新疆农业科学 ›› 2023, Vol. 60 ›› Issue (2): 351-358.DOI: 10.6048/j.issn.1001-4330.2023.02.012
• 园艺特产·植物保护·微生物·土壤肥料·节水灌溉 • 上一篇 下一篇
收稿日期:
2021-12-11
出版日期:
2023-02-20
发布日期:
2023-03-31
通信作者:
刘慧英(1970-),女,新疆石河子人,教授,研究方向为设施蔬菜栽培生理,(E-mail)hyliuok@aliyun.com作者简介:
朱普生(1994-),男,江苏连云港人,硕士研究生,研究方向设施蔬菜栽培生理,(E-mail)875920571@qq.com
基金资助:
ZHU Pusheng(), LIU Huiying(
), CAO Ze, LIU Kaige, LI Xuezhen
Received:
2021-12-11
Published:
2023-02-20
Online:
2023-03-31
Correspondence author:
LIU Huiying(1970-), female, born in Shihezi, Xinjiang, Professor, majoring in vegetable cultivation physiology of protected horticulture, (E-mail)hyliuok@aliyun.comSupported by:
摘要:
【目的】 研究NaCl胁迫下外源GSNO(NO供体)对番茄幼苗生长的调节作用。【方法】 以中蔬4号番茄为材料,通过对100 mmol/L NaCl胁迫下番茄幼苗分别喷施0.1 mmol/L GSNO(NO供体)(NG处理)、0.05 mmol/L cPTIO(NO清除剂)(NP处理)、0.1 mmol/L GSNO + 0.05 mmol/L cPTIO (NGP处理),研究外源GSNO对NaCl胁迫下番茄幼苗生长及其盐适应性的调控作用。【结果】 NaCl胁迫下施用GSNO的番茄幼苗生长情况明显好转,叶绿素含量和最大光化学效率(Fv/Fm)提高,Rubisco初始活性和总活性提高,卡尔文循环相关酶Rubisco活化酶(RCA)、磷酸甘油酸激酶(PGK)、磷酸甘油醛脱氢酶(GAPDH)、景天庚酮糖-1,7-二磷酸酶(SBPase)和果糖-1,6-二磷酸酶(FBPase)的活性提高。【结论】 外源GSNO对NaCl胁迫下番茄幼苗生长不良和光合作用降低有缓解作用。
中图分类号:
朱普生, 刘慧英, 曹泽, 刘凯歌, 李雪珍. 外源GSNO对NaCl胁迫下番茄幼苗生长及光合特性的影响[J]. 新疆农业科学, 2023, 60(2): 351-358.
ZHU Pusheng, LIU Huiying, CAO Ze, LIU Kaige, LI Xuezhen. Effects of Exogenous GSNO on Growth and Photosynthetic Characteristics of Tomato Seedlings under NaCl Stress[J]. Xinjiang Agricultural Sciences, 2023, 60(2): 351-358.
处理 Treatment | 株高 Plant height (cm) | 茎粗 Stem diameter (mm) | 地上鲜重 Fresh weight over water (g) | 地下鲜重 Fresh weight under water (g) | 地上干重 Dry weight over water (g) | 地下干重 Dry weight under water (g) | 根冠比 Root/shoot ratio | 壮苗指数 Strong seedling index |
---|---|---|---|---|---|---|---|---|
CK | 29.44±0.69a | 7.77±0.18a | 30.66±2.17a | 4.56±0.22ab | 2.16±0.24a | 0.18±0.01a | 0.08±0.01b | 0.81±0.06a |
NaCl | 20.29±0.2cd | 6.32±0.31c | 12.88±0.67c | 3.94±0.26bc | 0.97±0.04c | 0.12±0.00b | 0.13±0.00a | 0.48±0.02c |
NG | 22.62±0.3b | 6.74±0.08bc | 19.52±0.86b | 5.32±0.4a | 1.5±0.06b | 0.2±0.02a | 0.14±0.01a | 0.74±0.04ab |
NP | 19.53±0.98d | 6.76±0.19bc | 15.64±1.1bc | 3.3±0.18c | 1.22±0.09bc | 0.14±0.01b | 0.11±0.00a | 0.62±0.03b |
NGP | 22.19±0.75bc | 7.28±0.04ab | 18.77±0.9b | 4.61±0.41ab | 1.45±0.08b | 0.18±0.02a | 0.13±0.01a | 0.74±0.04ab |
表1 不同外源GSNO下NaCl胁迫下番茄幼苗生物量变化
Table 1 Effects of exogenous GSNO on tomato seedling biomass under NaCl stress
处理 Treatment | 株高 Plant height (cm) | 茎粗 Stem diameter (mm) | 地上鲜重 Fresh weight over water (g) | 地下鲜重 Fresh weight under water (g) | 地上干重 Dry weight over water (g) | 地下干重 Dry weight under water (g) | 根冠比 Root/shoot ratio | 壮苗指数 Strong seedling index |
---|---|---|---|---|---|---|---|---|
CK | 29.44±0.69a | 7.77±0.18a | 30.66±2.17a | 4.56±0.22ab | 2.16±0.24a | 0.18±0.01a | 0.08±0.01b | 0.81±0.06a |
NaCl | 20.29±0.2cd | 6.32±0.31c | 12.88±0.67c | 3.94±0.26bc | 0.97±0.04c | 0.12±0.00b | 0.13±0.00a | 0.48±0.02c |
NG | 22.62±0.3b | 6.74±0.08bc | 19.52±0.86b | 5.32±0.4a | 1.5±0.06b | 0.2±0.02a | 0.14±0.01a | 0.74±0.04ab |
NP | 19.53±0.98d | 6.76±0.19bc | 15.64±1.1bc | 3.3±0.18c | 1.22±0.09bc | 0.14±0.01b | 0.11±0.00a | 0.62±0.03b |
NGP | 22.19±0.75bc | 7.28±0.04ab | 18.77±0.9b | 4.61±0.41ab | 1.45±0.08b | 0.18±0.02a | 0.13±0.01a | 0.74±0.04ab |
图1 不同外源GSNO下NaCl胁迫下番茄幼苗气孔数目与根系形态变化 注:A:对气孔数目的影响;B:对根系总长度的影响;C:对根系总面积的影响;D:对根系总体积的影响;小写字母表示处理间在5%水平的差异显著性,下同
Fig.1 Effects of exogenous GSNO on stomatal number and root morphology of Tomato Seedlings under NaCl stress Note: A:the effect on stomatal number; B:the effect on total root length; C:the effect on total root area; D:the effect on total root volume; different small letters above figures indicates significant difference at 5% leve, the same as below
图2 不同外源GSNO下NaCl胁迫下番茄幼苗叶绿素含量变化 注:A:对叶绿素a含量的影响;B:对叶绿素b含量的影响;C:对总叶绿素含量的影响
Fig.2 Effect of exogenous GSNO on chlorophyll content of Tomato Seedlings under NaCl stress Note:A:the effect on chlorophyll a content, B:the effect on chlorophyll b content, C:the effect on the content of total chlorophyll
图3 不同外源GSNO下NaCl胁迫下番茄幼苗叶绿素荧光参数变化 注:A:对最大光化学效率(Fv/Fm)的影响;B:对实际光化学效率(YII)的影响;C:对化学淬灭系数(qP)的影响;D:对光合电子传递速率(ETR)的影响
Fig.3 Effects of exogenous GSNO on chlorophyll fluorescence parameters of Tomato Seedlings under NaCl stress Note: A:the effect on maximum photochemical efficiency (Fv / Fm); B:the effect on actual photochemical efficiency (YII); C:the effect on chemical quenching coefficient (qP); D:the effect on photosynthetic electron transfer rate (ETR)
指标 Index | 处理 Treatment | ||||
---|---|---|---|---|---|
CK | N | NG | NP | NGP | |
初始活性Rubisco(U/g) | 9.85±0.27a | 6.61±0.34c | 8.67±0.27b | 5.40±0.50d | 8.20±0.42b |
总活性Rubisco(U/g) | 30.82±0.72a | 12.59±0.28d | 24.34±1.27b | 15.40±0.66c | 17.10±0.82c |
活化酶Rubisco(RCA)活性(mU/g) | 1 827.33±87.05a | 1 221.15±83.85d | 1 672.63±22.10b | 1 114.68±36.29e | 1 356.19±7.71c |
磷酸甘油酸激酶(PGK)活性(U/g) | 1.79±0.02a | 1.40±0.04c | 1.55±0.06b | 1.15±0.05d | 1.44±0.02c |
磷酸甘油醛脱氢酶(GAPDH)活性(U/g) | 0.47±0.01a | 0.24±0.01d | 0.42±0.01b | 0.21±0.01e | 0.40±0.01c |
景天庚酮糖-1,7-二磷酸酶(SBPase) 活性(U/g) | 1.31±0.10a | 0.43±0.01d | 0.67±0.05c | 0.48±0.02d | 0.78±0.01b |
果糖-1,6-二磷酸酶(FBPase) 活性(mU/g) | 937.38±10.82a | 837.33±3.11b | 936.85±7.80a | 794.68±10.80c | 857.13±29.93b |
果糖-1,6-二磷酸醛缩酶(FBA) 活性(mU/g) | 1.38±0.03a | 1.27±0.04b | 1.22±0.05b | 1.01±0.02c | 1.28±0.03b |
表2 不同外源GSNO下NaCl胁迫下番茄幼苗卡尔文循环相关酶活性变化
Table 2 Effects of exogenous GSNO on activities of Calvin cycle related enzymes in tomato seedlings under NaCl stress
指标 Index | 处理 Treatment | ||||
---|---|---|---|---|---|
CK | N | NG | NP | NGP | |
初始活性Rubisco(U/g) | 9.85±0.27a | 6.61±0.34c | 8.67±0.27b | 5.40±0.50d | 8.20±0.42b |
总活性Rubisco(U/g) | 30.82±0.72a | 12.59±0.28d | 24.34±1.27b | 15.40±0.66c | 17.10±0.82c |
活化酶Rubisco(RCA)活性(mU/g) | 1 827.33±87.05a | 1 221.15±83.85d | 1 672.63±22.10b | 1 114.68±36.29e | 1 356.19±7.71c |
磷酸甘油酸激酶(PGK)活性(U/g) | 1.79±0.02a | 1.40±0.04c | 1.55±0.06b | 1.15±0.05d | 1.44±0.02c |
磷酸甘油醛脱氢酶(GAPDH)活性(U/g) | 0.47±0.01a | 0.24±0.01d | 0.42±0.01b | 0.21±0.01e | 0.40±0.01c |
景天庚酮糖-1,7-二磷酸酶(SBPase) 活性(U/g) | 1.31±0.10a | 0.43±0.01d | 0.67±0.05c | 0.48±0.02d | 0.78±0.01b |
果糖-1,6-二磷酸酶(FBPase) 活性(mU/g) | 937.38±10.82a | 837.33±3.11b | 936.85±7.80a | 794.68±10.80c | 857.13±29.93b |
果糖-1,6-二磷酸醛缩酶(FBA) 活性(mU/g) | 1.38±0.03a | 1.27±0.04b | 1.22±0.05b | 1.01±0.02c | 1.28±0.03b |
[1] |
Li R, Fei Z, Ling K S. Molecular and biological properties of tomato necrotic stunt virus and development of a sensitive real-time RT-PCR assay[J]. Archives of Virology, 2014, 159(2):353-358.
DOI PMID |
[2] | Simaei M, Khavari-nejad R A, Saadatmand S., et al. Effects of salicylic acid and nitric oxide on antioxidant capacity and proline accumulation in Glycinemax L. treated with NaCl salinity[J]. African Journal of Agricultural Research, 2011, 6(16): 3775-3782. |
[3] |
蒋卫杰, 邓杰, 余宏军. 设施园艺发展概况、存在问题与产业发展建议[J]. 中国农业科学, 2015, 48(17): 3515-3523.
DOI |
JIANG Weijie, DENG Jie, YU Hongjun. Development Situation, Problems and Suggestions on Industrial Development of Protected Horticulture[J]. Scientia Agricultura Sinica, 2015, 48(17): 3515-3523.
DOI |
|
[4] | 王学征, 李秋红, 吴凤芝. NaCl 胁迫下栽培型番茄 Na+、K+吸收、分配和转运特性[J]. 中国农业科学, 2010, 43(7): 1423-1432. |
WANG xuezheng, LI qiuhong, WU fengzhi. Study on the Characteristics of Absorption, Distribution and Selective Transport of Na+ and K+ in Tomato Plants under Salt Stress[J]. Scientia Agricultura Sinica, 2010, 43(7): 1423-1432. | |
[5] | 李换丽. 硅对番茄幼苗抗盐性的影响及机理初探[D]. 杨凌: 西北农林科技大学, 2015. |
LI huanli. The effect and mechanism of exogenous silicon onsalt resistance of tomato seedlings[D]. Yangling: Northwest A&F University, 2015. | |
[6] | 李响, 高月, 王少贺. 设施蔬菜连作障碍治理对比试验探析[J]新农业. 2021,(3): 43-44. |
LI Xiang, GAO Yue, WANG Shaohe. Contrast test analysis of facility vegetables continuous farming disorders[J]. Modern Agriculture, 2021,(3): 43-44. | |
[7] |
Yu M, Lamattina L, Spoel S H, et al. Nitric oxide function in plant biology: a redox cue in deconvolution[J]. New Phytologist, 2014, 202(4):1142-1156.
DOI PMID |
[8] | Li Y Y, He J M. Effect of Nitric Oxide on Tomato Seeds Resisting against Chilling Imbibition[J]. Acta Botanica Boreali-Occidentalia Sinica, 2008, 28(4):709-717. |
[9] |
Crawford G N M. Arabidopsis Nitric Oxide Synthase1 Is Targeted to Mitochondria and Protects against Oxidative Damage and Dark-Induced Senescence[J]. Plant Cell, 2005, 17(12):3436-3450.
DOI URL |
[10] |
Klessig, D F, Durner, et al. Nitric oxide and salicylic acid signaling in plant defense[J]. PROC NAT ACAD SCI USA, 2000, 97(16):8849-8855.
DOI URL |
[11] |
Asgher M, Per T S, Masood A, et al. Nitric oxide signaling and its crosstalk with other plant growth regulators in plant responses to abiotic stress[J]. Environmental Science and Pollution Research, 2017, 24(3):2273-2285.
DOI URL |
[12] |
Leitner M, Vandelle E, Gaupels F, et al. NO signals in the haze: nitric oxide signaling in plant defence[J]. Current Opinion in Plant Biology, 2009, 12(4):451-458.
DOI PMID |
[13] |
Feechan A, Kwon E, Yun B W, et al. A central role for S-nitrosothiols in plant disease resistance[J]. Proc Natl Acad Sci U S A, 2005, 102(22):8054-8059.
DOI URL |
[14] | 刘会芳, 王强, 韩豪. NaCl胁迫对不同辣椒品种幼苗光合作用及生长的影响[J]长江蔬菜. 2020,(24): 16-18. |
LIU Huifang, WANG Qiang, HAN Hao. Effects of Na Cl Stress on Photosynthesis and Growth of Different Cultivars of Pepper Seedlings[J]. Journal of Changjiang Vegetables, 2020,(24): 16-18. | |
[15] | 张志良, 瞿伟菁, 李小方. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2009. |
ZHANG Zhiliang, ZHAI Weiqin, LI Xiaofang. Experimental Handbook for Plant Biology[M]. Beijing: Higher Education Press, 2009. | |
[16] | 岳小红, 曹靖, 耿杰 等. 盐分胁迫对啤酒大麦幼苗生长、离子平衡和根际 pH 变化的影响[J]. 生态学报, 2018, 38(20):7373-7380. |
YUE Xiaohong, CAO Jing, GENG Jie, et al. Effects of different types of salt stress on growth, ion balance and rhizosphere pH changes in beer barley seedlings[J] Acta Ecologica Sinica, 2018, 38(20):7373-7380. | |
[17] |
孙德智, 杨恒山, 张庆国, 等. 外源一氧化氮供体硝普钠对番茄幼苗盐胁迫伤害的缓解作用[J]. 浙江农业学报, 2019, 31(8): 1286-1294.
DOI |
SUN Dezhi, YANG Hengshan, ZHANG Qingguo. Alleviating effect of exogenous nitric oxide donor sodium nitroprusside on tomato seedlings under salt stress[J]. Acta Agriculturae Zhejiangensis, 2019, 31(8): 1286-1294.
DOI |
|
[18] | 郑州元. 硫化氢调控盐胁迫下加工番茄种子萌发及幼苗生长的生理机制研究[D]. 石河子: 石河子大学, 2017. |
ZHENG Zhouyuan. Physiological mechanisms of hydrogen sulfide in regulating seed germination and seedlings growth of processing tomato under NaCl stress[D]. Shihezi: Shihezi University, 2017. | |
[19] | 孙德智, 何淑平, 彭靖, 等. 水杨酸和硝普钠对NaCl胁迫下番茄幼苗生长及生理特性的影响[J]. 西北植物学报, 2013, 33(3): 541-546. |
SUN Dezhi, HE Shuping, PENG jing. Effects of Salicylic Acid and Sodium Nitropprusside on Tomato Seedling Growth and Physiological Characteristics under NaCl Stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(3): 541-546. | |
[20] | 周艳, 刘慧英, 王松, 等. 外源GSH对盐胁迫下番茄幼苗生长及抗逆生理指标的影响[J]. 西北植物学报, 2016, 36(3):515-520. |
ZHOU Yan, LIU Huiying, WANG Song, et al. Effect of Exogenous GSH on Tomato Seedlings Growth and Physiological Indexes of Resistance Stress under Salt Stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(3):515-520. | |
[21] | 杜卓涛, 杨衍, 朱国鹏, 等. 外源一氧化氮对低温胁迫下苦瓜幼苗生长及部分抗逆指标的影响[J]. 浙江农业学报, 2016, 28(5): 776-781. |
DU Zhuotao, YANG Yan, ZHU Guopeng, et al. Effects of exogenous NO on plant growth and resistant characteristics of bitter melon seedlings under low-temperature stress[J]. Acta Agriculturae Zhejiangensis, 2016, 28(5): 776-781. | |
[22] | 温泽林. 外源GSH介导NO调控番茄幼苗盐适应性研究[D]. 石河子: 石河子大学, 2018. |
WEN Zelin. Study on Exogenous Glutathione Mediated Nitric Oxide to Regulate Salt Adaptability of Tomato Seedlings[D]. Shihezi: Shihezi University, 2018. | |
[23] | 张静. 盐胁迫下NO和蛋白质S-亚硝基化对番茄幼苗生长发育的影响[D]. 兰州: 甘肃农业大学, 2020. |
ZHANG Jing. Effects of NO and protein S-nitrosylation on tomato seedlings growth and development under salt stress[D]. Lanzhou: Gansu Agricultural University, 2020. | |
[24] |
杨小环, 杨文秀, 孙亮亮, 等. 外源NO缓解紫茎泽兰提取物对黄瓜根边缘细胞的化感胁迫[J]. 应用生态学报, 2018, 29(1):223-230.
DOI |
YANG Xiaohuan, YANG Wenxiu, SUN Liangliang, et al. Exogenous NO application effectively alleviates the allelochemical stress on cucumber root border cells caused by Eupatorium adenophorum extracts[J]. Chinese Journal of Applied Ecology, 2018, 29(1): 223-230.
DOI |
|
[25] | 牛丽娟. 镉胁迫下蛋白质S-亚硝基化参与钙诱导黄瓜不定根发生[D]. 兰州: 甘肃农业大学, 2020. |
NIU Lijuan. Protein S-Nitrosylation Was Involved in Ca2+-Induced Adventitious Rooting of Cucumber under Cd Stress[D]. Lanzhou: Gansu Agricultural University, 2020. | |
[26] | 孙德智, 韩晓日, 彭靖, 等. 外源NO和水杨酸对盐胁迫下番茄幼苗光合机构的保护作用[J]. 应用与环境生物学报, 2018, 24(3):457-464. |
SUN Dezhi, HAN Xiaori, PENG Jing, et al. Protective effect of exogenous nitric oxide and salicylic acid on the photosynthetic apparatus of tomato seedling leaves under NaCl stress[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(3): 457-464. |
[1] | 徐毛毛, 高杰, 李君明, 李鑫, 刘磊, 潘峰. 20个番茄商业品种群体的多样性分析[J]. 新疆农业科学, 2024, 61(9): 2191-2196. |
[2] | 田海燕, 张占琴, 颉建辉, 王建江, 杨相昆. 加工番茄果实番茄红素与主要品质性状的关系[J]. 新疆农业科学, 2024, 61(9): 2197-2202. |
[3] | 田超, 李玉姗, 马越, 宋羽. 不同浓度苦豆子浸提液对连作番茄生长及土壤肥力的影响[J]. 新疆农业科学, 2024, 61(9): 2203-2210. |
[4] | 陈芳, 李字辉, 孙孝贵, 张庭军. 不同剂量的微生物菌剂对加工番茄产量及品质的影响[J]. 新疆农业科学, 2024, 61(9): 2285-2289. |
[5] | 奚瑞, 陈怡佳, 李宁, 余庆辉, 王强, 秦勇. 外源2, 4-表芸苔素内酯对盐胁迫下不同盐敏感型番茄种子萌发的影响[J]. 新疆农业科学, 2024, 61(8): 1983-1992. |
[6] | 张彩虹, 王国强, 姜鲁艳, 刘涛, 德贤明. 低能耗组装式深冬生产型日光温室环境因子变化及番茄性状分析[J]. 新疆农业科学, 2024, 61(8): 2043-2053. |
[7] | 张福林, 李宁, 刘宇翔, 陈怡佳, 余庆辉, 闫会转. 外源2,4-表油菜素内酯及褪黑素对樱桃番茄果实品质和果皮形态结构的影响[J]. 新疆农业科学, 2024, 61(7): 1738-1747. |
[8] | 阮向阳, 蒲敏, 肖乐乐, 罗林毅, 陈瑞杰, 李然, 陈国永, 冶军. 镁肥施用策略对加工番茄产量和品质的影响[J]. 新疆农业科学, 2024, 61(4): 916-925. |
[9] | 刘易, 李江涛, 江应红, 杨茹薇, 孙慧, 吴燕. NaCl胁迫下外源亚精胺对马铃薯幼苗生理特征的影响[J]. 新疆农业科学, 2024, 61(2): 336-344. |
[10] | 李春雨, 谭占明, 程云霞, 高源, 马全会, 李志国, 马兴. 水肥耦合对沙培番茄叶绿素含量以及光合特性日变化的影响[J]. 新疆农业科学, 2024, 61(12): 3006-3013. |
[11] | 李亚莉, 哈丽哈什·依巴提, 唐亚莉, 段婧婧, 李青军. 氮磷减施与钾协同共效对加工番茄产量和养分吸收的影响[J]. 新疆农业科学, 2024, 61(12): 3014-3019. |
[12] | 刘会芳, 王强, 韩宏伟, 庄红梅, 王浩, 常亚南. 盐、碱及复合盐碱胁迫对番茄幼苗光合特性及抗氧化酶活性的影响[J]. 新疆农业科学, 2024, 61(11): 2658-2666. |
[13] | 赵文轩, 程云霞, 谭占明, 李春雨, 束胜, 阿依买木·沙吾提, 杨历雨, 苗献军. 基于主成分分析比较不同加工番茄品种叶绿素的荧光参数及光合特性[J]. 新疆农业科学, 2024, 61(11): 2667-2675. |
[14] | 李春雨, 谭占明, 程云霞, 束胜, 马全会, 何淼, 段轶帆, 吴慧. 不同加工番茄品种的农艺性状比较分析[J]. 新疆农业科学, 2024, 61(11): 2676-2683. |
[15] | 刘佳慧, 李红, 汪晶晶, 常持银. 新疆番茄制品出口贸易高质量发展的测度与评价[J]. 新疆农业科学, 2024, 61(10): 2593-2600. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 44
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 888
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||