43b | |
日本紫果+CK | 2.457±0.72a | 0.079±0.02a | 31.38±0.71c | |
日本紫果+生物炭 | 2.582±0.12a | 0.063±0.02b | 40.55±0.91b |
部位 Position | 处理 Treatment | Na+ (mg/kg) | K+ (mg/kg) | Ca2+(mg/kg) | Cl- (mg/kg) | K+ / Na + | Ca2+/ Na+ |
---|---|---|---|---|---|---|---|
叶 Leaf | 布兰瑞克+CK | 2 204.55±0.44a | 11 421.18±0.44a | 6 337.47±0.44a | 12 811.50±0.44a | 5.18 | 2.87 |
布兰瑞克+生物炭 | 1 793.86±0.44a | 18 489.95±0.44a | 10 634.91±0.44a | 7 546.10±0.44a | 10.31 | 5.93 | |
日本紫果+CK | 2 686.56±0.44a | 11 847.56±0.44a | 5 145.15±0.44a | 13 154.30±0.44a | 4.41 | 1.92 | |
日本紫果+生物炭 | 1 753.75±0.44a | 12 058.34±0.44a | 9 699.33±0.44a | 9 750.40±0.44a | 6.88 | 5.53 | |
细根 Fine root | 布兰瑞克+CK | 4 119.70±0.44a | 11 182.38±0.44a | 25 345.69±0.44a | 3 715.70±0.44a | 2.71 | 6.15 |
布兰瑞克+生物炭 | 2 732.87±0.44a | 13 000.87±0.44a | 49 543.95±0.44a | 2 361.30±0.44a | 4.76 | 18.13 | |
日本紫果+CK | 4 498.72±0.44a | 10 363.52±0.44a | 15 099.57±0.44a | 3 242.90±0.44a | 2.30 | 3.36 | |
日本紫果+生物炭 | 2 725.76±0.44a | 12 475.67±0.44a | 35 423.43±0.44a | 2 943.90±0.44a | 4.58 | 13.00 |
表3 盐胁迫施加生物炭下无花果植株Na+、 K+、Ca2+、Cl-分配变化
Tab.3 Effects of biochar on Na+, K+, Ca2+ and Cl- distribution in FIG plants under salt stress
部位 Position | 处理 Treatment | Na+ (mg/kg) | K+ (mg/kg) | Ca2+(mg/kg) | Cl- (mg/kg) | K+ / Na + | Ca2+/ Na+ |
---|---|---|---|---|---|---|---|
叶 Leaf | 布兰瑞克+CK | 2 204.55±0.44a | 11 421.18±0.44a | 6 337.47±0.44a | 12 811.50±0.44a | 5.18 | 2.87 |
布兰瑞克+生物炭 | 1 793.86±0.44a | 18 489.95±0.44a | 10 634.91±0.44a | 7 546.10±0.44a | 10.31 | 5.93 | |
日本紫果+CK | 2 686.56±0.44a | 11 847.56±0.44a | 5 145.15±0.44a | 13 154.30±0.44a | 4.41 | 1.92 | |
日本紫果+生物炭 | 1 753.75±0.44a | 12 058.34±0.44a | 9 699.33±0.44a | 9 750.40±0.44a | 6.88 | 5.53 | |
细根 Fine root | 布兰瑞克+CK | 4 119.70±0.44a | 11 182.38±0.44a | 25 345.69±0.44a | 3 715.70±0.44a | 2.71 | 6.15 |
布兰瑞克+生物炭 | 2 732.87±0.44a | 13 000.87±0.44a | 49 543.95±0.44a | 2 361.30±0.44a | 4.76 | 18.13 | |
日本紫果+CK | 4 498.72±0.44a | 10 363.52±0.44a | 15 099.57±0.44a | 3 242.90±0.44a | 2.30 | 3.36 | |
日本紫果+生物炭 | 2 725.76±0.44a | 12 475.67±0.44a | 35 423.43±0.44a | 2 943.90±0.44a | 4.58 | 13.00 |
处理 Treatment | K+选择 性运输 SK, Na | Ca2+选择 性运输 SCa, Na |
---|---|---|
布兰瑞克+CK Brunswick+CK | 1.91 | 0.47 |
布兰瑞克+生物炭 Brunswick+Biochar | 2.17 | 0.33 |
日本紫果+CK Violette Solise+CK | 1.91 | 0.57 |
日本紫果+生物炭 Violette Solise+Biochar | 1.50 | 0.43 |
表4 盐胁迫下施加生物炭对无花果植株K+、Ca2+选择性运输系数变化
Tab.4 Effects of biochar on the Selective transport coefficients of K+ and Ca2+ in FIG plants under salt stress
处理 Treatment | K+选择 性运输 SK, Na | Ca2+选择 性运输 SCa, Na |
---|---|---|
布兰瑞克+CK Brunswick+CK | 1.91 | 0.47 |
布兰瑞克+生物炭 Brunswick+Biochar | 2.17 | 0.33 |
日本紫果+CK Violette Solise+CK | 1.91 | 0.57 |
日本紫果+生物炭 Violette Solise+Biochar | 1.50 | 0.43 |
[1] | 张陆阳. 中国葡萄种植面积超越法国[J]. 中外葡萄与葡萄酒, 2015, (5): 64. |
ZHANG Luyang. The planting area of Grape in China exceeded that of France[J]. Chinese and Foreign Grape and Wine, 2015(5): 64. | |
[2] |
Amini S., Ghadiri H., Chen C., et al. Salt-affected soils, reclamation, carbon dynamics, and biochar: a review[J]. Soils Sediments 16 (3), 939-953.
DOI URL |
[3] | 史祥宾. 巨峰葡萄需氮规律及不同砧木的氮素吸收利用特征[D]. 泰安: 山东农业大学, 2012. |
SHI Xiangbin. Nitrogen requirement rule of Jufeng Grape and Nitrogen absorption and utilization characteristics of different rootstocks[D]. Tai’an: Shandong Agricultural University, 2012. | |
[4] | 史祥宾, 杨阳, 翟衡, 等. 不同时期施用氮肥对巨峰葡萄氮素吸收、分配及利用的影响[J]. 植物营养与肥料学报, 2011, (6): 1444-1450. |
SHI Xiangbin, YANG Yang, ZHAI Heng, et al. Effects of Nitrogen Fertilizer on Nitrogen Uptake, Distribution and Utilization of Jufeng Grape[J]. Plant Nutrition and Fertilizer Science, 2011, (6): 1444-1450. | |
[5] |
Carrari F, Fernie A R. Metabolic regulation underlying tomato fruit development[J]. Journal of Experimental Botany, 2006, 57(9):1883-1897.
DOI PMID |
[6] | 赵婷, 杨建宁, 吴玉霞, 等. 外源H2S处理对盐碱胁迫下垂丝海棠幼苗生理特性的影响[J]. 果树学报, 2020, 37(8):1156-1167. |
ZHAO Ting, YANG Jianning, WU Yuxia, et al. Effects of exogenous H2S on physiological characteristics of Malus sinensis seedlings under saline-alkali stress[J]. Journal of Fruit Science, 2020, 37(8):1156-1167. | |
[7] | Partey S T, Saito K, Preziosi R F, et al. Biochar use in a legume rice rotation system: effects on soil fertility and crop performance[J]. Archives of Agronomy & Soil Science, 2016, 62(2):199-215 |
[8] | Subedi R, Bertora C, Zavattaro L, et al. Crop response to soils amended with biochar: expected benefits and unintended risks[J]. Italian Journal of Agronomy, 2017, 11(794):161-173. |
[9] |
Thomas S C, Frye S, Gale N, et al. Biochar mitigates negative effects of salt additions on two herbaceous plant species.[J]. Journal of Environmental Management, 2013, 129(18):62-68.
DOI URL |
[10] |
Farhangi-Abriz S, Torabian S. Biochar improved nodulation and nitrogen metabolism of soybean under salt stress[J]. Symbiosis, 2017, 74(3):1-9.
DOI URL |
[11] | 于坤, 郁松林, 许雯博, 等. 干旱区膜下滴灌不同灌水和施氮水平对‘赤霞珠’葡萄幼苗氮素代谢和根系发育的影响[J]. 果树学报, 2013, 30(6):975-982. |
YU Kun, YU Songlin, XU Wenbo, et al. Effects of drip irrigation and nitrogen application on nitrogen metabolism and root development of Cabernet Sauvignon seedlings in arid region[J]. Journal of Fruit Science, 2013, 30(6):975-982. | |
[12] |
Wu W X, Ye Q F, Min H, et al. Bt-transgenic rice straw affects the culturable microbiota and dehydrogenase and phosphatase activities in a flooded paddy soil[J]. Soil Biology and Biochemistry, 2004, 36: 289-295.
DOI URL |
[13] | Greenway H, Armstrong W, Colmer T. Conditions leading to high CO2 (>5 kPa) in waterlogged-flooded soils and possible effects on root growth and metabolism[J]. Annals of Botany, 2006, 98:-32. |
[14] | Lashari M S, Ye Y, Ji H, et al. Biochar-manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from central China: a 2-year field experiment[J]. Journal of the Science of Food & Agriculture, 2015, 95(6):1321-1327. |
[15] |
Saifullah, Dahlawi S, Naeem A, et al. Biochar application for the remediation of salt-affected soils: Challenges and opportunities[J]. Science of the Total Environment, 2017, 625:320-335.
DOI URL |
[16] | Domestication of plants in the Old World: the origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean Basin[J]. Choice Reviews Online, 2013, 50(9) : 50-4995. |
[17] |
尤超, 沈虹, 张营营, 等. 不同无花果品种耐盐性与生理生化特征研究[J]. 中国农学通报, 2017, 33(1):64-71.
DOI |
LONG Chao, SHEN Hong, ZHANG Yingying, et al. Salt tolerance and physiological-biochemical characterstics of different Fig cultivars[J]. Chinese Agricultlulral Science Bulletin, 2017, 33(1):64-71. | |
[18] | Genty B, Briantais J M, Baker N R. The relationship be-tween the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochimica et Biophysica Acta, 1989, 990(1):87-92. |
[19] |
Awal Mohd Abdul. Analysis of Advantages of Gold (Au) Wash Solution for Chemical Analysis of Soil and Water Samples in Sundarbans by IPC-MS[J]. American Journal of Biomedical and Life Sciences, 2014, 2(5):108.
DOI URL |
[20] | 刘永强, 于泓. 离子色谱法在离子液体阴阳离子分析中的应用[J]. 分析测试学报, 2015, 34(6):734-743. |
LIU Yongqiang, YU Hong. Application of Ion Chromatography in the Analysis of Yin and Yang Ions in Ionic Liquid[J]. Journal of Analysis and Measurement, 2015, 34(6):734-743. | |
[21] | 鲍世德. 土壤农用化学分析方法[M]. 北京: 中国农业出版社, 2000. |
BAO Shidan. Analysis Methods for Soil Agro-Chemistry[M]. Beijing: China Agriculture Press, 2000. | |
[22] | PITMAN MG. Transport across the root and shoot/root interactions[M].STAPLES R C, TOENNIESSEN G H.Salinity tolerance in plants, strategies for crop improvement. New York: John Wiley and Sons, 1984:93-123. |
[23] |
Munns R, Termaat A. Whole plant responses to salinity[J]. Functional Plant Biology, 1986, 13(1): 143-160.
DOI URL |
[24] | 张守仁. 叶绿素荧光动力学参数的意义及讨论[J]. 植物学通报, 1999,(4): 444-448. |
ZHANG Shouren. The significance and discussion of chlorophyll fluorescence kinetic parameters[J]. Chinese Bulletin of Botany, 1999,(4): 444-448. | |
[25] |
M. Rejili, A.M. Vadel, A. Guetet, et al. Effect of NaCl on the growth and the ionic balance K+ /Na+ of two populations of Lotus creticus (L.) (Papilionaceae)[J]. South African Journal of Botany, 2007, 73(4): 623-631.
DOI URL |
[26] | 李俊敏, 刘朝晖, 尚忠林. 细胞膜上的离子通道[J]. 河北师范大学学报, 2005, 29(5): 519-522. |
LI Junming, LIU Zhaohui, SHANG Zhonglin. Ion channel on cell membrane[J]. Journal of Hebei Normal University, 2005, 29(5): 519-522. | |
[27] |
Usman A, Al-Wabel M I, Yong S O, et al. Conocarpus Biochar Induces Changes in Soil Nutrient Availability and Tomato Growth Under Saline Irrigation[J]. Pedosphere, 2016, 26(1):27-38.
DOI URL |
[28] | S. S. Akhtar, M. N. Andersen, F. Liu. Biochar Mitigates Salinity Stress in Potato[J]. Journal of Agronomy and Crop Science, 2015, 201(5):526-539. |
[29] |
Gayoung Yoo, Hyunjin Kim, Jong Yun Choi. Soil Aggregate Dynamics Influenced by Biochar Addition using the 13C Natural Abundance Method[J]. Soil Science Society of America Journal, 2017, 81(3):612-621.
DOI URL |
[30] | 张瑞, 贾旭梅, 朱祖雷, 等. ‘烟富六号’苹果在不同砧木上响应盐碱胁迫的光合及生理特性[J]. 果树学报, 2019, 36(6):718-728. |
ZHANG Rui, JIA Xumei, ZHU Zulei, et al. Photosynthetic and Physiological Characteristics of 'Yanfu No. 6' Apple Responding to Saline-Alkali Stress on Different rootstocks[J]. Journal of Fruit Science, 2019, 36(6):718-728. | |
[31] | 黄清荣, 祁琳, 柏新富. 根环境供氧状况对盐胁迫下棉花幼苗光合及离子吸收的影响[J/OL]. 生态学报, 2018(2):1-9[2018-01-29]. |
HUANG Qingrong, QI Lin, BAI Xinfu. Effects of root environment oxygen Supply on photosynthesis and ion absorption of cotton seedlings under salt stress[J/OL]. Acta Ecologica Sinica, 2018(2):1-9[2018-01-29]. | |
[32] |
López-Aguilar R, Orduйo-Cruz A, Lucero-Arce A, et al. Response to salinity of three grain legumes for potential cultivation in arid areas[J]. Soil Science and Plant Nutrition, 2003, 49(3): 329-336.
DOI URL |
[33] |
Chinnusamy V, Jagendorf A, Zhu J K. Understanding and improving salt tolerance in plants[J]. Crop Science, 2005, 45 (2): 437-448.
DOI URL |
[34] | 尚培培, 李丰先, 周宇飞, 等. 混合碱(NaHCO3和NaCO3)胁迫对高粱幼苗渗透调节和离子平衡的影响. 生态学杂志, 2015, 34(7):1924-1929. |
SHANG Peipei, LI Fengxian, ZHOU Yufei, et al. Effects of mixed alkali (NaHCO3 and NaCO3) stress on osmotic regulation and ion balance of Sorghum seedlings[J]. Chinese Journal of Ecology, 2015, 34 (7): 1924-1929. | |
[35] |
Grattan S R, Grieve C M. Mineral element acquisition and growth response of plants grown in saline environments[J]. Agriculture, Ecosystems & Environment, 1992, 38(4): 275-300.
DOI URL |
[1] | 肖淑婷, 颜安, 王卫霞, 张青青, 侯正清, 马梦倩, 孙哲. 天山中部典型林区地上生物量时空变化及影响因素分析[J]. 新疆农业科学, 2024, 61(9): 2237-2244. |
[2] | 李汝勇, 任久明, 雷霆, 王克林, 刘鹏程, 李江涛. 基于光合法和生物量法分析塔里木沙漠公路防护林带碳汇估算差异性[J]. 新疆农业科学, 2024, 61(8): 2014-2022. |
[3] | 邵亚杰, 李珂, 丁文浩, 林涛, 崔建平, 郭仁松, 王亮, 吴凤全, 王心, 汤秋香. 基于无人机多光谱影像特征估算棉花生物量[J]. 新疆农业科学, 2024, 61(6): 1328-1335. |
[4] | 耿美菊, 王新绘, 刘晓颖, 吕佩. 封育对荒漠草原真菌群落的影响[J]. 新疆农业科学, 2024, 61(5): 1250-1258. |
[5] | 巴哈依丁·吾甫尔, 阿布来克·尼牙孜, 胡西旦·买买提, 吕小龙, 王浩淼, 马会勤. 60Co-γ射线对不同无花果品种一年生枝条的辐射效应分析[J]. 新疆农业科学, 2024, 61(2): 373-381. |
[6] | 热依汗·阿布力孜, 何学敏, 杨欢, 黄鹏程, 冯海鹏, 王勇志. 不同水盐生境下小叶碱蓬叶绿素荧光参数特征及其对土壤因子的响应[J]. 新疆农业科学, 2024, 61(2): 485-494. |
[7] | 李亚莉, 哈丽哈什·依巴提, 唐亚莉, 段婧婧, 李青军. 氮磷减施与钾协同共效对加工番茄产量和养分吸收的影响[J]. 新疆农业科学, 2024, 61(12): 3014-3019. |
[8] | 侯正清, 颜安, 谢开云, 袁以琳, 夏雯秋, 肖淑婷, 张振飞, 孙哲. 基于植被指数融合天山假狼毒地上生物量的估测[J]. 新疆农业科学, 2024, 61(11): 2787-2796. |
[9] | 侯正清, 颜安, 谢开云, 袁以琳, 夏雯秋, 肖淑婷, 张振飞, 孙哲. 基于多特征融合的无人机天山假狼毒地上生物量估算[J]. 新疆农业科学, 2024, 61(10): 2527-2536. |
[10] | 姚军, 秦勇, 郑贺云, 张翠环, 再吐娜·买买提, 汪志伟, 耿新丽. 无花果叶提取液复合保鲜膜的研制及其在甜瓜保鲜上的应用[J]. 新疆农业科学, 2024, 61(1): 118-126. |
[11] | 马新超, 轩正英, 闵昊哲, 齐志文, 成宏宇, 谭占明, 王旭峰. 水氮耦合对沙培黄瓜光合日变化及叶绿素荧光参数的影响[J]. 新疆农业科学, 2023, 60(8): 1966-1974. |
[12] | 丁宇, 张江辉, 白云岗, 刘洪波, 郑明, 赵经华, 肖军, 韩政宇. 双膜条件下不同干播湿出水分处理对棉花生理、生长特性的影响[J]. 新疆农业科学, 2023, 60(4): 810-822. |
[13] | 夏停停, 苏比努尔·吾麦尔江, 于昭文, 李宏, 吕文钧, 吐尔逊娜依·热依木. 不同利用方式对天山北坡中段山地草甸草地植物生物量分布的影响[J]. 新疆农业科学, 2023, 60(4): 974-981. |
[14] | 秦国礼, 王为然, 王萌, 杨静, 黄幸磊, 刘志清, 朱家辉, 阿里甫·艾尔西, 孔杰, 陈国栋. 草甘膦对海岛棉农艺性状及光合作用的影响[J]. 新疆农业科学, 2023, 60(12): 2861-2868. |
[15] | 户金鸽, 白世践, 陈光, 蔡军社. 15个葡萄砧木耐热性差异评价[J]. 新疆农业科学, 2023, 60(1): 86-95. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 63
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 226
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||